Changeset 1466 for applications/pmsm/simulator_zdenek
- Timestamp:
- 08/02/12 22:43:00 (12 years ago)
- Location:
- applications/pmsm/simulator_zdenek
- Files:
-
- 6 modified
Legend:
- Unmodified
- Added
- Removed
-
applications/pmsm/simulator_zdenek/CMakeLists.txt
r1380 r1466 3 3 4 4 #EXEC (test_UD pmsmsim ekf_obj) 5 #EXEC (test_Ch pmsmsim ekf_obj)5 EXEC (test_Ch pmsmsim ekf_obj) 6 6 7 7 add_executable(round_test round_test.cpp) -
applications/pmsm/simulator_zdenek/ekf_example/ekf_mm.cpp
r1464 r1466 1 1 #include "ekf_mm.h" 2 2 #include "qmath.h" 3 #include "stdio.h" 3 4 4 5 … … 12 13 // q15 + q15*q13 13 14 (E->x_est)[1]=(((int32)(E->x_est[1])<<15)+(int32)(E->cG)*(E->x_est[0]))>>15; 15 E->x_pred[1]=E->x_est[1]; 16 E->x_pred[0]=E->x_est[0]; 14 17 15 18 mmultACh(E->PSI,E->Chf,E->PSICh,2,2); … … 36 39 E->y_est[1]=((int32)(E->cA)*(E->y_old[1])-(int32)tmp*t_cos+(int32)(E->cC)*(uy))>>15; // q13 37 40 38 39 int16 difz[2]; 40 difz[0]=(isx-(E->y_est[0])); // shift to q15!! 41 difz[1]=(isy-(E->y_est[1]));//<<2; 41 E->difz[0]=(isx-(E->y_est[0])); // shift to q15!! 42 E->difz[1]=(isy-(E->y_est[1]));//<<2; 42 43 43 44 E->y_old[0] = isx; … … 45 46 46 47 *detS = 32767; *rem=0; 47 carlson_fastC( difz,E->x_est,E->Chf,E->C,E->dR,2,2, detS, rem);48 carlson_fastC(E->difz,E->x_est,E->Chf,E->C,E->dR,2,2, detS, rem); 48 49 } 49 50 -
applications/pmsm/simulator_zdenek/ekf_example/ekf_mm.h
r1464 r1466 25 25 26 26 int16 x_est[2]; /* estimate and prediction */ 27 int16 x_pred[2]; /* estimate and prediction */ 27 28 int16 y_est[2]; /* estimate and prediction */ 28 29 int16 y_old[2]; /* estimate and prediction */ … … 34 35 int16 Chf[4]; // upper triangular of covariance (inplace) 35 36 37 int16 difz[2]; 36 38 int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane 37 39 }; -
applications/pmsm/simulator_zdenek/ekf_example/ekf_obj.cpp
r1464 r1466 1 2 1 #include <estim/kalman.h> 3 4 2 #include "ekf_obj.h" 5 3 //#include "../simulator.h" … … 12 10 *I++ = M(i,j); 13 11 } 12 } 13 } 14 void int16_to_mat(int16 *I, imat &M, int rows, int cols){ 15 M.set_size(rows,cols); 16 for (int16 i=0;i<M.rows(); i++){ 17 for (int16 j=0;j<M.cols(); j++){ 18 M(i,j) = *I++; 19 } 20 } 21 } 22 void int16_to_vec(int16 *I, ivec &v, int len){ 23 v.set_size(len); 24 for (int16 i=0;i<v.length(); i++){ 25 v(i) = *I++; 14 26 } 15 27 } … … 1043 1055 } 1044 1056 1045 1046 1057 { 1047 1058 int Chi[4]; for (int i=0;i<4; i++) Chi[i]=(int)Chf[i]; -
applications/pmsm/simulator_zdenek/ekf_example/ekf_obj.h
r1464 r1466 28 28 using namespace bdm; 29 29 30 double minQ(double Q); 30 double minQ(double Q); 31 31 32 32 void mat_to_int16(const imat &M, int16 *I); 33 33 void vec_to_int16(const ivec &v, int16 *I); 34 void int16_to_mat(int16 *I, imat &M, int rows, int cols); 35 void int16_to_vec(int16 *I, ivec &v, int len); 34 36 void UDtof(const mat &U, const vec &D, imat &Uf, ivec &Df, const vec &xref); 35 37 36 #ifdef XXX37 /*!38 \brief Extended Kalman Filter with full matrices in fixed point16 arithmetic39 40 An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean.41 */42 class EKFfixed : public BM {43 public:44 void init_ekf(double Tv);45 void ekf(double ux, double uy, double isxd, double isyd);46 47 /* Declaration of local functions */48 void prediction(int16 *ux);49 void correction(void);50 void update_psi(void);51 52 /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/53 int16 Q[16]; /* matrix [4,4] */54 int16 R[4]; /* matrix [2,2] */55 56 int16 x_est[4];57 int16 x_pred[4];58 int16 P_pred[16]; /* matrix [4,4] */59 int16 P_est[16]; /* matrix [4,4] */60 int16 Y_mes[2];61 int16 ukalm[2];62 int16 Kalm[8]; /* matrix [5,2] */63 64 int16 PSI[16]; /* matrix [4,4] */65 66 int16 temp15a[16];67 68 int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane69 70 int32 temp30a[4]; /* matrix [2,2] - temporary matrix for inversion */71 enorm<fsqmat> E;72 mat Ry;73 74 public:75 //! Default constructor76 EKFfixed ():BM(),E(),Ry(2,2){77 int16 i;78 for(i=0;i<16;i++){Q[i]=0;}79 for(i=0;i<4;i++){R[i]=0;}80 81 for(i=0;i<4;i++){x_est[i]=0;}82 for(i=0;i<4;i++){x_pred[i]=0;}83 for(i=0;i<16;i++){P_pred[i]=0;}84 for(i=0;i<16;i++){P_est[i]=0;}85 P_est[0]=0x7FFF;86 P_est[5]=0x7FFF;87 P_est[10]=0x7FFF;88 P_est[15]=0x7FFF;89 for(i=0;i<2;i++){Y_mes[i]=0;}90 for(i=0;i<2;i++){ukalm[i]=0;}91 for(i=0;i<8;i++){Kalm[i]=0;}92 93 for(i=0;i<16;i++){PSI[i]=0;}94 95 set_dim(4);96 E._mu()=zeros(4);97 E._R()=zeros(4,4);98 init_ekf(0.000125);99 };100 //! Here dt = [yt;ut] of appropriate dimensions101 void bayes ( const vec &yt, const vec &ut );102 //!dummy!103 const epdf& posterior() const {return E;};104 105 };106 107 UIREGISTER(EKFfixed);108 109 #endif110 38 111 39 //! EKF for testing q44 … … 121 49 }; 122 50 UIREGISTER(EKFtest); 51 52 53 class EKFscale: public EKFCh{ 54 LOG_LEVEL(EKFscale, logCh, logA, logC); 55 public: 56 mat Tx; 57 mat Ty; 58 59 void from_setting ( const Setting &set ){ 60 EKFCh::from_setting(set); 61 vec v; 62 UI::get(v, set, "xmax", UI::compulsory); 63 Tx = diag(1./v); 64 UI::get(v, set, "ymax", UI::compulsory); 65 Ty = diag(1./v); 66 67 UI::get(log_level, set, "log_level", UI::optional); 68 }; 69 70 void log_register(logger &L, const string &prefix){ 71 BM::log_register ( L, prefix ); 72 73 L.add_vector ( log_level, logCh, RV ("Ch", dimension()*dimension() ), prefix ); 74 L.add_vector ( log_level, logA, RV ("A", dimension()*dimension() ), prefix ); 75 L.add_vector ( log_level, logC, RV ("C", dimensiony()*dimension() ), prefix ); 76 }; 77 78 void log_write() const{ 79 BM::log_write(); 80 if ( log_level[logCh] ) { 81 mat Chsc=Tx*(est._R()._Ch()); 82 vec v(Chsc._data(), dimension()*dimension()); 83 if (v(0)<0) 84 v= -v; 85 log_level.store( logCh, round(v*32767)); 86 } 87 if (log_level[logA]){ 88 mat Asc = Tx*A*inv(Tx); 89 vec v(Asc._data(), dimension()*dimension()); 90 log_level.store( logA, round(v*32767)); 91 } 92 if (log_level[logC]){ 93 mat Csc = Ty*C*inv(Tx); 94 vec v(Csc._data(), dimensiony()*dimension()); 95 log_level.store( logC, round(v*32767)); 96 } 97 } 98 99 }; 100 UIREGISTER(EKFscale); 123 101 124 102 /*! … … 400 378 L.add_vector ( log_level, logCh, RV ("Ch", 16 ), prefix ); 401 379 L.add_vector ( log_level, logA, RV ("A", 16 ), prefix ); 402 L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); 403 380 L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); 404 381 }; 405 382 //void from_setting(); … … 656 633 //! EKF with covariance R estimated by the VB method 657 634 class EKFvbR: public EKFfull{ 658 LOG_LEVEL(EKFvbR,logR,logQ );635 LOG_LEVEL(EKFvbR,logR,logQ,logP); 659 636 660 637 //! Statistics of the R estimator … … 691 668 L.add_vector(log_level, logR, RV("{R }",vec_1<int>(4)), prefix); 692 669 L.add_vector(log_level, logQ, RV("{Q }",vec_1<int>(4)), prefix); 670 L.add_vector(log_level, logP, RV("{P }",vec_1<int>(4)), prefix); 693 671 } 694 672 void bayes ( const vec &val, const vec &cond ) { … … 709 687 EKFfull::bayes(val,cond); 710 688 711 diffy = val - fy._mu();712 Psi_vbR = phi*PsiR + (1-phi)*PsiR0+ outer_product(diffy,diffy)/*+C*mat(est._R())*C.T()*/;713 R = Psi_vbR/(nu-2);689 // diffy = val - fy._mu(); 690 // Psi_vbR = phi*PsiR + (1-phi)*PsiR0+ outer_product(diffy,diffy)/*+C*mat(est._R())*C.T()*/; 691 // R = Psi_vbR/(nu-2); 714 692 715 693 diffx = est._mu() - xpred; 716 Psi_vbQ = phi*PsiQ + (1-phi)*PsiQ0+ outer_product(diffx,diffx) /*+mat(est._R()) /*+ A*mat(P0)*A.T()*/; 694 Psi_vbQ = phi*PsiQ + (1-phi)*PsiQ0+ outer_product(diffx,diffx);/*mat(est._R()); A*mat(P0)*A.T();*/ 695 // 696 Psi_vbQ(0,1) = 0.0; 697 Psi_vbQ(1,0) = 0.0; 717 698 Q = Psi_vbQ/(nu-2); 718 699 } … … 722 703 log_level.store(logQ, vec(Q._M()._data(),4)); 723 704 log_level.store(logR, vec(R._M()._data(),4)); 724 705 { 706 mat Ch(2,2); 707 Ch=chol(est._R()._M()); 708 log_level.store(logP, vec(Ch._data(),4)); 709 } 725 710 } 726 711 }; … … 729 714 730 715 class ekfChfix: public BM{ 731 732 716 ekf_data E; 733 717 public: … … 758 742 vec dQ,dR; 759 743 UI::get ( dQ, set, "dQ", UI::optional ); 760 UI::get ( d Q, set, "dR", UI::optional );744 UI::get ( dR, set, "dR", UI::optional ); 761 745 if (dQ.length()==2){ 762 746 E.Q[0]=prevod(dQ[0],15); // 1e-3 … … 774 758 UIREGISTER(ekfChfix); 775 759 760 761 762 class ekfChfixQ: public BM{ 763 LOG_LEVEL(ekfChfixQ,logQ,logCh,logC,logRes) 764 ekf_data E; 765 int64 PSI_Q0, PSI_Q1, PSI_Q0_reg, PSI_Q1_reg; 766 int Q_ni; 767 int phi_Q; 768 public: 769 ekfChfixQ(){ 770 init_ekfCh2(&E,0.000125);set_dim(2); dimc = 2; 771 dimy = 2; 772 Q_ni = 7; 773 phi_Q = ((1<<Q_ni) -1)<<(15-Q_ni); 774 775 PSI_Q0_reg = ((int64)((1<<15)-phi_Q)*E.Q[0])<<Q_ni; 776 PSI_Q1_reg = ((int64)((1<<15)-phi_Q)*E.Q[3])<<Q_ni; 777 PSI_Q0 = ((int64)E.Q[0])<<Q_ni; 778 PSI_Q1 = ((int64)E.Q[3])<<Q_ni; 779 } 780 void bayes ( const vec &val, const vec &cond ) { 781 int16 ux,uy; 782 ux=prevod(cond[0]/Uref,15); 783 uy=prevod(cond[1]/Uref,15); 784 785 int16 yx,yy; 786 // zadani mereni 787 yx=prevod(val[0]/Iref,15); 788 yy=prevod(val[1]/Iref,15); 789 790 int16 detS, rem; 791 ekfCh2(&E, ux,uy,yx,yy, &detS, &rem); 792 793 Est._mu()=vec_2(E.x_est[0]*Uref/32768., E.x_est[1]*Uref/32768.); 794 795 int16 xerr0 = E.x_est[0]-E.x_pred[0]; 796 PSI_Q0 = ((int64)(phi_Q*PSI_Q0) + (((int64)xerr0*xerr0)<<15) + PSI_Q0_reg)>>15; 797 E.Q[0] = PSI_Q0>>Q_ni; 798 799 xerr0 = E.x_est[1]-E.x_pred[1]; 800 PSI_Q1 = ((int64)(phi_Q*PSI_Q1) + (((int64)xerr0*xerr0)<<15) + PSI_Q1_reg)>>15; 801 E.Q[3] = PSI_Q1>>Q_ni; 802 803 cout << E.Q[0] << "," << E.Q[3] <<endl; 804 ll = -0.5*qlog(detS)-0.5*rem; 805 } 806 const epdf& posterior() const {return Est;}; 807 void from_setting ( const Setting &set ){ 808 BM::from_setting(set); 809 vec dQ,dR; 810 UI::get ( dQ, set, "dQ", UI::optional ); 811 UI::get ( dR, set, "dR", UI::optional ); 812 if (dQ.length()==2){ 813 E.Q[0]=prevod(dQ[0],15); // 1e-3 814 E.Q[3]=prevod(dQ[1],15); // 1e-3 815 } 816 if (dR.length()==2){ 817 E.dR[0]=prevod(dR[0],15); // 1e-3 818 E.dR[1]=prevod(dR[1],15); // 1e-3 819 } 820 821 UI::get(Q_ni, set, "Q_ni", UI::optional); 822 { // zmena Q!! 823 phi_Q = ((1<<Q_ni) -1)<<(15-Q_ni); 824 825 PSI_Q0_reg = ((int64)((1<<15)-phi_Q)*E.Q[0])<<Q_ni; 826 PSI_Q1_reg = ((int64)((1<<15)-phi_Q)*E.Q[3])<<Q_ni; 827 PSI_Q0 = ((int64)E.Q[0])<<Q_ni; 828 PSI_Q1 = ((int64)E.Q[3])<<Q_ni; 829 830 } 831 UI::get(log_level, set, "log_level", UI::optional); 832 833 } 834 void log_register ( logger &L, const string &prefix ) { 835 BM::log_register(L,prefix); 836 L.add_vector(log_level, logQ, RV("{Q }",vec_1<int>(2)), prefix); 837 L.add_vector(log_level, logCh, RV("{Ch }",vec_1<int>(3)), prefix); 838 L.add_vector(log_level, logC, RV("{C }",vec_1<int>(4)), prefix); 839 L.add_vector(log_level, logRes, RV("{dy }",vec_1<int>(2)), prefix); 840 } 841 void log_write() const { 842 BM::log_write(); 843 if ( log_level[logQ] ) { 844 log_level.store( logQ, vec_2((double)E.Q[0],(double)E.Q[3] )); 845 } 846 if ( log_level[logCh] ) { 847 log_level.store( logCh, vec_3((double)E.Chf[0],(double)E.Chf[1], (double)E.Chf[3])); 848 } 849 if ( log_level[logRes] ) { 850 log_level.store( logRes, vec_2((double)E.difz[0],(double)E.difz[1])); 851 } 852 if ( log_level[logC] ) { 853 vec v(4); 854 for (int i=0;i<4;i++) v(i)=E.C[i]; 855 log_level.store( logC, v); 856 } 857 } 858 859 enorm<fsqmat> Est; 860 mat Ry; 861 }; 862 UIREGISTER(ekfChfixQ); 863 776 864 #endif // KF_H 777 865 -
applications/pmsm/simulator_zdenek/test_Ch.cpp
r1321 r1466 24 24 mat Ch = U*diag(sqrt(D)); 25 25 26 int PSI[25];27 int PSICh[25]={0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0};28 int Chf[25]={0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0};29 int Cf[10]={0,0,0,0,0, 0,0,0,0,0};30 int multip=1<<15;26 int16 PSI[25]; 27 int16 PSICh[25]={0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0}; 28 int16 Chf[25]={0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0}; 29 int16 Cf[10]={0,0,0,0,0, 0,0,0,0,0}; 30 int16 multip=(1<<15)-1; 31 31 32 32 /////////// COPY … … 34 34 mat_to_int16(Af, PSI); 35 35 mat_to_int16(round_i(Ch*multip),Chf); 36 int Qf[25];36 int16 Qf[25]; 37 37 mat_to_int16(round_i(sqrt(Q)*multip), Qf); 38 int Rf[2];38 int16 Rf[2]; 39 39 vec_to_int16(round_i(R*multip), Rf); 40 40 … … 43 43 mmultACh(PSI,Chf,PSICh,5,5); 44 44 45 mat PhiCh =round(A*32768)*round(Ch*32768)/32768/32768; 46 /* cout << "A*U" << round_i(PhiU*multip) <<endl;47 cout << "PSIU: "; for (i=0; i<25;i++) cout << PSIU[i] << ","; cout <<endl;*/48 49 imat PChcmp(PSICh,5,5);45 mat PhiCh =round(A*32768)*round(Ch*32768)/32768/32768; 46 imat PChcmp; 47 int16_to_mat(PSICh,PChcmp,5,5); 48 cout << "Psi: " << round_i(PhiCh*multip) <<endl; 49 cout << "PSI fix: " << PChcmp <<endl; 50 50 cout << "Delta PSI: " << round_i(PhiCh*multip-PChcmp) <<endl; 51 51 … … 83 83 } 84 84 85 cout << "PSICh: " << imat(PSICh,5,5) << endl; 86 cout << "Qf: " << imat(Qf,5,5) << endl; 85 imat M55(5,5); 86 int16_to_mat(PSICh,M55,5,5); 87 cout << "PSICh: " << M55 << endl; 88 int16_to_mat(Qf,M55,5,5); 89 cout << "Qf: " << M55 << endl; 87 90 88 91 Ch = U*diag(sqrt(D)); … … 96 99 cout << endl<<"after householder " <<endl; 97 100 98 imat Chcmp(PSICh,5,5); 101 imat Chcmp; 102 int16_to_mat(PSICh,Chcmp,5,5); 99 103 cout << "Ch(UD): " << round_i(Ch*multip) << endl; 100 104 cout << "Ch: " << (Chcmp) << endl; … … 113 117 vec xp = 2*randu(5)-1; 114 118 115 int difz[2];119 int16 difz[2]; 116 120 vec_to_int16(round_i(ydif*multip), difz); 117 int xf[5];121 int16 xf[5]; 118 122 vec_to_int16(round_i(xp*multip), xf); 119 123 … … 122 126 123 127 124 int xf_old[5];125 vec_to_int16(ivec(xf,5),xf_old);128 int16 xf_old[5]; 129 for (int i=0; i<5;i++) xf_old[i]=xf[i]; 126 130 127 131 /////// Test bierman … … 164 168 mat_to_int16(round_i(C*multip),Cf); 165 169 166 cout << "bef Carlson: " << imat(Chf,5,5) << endl; 170 int16_to_mat(Chf,M55,5,5); 171 cout << "bef Carlson: " << M55 << endl; 167 172 168 carlson_fastC(difz,xf, Chf, Cf,Rf, 2, 5); 173 int16 detS, rem; 174 carlson_fastC(difz,xf, Chf, Cf,Rf, 2, 5, &detS, &rem); 169 175 170 176 cout << endl<<"after Carlson" <<endl; … … 173 179 174 180 { 175 imat Chcmp(Chf,5,5); 181 imat Chcmp; 182 int16_to_mat(Chf,Chcmp,5,5); 183 cout << "Ch: " << round_i(Ch*multip) << endl; 184 cout << "Ch fix: " << Chcmp << endl; 176 185 cout << "Delta Ch: " << round_i(Ch*multip-Chcmp) << endl; 177 cout << "Delta Ch: " << Chcmp << endl;178 186 } 179 187