|  | 67 | \form#66:\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \] | 
                          |  | 68 | \form#67:$\psi$ | 
                          |  | 69 | \form#68:$w=[w_1,\ldots,w_n]$ | 
                          |  | 70 | \form#69:$\theta_i$ | 
                          |  | 71 | \form#70:$\Theta$ | 
                          |  | 72 | \form#71:$\Theta = [\theta_1,\ldots,\theta_n,w]$ | 
                          |  | 73 | \form#72:$p\times$ | 
                          |  | 74 | \form#73:$n$ | 
                          |  | 75 | \form#74:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^(\beta_i-1) \] | 
                          |  | 76 | \form#75:$\gamma=\sum_i beta_i$ | 
                          |  | 77 | \form#76:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \] | 
                          |  | 78 | \form#77:$\gamma=\sum_i \beta_i$ |