37 | | vec {\bf samplecond} (vec \&cond, double \&lik)\label{classmgamma_9f40dc43885085fad8e3d6652b79e139} |
38 | | |
39 | | \begin{CompactList}\small\item\em Generate one sample of the posterior. \item\end{CompactList}\item |
40 | | mat {\bf samplecond} (vec \&cond, vec \&lik, int n)\label{classmgamma_e9d52749793f40aad85b70c6db4435ae} |
41 | | |
42 | | \begin{CompactList}\small\item\em Generate matrix of samples of the posterior. \item\end{CompactList}\item |
| 37 | virtual vec {\bf samplecond} (const vec \&cond, double \&ll) |
| 38 | \begin{CompactList}\small\item\em Returns the required moment of the \doxyref{epdf}{p.}{classepdf}. \item\end{CompactList}\item |
| 39 | virtual mat {\bf samplecond} (const vec \&cond, vec \&ll, int N) |
| 40 | \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item |
| 91 | \subsection{Member Function Documentation} |
| 92 | \index{mgamma\_\-fix@{mgamma\_\-fix}!samplecond@{samplecond}} |
| 93 | \index{samplecond@{samplecond}!mgamma_fix@{mgamma\_\-fix}} |
| 94 | \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual vec mpdf::samplecond (const vec \& {\em cond}, \/ double \& {\em ll})\hspace{0.3cm}{\tt [inline, virtual, inherited]}}\label{classmpdf_3f172b79ec4a5ebc87898a5381141f1b} |
| 95 | |
| 96 | |
| 97 | Returns the required moment of the \doxyref{epdf}{p.}{classepdf}. |
| 98 | |
| 99 | Returns a sample from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \begin{Desc} |
| 100 | \item[Parameters:] |
| 101 | \begin{description} |
| 102 | \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} |
| 103 | \end{Desc} |
| 104 | |
| 105 | |
| 106 | References mpdf::condition(), mpdf::ep, epdf::evalpdflog(), and epdf::sample(). |
| 107 | |
| 108 | Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\index{mgamma\_\-fix@{mgamma\_\-fix}!samplecond@{samplecond}} |
| 109 | \index{samplecond@{samplecond}!mgamma_fix@{mgamma\_\-fix}} |
| 110 | \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt [inline, virtual, inherited]}}\label{classmpdf_0e37163660f93df2a4d723cedb1da89c} |
| 111 | |
| 112 | |
| 113 | Returns. |
| 114 | |
| 115 | \begin{Desc} |
| 116 | \item[Parameters:] |
| 117 | \begin{description} |
| 118 | \item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} |
| 119 | \end{Desc} |
| 120 | |
| 121 | |
| 122 | References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). |
| 123 | |