38 | | <a name="l00044"></a>00044 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classeEF.html#69e5680dac10375d62520d26c672477d" title="logarithm of the normalizing constant, ">lognc</a>()<span class="keyword">const</span> =0; |
39 | | <a name="l00046"></a><a class="code" href="classeEF.html#fd88bc35550ec8fe9281d358216d0fcf">00046</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classeEF.html#fd88bc35550ec8fe9281d358216d0fcf" title="TODO decide if it is really needed.">tupdate</a> ( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ) {}; |
40 | | <a name="l00048"></a><a class="code" href="classeEF.html#5863718c3b2fb1496dece10c5b745d5c">00048</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classeEF.html#5863718c3b2fb1496dece10c5b745d5c" title="TODO decide if it is really needed.">dupdate</a> ( mat &v,<span class="keywordtype">double</span> nu=1.0 ) {}; |
41 | | <a name="l00049"></a>00049 }; |
42 | | <a name="l00050"></a>00050 |
43 | | <a name="l00057"></a><a class="code" href="classmEF.html">00057</a> <span class="keyword">class </span><a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> : <span class="keyword">public</span> <a class="code" href="classmpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> { |
44 | | <a name="l00058"></a>00058 |
45 | | <a name="l00059"></a>00059 <span class="keyword">public</span>: |
46 | | <a name="l00061"></a><a class="code" href="classmEF.html#8bf51fe8654d7b83c8c8afeb19409d4f">00061</a> <a class="code" href="classmEF.html#8bf51fe8654d7b83c8c8afeb19409d4f" title="Default constructor.">mEF</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0, <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classmpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> ( rv0,rvc0 ) {}; |
47 | | <a name="l00062"></a>00062 }; |
48 | | <a name="l00063"></a>00063 |
49 | | <a name="l00069"></a>00069 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
50 | | <a name="l00070"></a>00070 |
51 | | <a name="l00071"></a><a class="code" href="classenorm.html">00071</a> <span class="keyword">class </span><a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> : <span class="keyword">public</span> <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
52 | | <a name="l00072"></a>00072 <span class="keyword">protected</span>: |
53 | | <a name="l00074"></a><a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20">00074</a> vec <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>; |
54 | | <a name="l00076"></a><a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1">00076</a> sq_T <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>; |
55 | | <a name="l00078"></a><a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e">00078</a> <span class="keywordtype">int</span> <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>; |
56 | | <a name="l00079"></a>00079 <span class="keyword">public</span>: |
57 | | <a name="l00080"></a>00080 <span class="comment">// enorm() :eEF() {};</span> |
58 | | <a name="l00082"></a>00082 <span class="comment"></span> <a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06" title="Default constructor.">enorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ); |
59 | | <a name="l00084"></a>00084 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af" title="Set mean value mu and covariance R.">set_parameters</a> ( <span class="keyword">const</span> vec &<a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a> ); |
60 | | <a name="l00086"></a>00086 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a" title="tupdate in exponential form (not really handy)">tupdate</a> ( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ); |
61 | | <a name="l00088"></a>00088 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2" title="dupdate in exponential form (not really handy)">dupdate</a> ( mat &v,<span class="keywordtype">double</span> nu=1.0 ); |
62 | | <a name="l00089"></a>00089 |
63 | | <a name="l00090"></a>00090 vec <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns the required moment of the epdf.">sample</a>() <span class="keyword">const</span>; |
64 | | <a name="l00092"></a>00092 mat <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns the required moment of the epdf.">sample</a> ( <span class="keywordtype">int</span> N ) <span class="keyword">const</span>; |
65 | | <a name="l00093"></a>00093 <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0" title="Compute probability of argument val.">eval</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span> ; |
66 | | <a name="l00094"></a>00094 <span class="keywordtype">double</span> <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Compute log-probability of argument val.">evalpdflog</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
67 | | <a name="l00095"></a>00095 <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
68 | | <a name="l00096"></a><a class="code" href="classenorm.html#50fa84da7bae02f7af17a98f37566899">00096</a> vec <a class="code" href="classenorm.html#50fa84da7bae02f7af17a98f37566899" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>;} |
69 | | <a name="l00097"></a>00097 |
70 | | <a name="l00098"></a>00098 <span class="comment">//Access methods</span> |
71 | | <a name="l00100"></a><a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac">00100</a> <span class="comment"></span> vec& <a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>() {<span class="keywordflow">return</span> <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>;} |
72 | | <a name="l00101"></a>00101 |
73 | | <a name="l00103"></a><a class="code" href="classenorm.html#d892a38f03be12e572ea57d9689cef6b">00103</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#d892a38f03be12e572ea57d9689cef6b" title="access function">set_mu</a>(<span class="keyword">const</span> vec mu0) { <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>=mu0;} |
74 | | <a name="l00104"></a>00104 |
75 | | <a name="l00106"></a><a class="code" href="classenorm.html#7a5034b25771a84450a990d10fc40ac9">00106</a> sq_T& <a class="code" href="classenorm.html#7a5034b25771a84450a990d10fc40ac9" title="returns pointers to the internal variance and its inverse. Use with Care!">_R</a>() {<span class="keywordflow">return</span> <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>;} |
76 | | <a name="l00107"></a>00107 |
77 | | <a name="l00109"></a><a class="code" href="classenorm.html#9b9f58dc86affa23511c246887420658">00109</a> mat <a class="code" href="classenorm.html#9b9f58dc86affa23511c246887420658" title="access method">getR</a> () {<span class="keywordflow">return</span> <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.to_mat();} |
78 | | <a name="l00110"></a>00110 }; |
79 | | <a name="l00111"></a>00111 |
80 | | <a name="l00117"></a><a class="code" href="classegiw.html">00117</a> <span class="keyword">class </span><a class="code" href="classegiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> : <span class="keyword">public</span> <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
81 | | <a name="l00118"></a>00118 <span class="keyword">protected</span>: |
82 | | <a name="l00120"></a><a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442">00120</a> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (typically known as UD).">ldmat</a> <a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a>; |
83 | | <a name="l00122"></a><a class="code" href="classegiw.html#4a2f130b91afe84f6d62fed289d5d453">00122</a> <span class="keywordtype">double</span> <a class="code" href="classegiw.html#4a2f130b91afe84f6d62fed289d5d453" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>; |
84 | | <a name="l00123"></a>00123 <span class="keyword">public</span>: |
85 | | <a name="l00125"></a><a class="code" href="classegiw.html#c52a2173c6eb1490edce9c6c7c05d60b">00125</a> <a class="code" href="classegiw.html#c52a2173c6eb1490edce9c6c7c05d60b" title="Default constructor.">egiw</a>(<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>, mat V0, <span class="keywordtype">double</span> nu0): <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a>(rv), <a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a>(V0), <a class="code" href="classegiw.html#4a2f130b91afe84f6d62fed289d5d453" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>(nu0) { |
86 | | <a name="l00126"></a>00126 it_assert_debug(rv.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>()==<a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="classldmat.html#96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>(),<span class="stringliteral">"Incompatible V0."</span>); |
87 | | <a name="l00127"></a>00127 } |
88 | | <a name="l00128"></a>00128 |
89 | | <a name="l00129"></a>00129 vec <a class="code" href="classegiw.html#3d2c1f2ba0f9966781f1e0ae695e8a6f" title="Returns the required moment of the epdf.">sample</a>() <span class="keyword">const</span>; |
90 | | <a name="l00130"></a>00130 vec <a class="code" href="classegiw.html#6deb0ff2859f41ef7cbdf6a842cabb29" title="return expected value">mean</a>() <span class="keyword">const</span>; |
91 | | <a name="l00131"></a>00131 <span class="keywordtype">double</span> <a class="code" href="classegiw.html#425cbc53b377274e28c6add942bab62d" title="Compute log-probability of argument val.">evalpdflog</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
92 | | <a name="l00132"></a>00132 <span class="keywordtype">double</span> <a class="code" href="classegiw.html#70eb1a0b88459b227f919b425b0d3359" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
| 38 | <a name="l00044"></a>00044 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classeEF.html#69e5680dac10375d62520d26c672477d" title="logarithm of the normalizing constant, ">lognc</a>() <span class="keyword">const</span> =0; |
| 39 | <a name="l00046"></a><a class="code" href="classeEF.html#a89bef8996410609004fa019b5b48964">00046</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classeEF.html#a89bef8996410609004fa019b5b48964" title="TODO decide if it is really needed.">dupdate</a> ( mat &v ) {it_error ( <span class="stringliteral">"Not implemneted"</span> );}; |
| 40 | <a name="l00048"></a><a class="code" href="classeEF.html#48cdd33d0e20d1a1aa45683c956bc61c">00048</a> <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classeEF.html#48cdd33d0e20d1a1aa45683c956bc61c" title="Evaluate normalized log-probability.">evalpdflog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const</span>{it_error ( <span class="stringliteral">"Not implemneted"</span> );<span class="keywordflow">return</span> 0.0;}; |
| 41 | <a name="l00050"></a><a class="code" href="classeEF.html#6466e8d4aa9dd64698ed288cbb1afc03">00050</a> <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classeEF.html#6466e8d4aa9dd64698ed288cbb1afc03" title="Evaluate normalized log-probability.">evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classeEF.html#48cdd33d0e20d1a1aa45683c956bc61c" title="Evaluate normalized log-probability.">evalpdflog_nn</a> ( val )-<a class="code" href="classeEF.html#69e5680dac10375d62520d26c672477d" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 42 | <a name="l00052"></a><a class="code" href="classeEF.html#c71faf4b2d153efda14bf1f87dca1507">00052</a> <span class="keyword">virtual</span> vec <a class="code" href="classeEF.html#6466e8d4aa9dd64698ed288cbb1afc03" title="Evaluate normalized log-probability.">evalpdflog</a> ( <span class="keyword">const</span> mat &Val )<span class="keyword"> const </span>{ |
| 43 | <a name="l00053"></a>00053 vec x ( Val.cols() ); |
| 44 | <a name="l00054"></a>00054 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<Val.cols();i++ ) {x ( i ) =<a class="code" href="classeEF.html#48cdd33d0e20d1a1aa45683c956bc61c" title="Evaluate normalized log-probability.">evalpdflog_nn</a> ( Val.get_col ( i ) ) ;} |
| 45 | <a name="l00055"></a>00055 <span class="keywordflow">return</span> x-<a class="code" href="classeEF.html#69e5680dac10375d62520d26c672477d" title="logarithm of the normalizing constant, ">lognc</a>(); |
| 46 | <a name="l00056"></a>00056 } |
| 47 | <a name="l00058"></a><a class="code" href="classeEF.html#4f8385dd1cc9740522dc373b1dc3cbf5">00058</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classeEF.html#4f8385dd1cc9740522dc373b1dc3cbf5" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
| 48 | <a name="l00059"></a>00059 }; |
| 49 | <a name="l00060"></a>00060 |
| 50 | <a name="l00067"></a><a class="code" href="classmEF.html">00067</a> <span class="keyword">class </span><a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> : <span class="keyword">public</span> <a class="code" href="classmpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> { |
| 51 | <a name="l00068"></a>00068 |
| 52 | <a name="l00069"></a>00069 <span class="keyword">public</span>: |
| 53 | <a name="l00071"></a><a class="code" href="classmEF.html#8bf51fe8654d7b83c8c8afeb19409d4f">00071</a> <a class="code" href="classmEF.html#8bf51fe8654d7b83c8c8afeb19409d4f" title="Default constructor.">mEF</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0, <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classmpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> ( rv0,rvc0 ) {}; |
| 54 | <a name="l00072"></a>00072 }; |
| 55 | <a name="l00073"></a>00073 |
| 56 | <a name="l00075"></a><a class="code" href="classBMEF.html">00075</a> <span class="keyword">class </span><a class="code" href="classBMEF.html" title="Estimator for Exponential family.">BMEF</a> : <span class="keyword">public</span> <a class="code" href="classBM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a> { |
| 57 | <a name="l00076"></a>00076 <span class="keyword">protected</span>: |
| 58 | <a name="l00078"></a><a class="code" href="classBMEF.html#538d632e59f9afa8daa1de74da12ce71">00078</a> <span class="keywordtype">double</span> <a class="code" href="classBMEF.html#538d632e59f9afa8daa1de74da12ce71" title="forgetting factor">frg</a>; |
| 59 | <a name="l00080"></a><a class="code" href="classBMEF.html#308cf5d4133cd471fdf1ecd5dfa09d02">00080</a> <span class="keywordtype">double</span> <a class="code" href="classBMEF.html#308cf5d4133cd471fdf1ecd5dfa09d02" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>; |
| 60 | <a name="l00081"></a>00081 <span class="keyword">public</span>: |
| 61 | <a name="l00083"></a><a class="code" href="classBMEF.html#46ac5c919ae647f3a6a38d9faba35f5d">00083</a> <a class="code" href="classBMEF.html#46ac5c919ae647f3a6a38d9faba35f5d" title="Default constructor.">BMEF</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classBM.html#af00f0612fabe66241dd507188cdbf88" title="Random variable of the posterior.">rv</a>, <span class="keywordtype">double</span> frg0=1.0 ) :<a class="code" href="classBM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a> ( rv ), <a class="code" href="classBMEF.html#538d632e59f9afa8daa1de74da12ce71" title="forgetting factor">frg</a> ( frg0 ) {} |
| 62 | <a name="l00085"></a><a class="code" href="classBMEF.html#3dc6277cafbdc6cbc2db860ff219b33e">00085</a> <a class="code" href="classBMEF.html#46ac5c919ae647f3a6a38d9faba35f5d" title="Default constructor.">BMEF</a> ( <span class="keyword">const</span> <a class="code" href="classBMEF.html" title="Estimator for Exponential family.">BMEF</a> &B ) :<a class="code" href="classBM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a> ( B ), <a class="code" href="classBMEF.html#538d632e59f9afa8daa1de74da12ce71" title="forgetting factor">frg</a> ( B.<a class="code" href="classBMEF.html#538d632e59f9afa8daa1de74da12ce71" title="forgetting factor">frg</a> ), <a class="code" href="classBMEF.html#308cf5d4133cd471fdf1ecd5dfa09d02" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ( B.<a class="code" href="classBMEF.html#308cf5d4133cd471fdf1ecd5dfa09d02" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ) {} |
| 63 | <a name="l00087"></a><a class="code" href="classBMEF.html#30bb40eb1fd31869b2e62e79e1ecdcb4">00087</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classBMEF.html#30bb40eb1fd31869b2e62e79e1ecdcb4" title="get statistics from another model">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classBMEF.html" title="Estimator for Exponential family.">BMEF</a>* BM0 ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
| 64 | <a name="l00089"></a><a class="code" href="classBMEF.html#8f4ecb6e2eaf630155a1fa98f35aa6ad">00089</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classBMEF.html#8f4ecb6e2eaf630155a1fa98f35aa6ad" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &data, <span class="keyword">const</span> <span class="keywordtype">double</span> w ) {}; |
| 65 | <a name="l00090"></a>00090 <span class="comment">//original Bayes</span> |
| 66 | <a name="l00091"></a>00091 <span class="keywordtype">void</span> <a class="code" href="classBMEF.html#8f4ecb6e2eaf630155a1fa98f35aa6ad" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
| 67 | <a name="l00093"></a><a class="code" href="classBMEF.html#afda119ee86cadadfd2b67335a7cf052">00093</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classBMEF.html#afda119ee86cadadfd2b67335a7cf052" title="Flatten the posterior.">flatten</a> ( <a class="code" href="classBMEF.html" title="Estimator for Exponential family.">BMEF</a> * B) {it_error ( <span class="stringliteral">"Not implemented"</span> );} |
| 68 | <a name="l00094"></a>00094 }; |
| 69 | <a name="l00095"></a>00095 |
| 70 | <a name="l00101"></a>00101 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 71 | <a name="l00102"></a>00102 |
| 72 | <a name="l00103"></a><a class="code" href="classenorm.html">00103</a> <span class="keyword">class </span><a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> : <span class="keyword">public</span> <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
| 73 | <a name="l00104"></a>00104 <span class="keyword">protected</span>: |
| 74 | <a name="l00106"></a><a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20">00106</a> vec <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>; |
| 75 | <a name="l00108"></a><a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1">00108</a> sq_T <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>; |
| 76 | <a name="l00110"></a><a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e">00110</a> <span class="keywordtype">int</span> <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>; |
| 77 | <a name="l00111"></a>00111 <span class="keyword">public</span>: |
| 78 | <a name="l00112"></a>00112 <span class="comment">// enorm() :eEF() {};</span> |
| 79 | <a name="l00114"></a>00114 <span class="comment"></span> <a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06" title="Default constructor.">enorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ); |
| 80 | <a name="l00116"></a>00116 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af" title="Set mean value mu and covariance R.">set_parameters</a> ( <span class="keyword">const</span> vec &<a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a> ); |
| 81 | <a name="l00118"></a>00118 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a" title="tupdate in exponential form (not really handy)">tupdate</a> ( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ); |
| 82 | <a name="l00120"></a>00120 <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2" title="dupdate in exponential form (not really handy)">dupdate</a> ( mat &v,<span class="keywordtype">double</span> nu=1.0 ); |
| 83 | <a name="l00121"></a>00121 |
| 84 | <a name="l00122"></a>00122 vec <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
| 85 | <a name="l00124"></a>00124 mat <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns a sample, from density .">sample</a> ( <span class="keywordtype">int</span> N ) <span class="keyword">const</span>; |
| 86 | <a name="l00125"></a>00125 <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0" title="Compute probability of argument val.">eval</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span> ; |
| 87 | <a name="l00126"></a>00126 <span class="keywordtype">double</span> <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Evaluate normalized log-probability.">evalpdflog</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
| 88 | <a name="l00127"></a>00127 <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
| 89 | <a name="l00128"></a><a class="code" href="classenorm.html#50fa84da7bae02f7af17a98f37566899">00128</a> vec <a class="code" href="classenorm.html#50fa84da7bae02f7af17a98f37566899" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>;} |
| 90 | <a name="l00129"></a>00129 |
| 91 | <a name="l00130"></a>00130 <span class="comment">//Access methods</span> |
| 92 | <a name="l00132"></a><a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac">00132</a> <span class="comment"></span> vec& <a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>() {<span class="keywordflow">return</span> <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>;} |
98 | | <a name="l00140"></a>00140 }; |
99 | | <a name="l00141"></a>00141 |
100 | | <a name="l00151"></a><a class="code" href="classegamma.html">00151</a> <span class="keyword">class </span><a class="code" href="classegamma.html" title="Gamma posterior density.">egamma</a> : <span class="keyword">public</span> <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
101 | | <a name="l00152"></a>00152 <span class="keyword">protected</span>: |
102 | | <a name="l00154"></a><a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b">00154</a> vec <a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a>; |
103 | | <a name="l00156"></a><a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790">00156</a> vec <a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>; |
104 | | <a name="l00157"></a>00157 <span class="keyword">public</span> : |
105 | | <a name="l00159"></a><a class="code" href="classegamma.html#4b1d34f3b244ea51a58ec10c468788c1">00159</a> <a class="code" href="classegamma.html#4b1d34f3b244ea51a58ec10c468788c1" title="Default constructor.">egamma</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ) {}; |
106 | | <a name="l00161"></a><a class="code" href="classegamma.html#8e348b89be82b70471fe8c5630f61339">00161</a> <span class="keywordtype">void</span> <a class="code" href="classegamma.html#8e348b89be82b70471fe8c5630f61339" title="Sets parameters.">set_parameters</a> ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {<a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a>=a,<a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>=b;}; |
107 | | <a name="l00162"></a>00162 vec <a class="code" href="classegamma.html#8e10c0021b5dfdd9cb62c6959b5ef425" title="Returns the required moment of the epdf.">sample</a>() <span class="keyword">const</span>; |
108 | | <a name="l00164"></a>00164 <span class="comment">// mat sample ( int N ) const;</span> |
109 | | <a name="l00165"></a>00165 <span class="keywordtype">double</span> <a class="code" href="classegamma.html#de84faac8f9799dfe2777ddbedf997ef" title="TODO: is it used anywhere?">evalpdflog</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
110 | | <a name="l00166"></a>00166 <span class="keywordtype">double</span> <a class="code" href="classegamma.html#d6dbbdb72360f9e54d64501f80318bb6" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
111 | | <a name="l00168"></a><a class="code" href="classegamma.html#44445c56e60b91b377f207f8d5089790">00168</a> <span class="keywordtype">void</span> <a class="code" href="classegamma.html#44445c56e60b91b377f207f8d5089790" title="Returns poiter to alpha and beta. Potentially dengerous: use with care!">_param</a> ( vec* &a, vec* &b ) {a=&<a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a>;b=&<a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>;}; |
112 | | <a name="l00169"></a><a class="code" href="classegamma.html#6ab5ba56f7cdb2e5921c3e77524fa50a">00169</a> vec <a class="code" href="classegamma.html#6ab5ba56f7cdb2e5921c3e77524fa50a" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec pom ( <a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a> ); pom/=<a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>; <span class="keywordflow">return</span> pom;} |
113 | | <a name="l00170"></a>00170 }; |
114 | | <a name="l00171"></a>00171 <span class="comment">/*</span> |
115 | | <a name="l00173"></a>00173 <span class="comment">class emix : public epdf {</span> |
116 | | <a name="l00174"></a>00174 <span class="comment">protected:</span> |
117 | | <a name="l00175"></a>00175 <span class="comment"> int n;</span> |
118 | | <a name="l00176"></a>00176 <span class="comment"> vec &w;</span> |
119 | | <a name="l00177"></a>00177 <span class="comment"> Array<epdf*> Coms;</span> |
120 | | <a name="l00178"></a>00178 <span class="comment">public:</span> |
121 | | <a name="l00180"></a>00180 <span class="comment"> emix ( const RV &rv, vec &w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span> |
122 | | <a name="l00181"></a>00181 <span class="comment"> void set_parameters( int &i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span> |
123 | | <a name="l00182"></a>00182 <span class="comment"> vec mean(){vec pom; for(int i=0;i<n;i++){pom+=Coms(i)->mean()*w(i);} return pom;};</span> |
124 | | <a name="l00183"></a>00183 <span class="comment"> vec sample() {it_error ( "Not implemented" );return 0;}</span> |
125 | | <a name="l00184"></a>00184 <span class="comment">};</span> |
126 | | <a name="l00185"></a>00185 <span class="comment">*/</span> |
127 | | <a name="l00186"></a>00186 |
| 98 | <a name="l00141"></a><a class="code" href="classenorm.html#9b9f58dc86affa23511c246887420658">00141</a> mat <a class="code" href="classenorm.html#9b9f58dc86affa23511c246887420658" title="access method">getR</a> () {<span class="keywordflow">return</span> <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.to_mat();} |
| 99 | <a name="l00142"></a>00142 }; |
| 100 | <a name="l00143"></a>00143 |
| 101 | <a name="l00150"></a><a class="code" href="classegiw.html">00150</a> <span class="keyword">class </span><a class="code" href="classegiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> : <span class="keyword">public</span> <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
| 102 | <a name="l00151"></a>00151 <span class="keyword">protected</span>: |
| 103 | <a name="l00153"></a><a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442">00153</a> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (typically known as UD).">ldmat</a> <a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a>; |
| 104 | <a name="l00155"></a><a class="code" href="classegiw.html#4a2f130b91afe84f6d62fed289d5d453">00155</a> <span class="keywordtype">double</span> <a class="code" href="classegiw.html#4a2f130b91afe84f6d62fed289d5d453" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>; |
| 105 | <a name="l00157"></a><a class="code" href="classegiw.html#3d5c719f15a5527a6c62c2a53160148e">00157</a> <span class="keywordtype">int</span> <a class="code" href="classegiw.html#3d5c719f15a5527a6c62c2a53160148e" title="Dimension of the output.">xdim</a>; |
| 106 | <a name="l00159"></a><a class="code" href="classegiw.html#c70d13d86e0d9f0acede3e1dc0368812">00159</a> <span class="keywordtype">int</span> <a class="code" href="classegiw.html#c70d13d86e0d9f0acede3e1dc0368812" title="Dimension of the regressor.">nPsi</a>; |
| 107 | <a name="l00160"></a>00160 <span class="keyword">public</span>: |
| 108 | <a name="l00162"></a><a class="code" href="classegiw.html#c52a2173c6eb1490edce9c6c7c05d60b">00162</a> <a class="code" href="classegiw.html#c52a2173c6eb1490edce9c6c7c05d60b" title="Default constructor, assuming.">egiw</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>, mat V0, <span class="keywordtype">double</span> nu0 ) : <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), <a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a> ( V0 ), <a class="code" href="classegiw.html#4a2f130b91afe84f6d62fed289d5d453" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> ( nu0 ) { |
| 109 | <a name="l00163"></a>00163 <a class="code" href="classegiw.html#3d5c719f15a5527a6c62c2a53160148e" title="Dimension of the output.">xdim</a> = rv.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() /<a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="classldmat.html#96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>(); |
| 110 | <a name="l00164"></a>00164 it_assert_debug ( rv.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ==<a class="code" href="classegiw.html#3d5c719f15a5527a6c62c2a53160148e" title="Dimension of the output.">xdim</a>*<a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="classldmat.html#96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>(),<span class="stringliteral">"Incompatible V0."</span> ); |
| 111 | <a name="l00165"></a>00165 <a class="code" href="classegiw.html#c70d13d86e0d9f0acede3e1dc0368812" title="Dimension of the regressor.">nPsi</a> = <a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="classldmat.html#96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>()-<a class="code" href="classegiw.html#3d5c719f15a5527a6c62c2a53160148e" title="Dimension of the output.">xdim</a>; |
| 112 | <a name="l00166"></a>00166 } |
| 113 | <a name="l00168"></a><a class="code" href="classegiw.html#1a17fdbac6c72b9c3abb97623db466c8">00168</a> <a class="code" href="classegiw.html#c52a2173c6eb1490edce9c6c7c05d60b" title="Default constructor, assuming.">egiw</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>, <a class="code" href="classldmat.html" title="Matrix stored in LD form, (typically known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0 ) : <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), <a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a> ( V0 ), <a class="code" href="classegiw.html#4a2f130b91afe84f6d62fed289d5d453" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> ( nu0 ) { |
| 114 | <a name="l00169"></a>00169 <a class="code" href="classegiw.html#3d5c719f15a5527a6c62c2a53160148e" title="Dimension of the output.">xdim</a> = rv.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() /<a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="classldmat.html#96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>(); |
| 115 | <a name="l00170"></a>00170 it_assert_debug ( rv.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ==<a class="code" href="classegiw.html#3d5c719f15a5527a6c62c2a53160148e" title="Dimension of the output.">xdim</a>*<a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="classldmat.html#96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>(),<span class="stringliteral">"Incompatible V0."</span> ); |
| 116 | <a name="l00171"></a>00171 <a class="code" href="classegiw.html#c70d13d86e0d9f0acede3e1dc0368812" title="Dimension of the regressor.">nPsi</a> = <a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a>.<a class="code" href="classldmat.html#96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>()-<a class="code" href="classegiw.html#3d5c719f15a5527a6c62c2a53160148e" title="Dimension of the output.">xdim</a>; |
| 117 | <a name="l00172"></a>00172 } |
| 118 | <a name="l00173"></a>00173 |
| 119 | <a name="l00174"></a>00174 vec <a class="code" href="classegiw.html#3d2c1f2ba0f9966781f1e0ae695e8a6f" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
| 120 | <a name="l00175"></a>00175 vec <a class="code" href="classegiw.html#6deb0ff2859f41ef7cbdf6a842cabb29" title="return expected value">mean</a>() <span class="keyword">const</span>; |
| 121 | <a name="l00176"></a>00176 <span class="keywordtype">void</span> mean_mat ( mat &M, mat&R ) <span class="keyword">const</span>; |
| 122 | <a name="l00178"></a>00178 <span class="keywordtype">double</span> <a class="code" href="classegiw.html#2ab1e525d692be8272a6f383d60b94cd" title="In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise...">evalpdflog_nn</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
| 123 | <a name="l00179"></a>00179 <span class="keywordtype">double</span> <a class="code" href="classegiw.html#70eb1a0b88459b227f919b425b0d3359" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
| 124 | <a name="l00180"></a>00180 |
| 125 | <a name="l00181"></a>00181 <span class="comment">//Access</span> |
| 126 | <a name="l00183"></a><a class="code" href="classegiw.html#533e792e1175bfa06d5d595dc5d080d5">00183</a> <span class="comment"></span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (typically known as UD).">ldmat</a>& <a class="code" href="classegiw.html#533e792e1175bfa06d5d595dc5d080d5" title="returns a pointer to the internal statistics. Use with Care!">_V</a>() {<span class="keywordflow">return</span> <a class="code" href="classegiw.html#f343d03ede89db820edf44a6297fa442" title="Extended information matrix of sufficient statistics.">V</a>;} |
| 127 | <a name="l00185"></a><a class="code" href="classegiw.html#08029c481ff95d24f093df0573879afe">00185</a> <span class="keywordtype">double</span>& <a class="code" href="classegiw.html#08029c481ff95d24f093df0573879afe" title="returns a pointer to the internal statistics. Use with Care!">_nu</a>() {<span class="keywordflow">return</span> <a class="code" href="classegiw.html#4a2f130b91afe84f6d62fed289d5d453" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} |
| 128 | <a name="l00186"></a>00186 <span class="keywordtype">void</span> <a class="code" href="classegiw.html#036306322a90a9977834baac07460816" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ); |
| 129 | <a name="l00187"></a>00187 }; |
137 | | <a name="l00203"></a><a class="code" href="classeuni.html#2537a6c239cff52e3ba814851a1116cd">00203</a> <a class="code" href="classeuni.html#2537a6c239cff52e3ba814851a1116cd" title="Defualt constructor.">euni</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv ) {} |
138 | | <a name="l00204"></a><a class="code" href="classeuni.html#2723d4992900b5c5495bfa03628195ed">00204</a> <span class="keywordtype">double</span> <a class="code" href="classeuni.html#2723d4992900b5c5495bfa03628195ed" title="Compute probability of argument val.">eval</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a>;} |
139 | | <a name="l00205"></a><a class="code" href="classeuni.html#06af95d514a6623ad4688bd2ad50ad71">00205</a> <span class="keywordtype">double</span> <a class="code" href="classeuni.html#06af95d514a6623ad4688bd2ad50ad71" title="Compute log-probability of argument val.">evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3" title="cache of log( nk )">lnk</a>;} |
140 | | <a name="l00206"></a><a class="code" href="classeuni.html#4a0e09392be17beaee120ba98fc038cd">00206</a> vec <a class="code" href="classeuni.html#4a0e09392be17beaee120ba98fc038cd" title="Returns the required moment of the epdf.">sample</a>()<span class="keyword"> const </span>{ |
141 | | <a name="l00207"></a>00207 vec smp ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ); |
142 | | <a name="l00208"></a>00208 <span class="preprocessor"> #pragma omp critical</span> |
143 | | <a name="l00209"></a>00209 <span class="preprocessor"></span> UniRNG.sample_vector ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>(),smp ); |
144 | | <a name="l00210"></a>00210 <span class="keywordflow">return</span> <a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a>+elem_mult(<a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a>,smp); |
145 | | <a name="l00211"></a>00211 } |
146 | | <a name="l00213"></a><a class="code" href="classeuni.html#4fd7c6a05100616ad16ece405cad7bf2">00213</a> <span class="keywordtype">void</span> <a class="code" href="classeuni.html#4fd7c6a05100616ad16ece405cad7bf2" title="set values of low and high ">set_parameters</a> ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) { |
147 | | <a name="l00214"></a>00214 <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> = high0-low0; |
148 | | <a name="l00215"></a>00215 it_assert_debug ( min ( <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> ) >0.0,<span class="stringliteral">"bad support"</span> ); |
149 | | <a name="l00216"></a>00216 <a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a> = low0; |
150 | | <a name="l00217"></a>00217 <a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231" title="upper bound on support">high</a> = high0; |
151 | | <a name="l00218"></a>00218 <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a> = prod ( 1.0/<a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> ); |
152 | | <a name="l00219"></a>00219 <a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3" title="cache of log( nk )">lnk</a> = log ( <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a> ); |
153 | | <a name="l00220"></a>00220 } |
154 | | <a name="l00221"></a><a class="code" href="classeuni.html#8050087e421a9cfd1b4b1f8bd33b1cc1">00221</a> vec <a class="code" href="classeuni.html#8050087e421a9cfd1b4b1f8bd33b1cc1" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec pom=<a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231" title="upper bound on support">high</a>; pom-=<a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a>; pom/=2.0; <span class="keywordflow">return</span> pom;} |
155 | | <a name="l00222"></a>00222 }; |
156 | | <a name="l00223"></a>00223 |
157 | | <a name="l00224"></a>00224 |
158 | | <a name="l00230"></a>00230 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
159 | | <a name="l00231"></a><a class="code" href="classmlnorm.html">00231</a> <span class="keyword">class </span><a class="code" href="classmlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> { |
160 | | <a name="l00233"></a>00233 <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
161 | | <a name="l00234"></a>00234 mat A; |
162 | | <a name="l00235"></a>00235 vec& _mu; <span class="comment">//cached epdf.mu;</span> |
163 | | <a name="l00236"></a>00236 <span class="keyword">public</span>: |
164 | | <a name="l00238"></a>00238 <a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5" title="Constructor.">mlnorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ); |
165 | | <a name="l00240"></a>00240 <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0" title="Set A and R.">set_parameters</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> sq_T &R ); |
166 | | <a name="l00242"></a>00242 vec <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, <span class="keywordtype">double</span> &lik ); |
167 | | <a name="l00244"></a>00244 mat <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, vec &lik, <span class="keywordtype">int</span> n ); |
168 | | <a name="l00246"></a>00246 <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( vec &cond ); |
169 | | <a name="l00247"></a>00247 }; |
| 135 | <a name="l00203"></a><a class="code" href="classeDirich.html#ac7e6116f3575c3860d07355e96cd4af">00203</a> <a class="code" href="classeDirich.html#ac7e6116f3575c3860d07355e96cd4af" title="Default constructor.">eDirich</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>, <span class="keyword">const</span> vec &beta0 ) : <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ),<a class="code" href="classeDirich.html#15e6b65e9595eedc8a1286c6cecd36d7" title="sufficient statistics">beta</a> ( beta0 ) {it_assert_debug ( rv.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ==<a class="code" href="classeDirich.html#15e6b65e9595eedc8a1286c6cecd36d7" title="sufficient statistics">beta</a>.length(),<span class="stringliteral">"Incompatible statistics"</span> ); }; |
| 136 | <a name="l00205"></a><a class="code" href="classeDirich.html#55cccbc5eb44764dce722567acf5fd58">00205</a> <a class="code" href="classeDirich.html#ac7e6116f3575c3860d07355e96cd4af" title="Default constructor.">eDirich</a> ( <span class="keyword">const</span> <a class="code" href="classeDirich.html" title="Dirichlet posterior density.">eDirich</a> &D0 ) : <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( D0.<a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ),<a class="code" href="classeDirich.html#15e6b65e9595eedc8a1286c6cecd36d7" title="sufficient statistics">beta</a> ( D0.<a class="code" href="classeDirich.html#15e6b65e9595eedc8a1286c6cecd36d7" title="sufficient statistics">beta</a> ) {}; |
| 137 | <a name="l00206"></a><a class="code" href="classeDirich.html#23dff79110822e9639343fe8e177fd80">00206</a> vec <a class="code" href="classeDirich.html#23dff79110822e9639343fe8e177fd80" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> vec_1 ( 0.0 );}; |
| 138 | <a name="l00207"></a><a class="code" href="classeDirich.html#4206e1da149d51ff3b663c9241096b73">00207</a> vec <a class="code" href="classeDirich.html#4206e1da149d51ff3b663c9241096b73" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classeDirich.html#15e6b65e9595eedc8a1286c6cecd36d7" title="sufficient statistics">beta</a>/sum ( <a class="code" href="classeDirich.html#15e6b65e9595eedc8a1286c6cecd36d7" title="sufficient statistics">beta</a> );}; |
| 139 | <a name="l00209"></a><a class="code" href="classeDirich.html#688a24f04be6d80d4769cf0e4ded7acc">00209</a> <span class="keywordtype">double</span> <a class="code" href="classeDirich.html#688a24f04be6d80d4769cf0e4ded7acc" title="In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise...">evalpdflog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> ( <a class="code" href="classeDirich.html#15e6b65e9595eedc8a1286c6cecd36d7" title="sufficient statistics">beta</a>-1 ) *log ( val );}; |
| 140 | <a name="l00210"></a><a class="code" href="classeDirich.html#7ce60be7119ffc639ede4e583c1f6e77">00210</a> <span class="keywordtype">double</span> <a class="code" href="classeDirich.html#7ce60be7119ffc639ede4e583c1f6e77" title="logarithm of the normalizing constant, ">lognc</a> ()<span class="keyword"> const </span>{ |
| 141 | <a name="l00211"></a>00211 <span class="keywordtype">double</span> gam=sum ( <a class="code" href="classeDirich.html#15e6b65e9595eedc8a1286c6cecd36d7" title="sufficient statistics">beta</a> ); |
| 142 | <a name="l00212"></a>00212 <span class="keywordtype">double</span> lgb=0.0; |
| 143 | <a name="l00213"></a>00213 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classeDirich.html#15e6b65e9595eedc8a1286c6cecd36d7" title="sufficient statistics">beta</a>.length();i++ ) {lgb+=lgamma ( <a class="code" href="classeDirich.html#15e6b65e9595eedc8a1286c6cecd36d7" title="sufficient statistics">beta</a> ( i ) );} |
| 144 | <a name="l00214"></a>00214 <span class="keywordflow">return</span> lgb-lgamma ( gam ); |
| 145 | <a name="l00215"></a>00215 }; |
| 146 | <a name="l00217"></a><a class="code" href="classeDirich.html#6409d0362143a23976b43641ff19e53a">00217</a> vec& <a class="code" href="classeDirich.html#6409d0362143a23976b43641ff19e53a" title="access function">_beta</a>() {<span class="keywordflow">return</span> <a class="code" href="classeDirich.html#15e6b65e9595eedc8a1286c6cecd36d7" title="sufficient statistics">beta</a>;} |
| 147 | <a name="l00218"></a>00218 }; |
| 148 | <a name="l00219"></a>00219 |
| 149 | <a name="l00221"></a><a class="code" href="classmultiBM.html">00221</a> <span class="keyword">class </span><a class="code" href="classmultiBM.html" title="Estimator for Multinomial density.">multiBM</a> : <span class="keyword">public</span> <a class="code" href="classBMEF.html" title="Estimator for Exponential family.">BMEF</a> { |
| 150 | <a name="l00222"></a>00222 <span class="keyword">protected</span>: |
| 151 | <a name="l00224"></a><a class="code" href="classmultiBM.html#eddee08a724170de63f36e40c57b27b5">00224</a> <a class="code" href="classeDirich.html" title="Dirichlet posterior density.">eDirich</a> <a class="code" href="classmultiBM.html#eddee08a724170de63f36e40c57b27b5" title="Conjugate prior and posterior.">est</a>; |
| 152 | <a name="l00225"></a>00225 vec &beta; |
| 153 | <a name="l00226"></a>00226 <span class="keyword">public</span>: |
| 154 | <a name="l00228"></a><a class="code" href="classmultiBM.html#7d7d7e78c129602bcde96078359dc6e5">00228</a> <a class="code" href="classmultiBM.html#7d7d7e78c129602bcde96078359dc6e5" title="Default constructor.">multiBM</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classBM.html#af00f0612fabe66241dd507188cdbf88" title="Random variable of the posterior.">rv</a>, <span class="keyword">const</span> vec beta0 ) : <a class="code" href="classBMEF.html" title="Estimator for Exponential family.">BMEF</a> ( rv ),<a class="code" href="classmultiBM.html#eddee08a724170de63f36e40c57b27b5" title="Conjugate prior and posterior.">est</a> ( rv,beta0 ),beta ( <a class="code" href="classmultiBM.html#eddee08a724170de63f36e40c57b27b5" title="Conjugate prior and posterior.">est</a>._beta() ) {<a class="code" href="classBMEF.html#308cf5d4133cd471fdf1ecd5dfa09d02" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classmultiBM.html#eddee08a724170de63f36e40c57b27b5" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classeDirich.html#7ce60be7119ffc639ede4e583c1f6e77" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 155 | <a name="l00230"></a><a class="code" href="classmultiBM.html#b92751adbfb9f259ca8c95232cfd9c09">00230</a> <a class="code" href="classmultiBM.html#7d7d7e78c129602bcde96078359dc6e5" title="Default constructor.">multiBM</a> ( <span class="keyword">const</span> <a class="code" href="classmultiBM.html" title="Estimator for Multinomial density.">multiBM</a> &B ) : <a class="code" href="classBMEF.html" title="Estimator for Exponential family.">BMEF</a> ( B ),<a class="code" href="classmultiBM.html#eddee08a724170de63f36e40c57b27b5" title="Conjugate prior and posterior.">est</a> ( <a class="code" href="classBM.html#af00f0612fabe66241dd507188cdbf88" title="Random variable of the posterior.">rv</a>,B.beta ),beta ( <a class="code" href="classmultiBM.html#eddee08a724170de63f36e40c57b27b5" title="Conjugate prior and posterior.">est</a>._beta() ) {} |
| 156 | <a name="l00231"></a>00231 |
| 157 | <a name="l00232"></a>00232 <span class="keywordtype">void</span> set_statistics ( <span class="keyword">const</span> <a class="code" href="classBM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a>* mB0 ) {<span class="keyword">const</span> <a class="code" href="classmultiBM.html" title="Estimator for Multinomial density.">multiBM</a>* mB=<span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classmultiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> ( mB0 ); beta=mB-><a class="code" href="classmultiBM.html#7b606116aed7e8834a339cbb0424b1d6">beta</a>;} |
| 158 | <a name="l00233"></a><a class="code" href="classmultiBM.html#11eeba7e97954e316e959116f90d80e2">00233</a> <span class="keywordtype">void</span> <a class="code" href="classmultiBM.html#11eeba7e97954e316e959116f90d80e2" title="Incremental Bayes rule.">bayes</a> ( <span class="keyword">const</span> vec &dt ) { |
| 159 | <a name="l00234"></a>00234 <span class="keywordflow">if</span> ( <a class="code" href="classBMEF.html#538d632e59f9afa8daa1de74da12ce71" title="forgetting factor">frg</a><1.0 ) {beta*=<a class="code" href="classBMEF.html#538d632e59f9afa8daa1de74da12ce71" title="forgetting factor">frg</a>;<a class="code" href="classBMEF.html#308cf5d4133cd471fdf1ecd5dfa09d02" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classmultiBM.html#eddee08a724170de63f36e40c57b27b5" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classeDirich.html#7ce60be7119ffc639ede4e583c1f6e77" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 160 | <a name="l00235"></a>00235 beta+=dt; |
| 161 | <a name="l00236"></a>00236 <span class="keywordflow">if</span> ( <a class="code" href="classBM.html#bf6fb59b30141074f8ee1e2f43d03129" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classBM.html#5623fef6572a08c2b53b8c87b82dc979" title="Logarithm of marginalized data likelihood.">ll</a>=<a class="code" href="classmultiBM.html#eddee08a724170de63f36e40c57b27b5" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classeDirich.html#7ce60be7119ffc639ede4e583c1f6e77" title="logarithm of the normalizing constant, ">lognc</a>()-<a class="code" href="classBMEF.html#308cf5d4133cd471fdf1ecd5dfa09d02" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
| 162 | <a name="l00237"></a>00237 } |
| 163 | <a name="l00238"></a><a class="code" href="classmultiBM.html#13e26a61757278981fd8cac9a7ef91eb">00238</a> <span class="keywordtype">double</span> <a class="code" href="classmultiBM.html#13e26a61757278981fd8cac9a7ef91eb">logpred</a> ( <span class="keyword">const</span> vec &dt )<span class="keyword"> const </span>{ |
| 164 | <a name="l00239"></a>00239 <a class="code" href="classeDirich.html" title="Dirichlet posterior density.">eDirich</a> pred ( <a class="code" href="classmultiBM.html#eddee08a724170de63f36e40c57b27b5" title="Conjugate prior and posterior.">est</a> ); |
| 165 | <a name="l00240"></a>00240 vec &beta = pred.<a class="code" href="classeDirich.html#6409d0362143a23976b43641ff19e53a" title="access function">_beta</a>(); |
| 166 | <a name="l00241"></a>00241 |
| 167 | <a name="l00242"></a>00242 <span class="keywordtype">double</span> lll; |
| 168 | <a name="l00243"></a>00243 <span class="keywordflow">if</span> ( <a class="code" href="classBMEF.html#538d632e59f9afa8daa1de74da12ce71" title="forgetting factor">frg</a><1.0 ) |
| 169 | <a name="l00244"></a>00244 {beta*=<a class="code" href="classBMEF.html#538d632e59f9afa8daa1de74da12ce71" title="forgetting factor">frg</a>;lll=pred.<a class="code" href="classeDirich.html#7ce60be7119ffc639ede4e583c1f6e77" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 170 | <a name="l00245"></a>00245 <span class="keywordflow">else</span> |
| 171 | <a name="l00246"></a>00246 <span class="keywordflow">if</span> ( <a class="code" href="classBM.html#bf6fb59b30141074f8ee1e2f43d03129" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {lll=<a class="code" href="classBMEF.html#308cf5d4133cd471fdf1ecd5dfa09d02" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
| 172 | <a name="l00247"></a>00247 <span class="keywordflow">else</span>{lll=pred.<a class="code" href="classeDirich.html#7ce60be7119ffc639ede4e583c1f6e77" title="logarithm of the normalizing constant, ">lognc</a>();} |
171 | | <a name="l00258"></a><a class="code" href="classmgamma.html">00258</a> <span class="keyword">class </span><a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> { |
172 | | <a name="l00259"></a>00259 <span class="keyword">protected</span>: |
173 | | <a name="l00261"></a><a class="code" href="classmgamma.html#612dbf35c770a780027619aaac2c443e">00261</a> <a class="code" href="classegamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
174 | | <a name="l00263"></a><a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687">00263</a> <span class="keywordtype">double</span> <a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>; |
175 | | <a name="l00265"></a><a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691">00265</a> vec* <a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>; |
176 | | <a name="l00266"></a>00266 |
177 | | <a name="l00267"></a>00267 <span class="keyword">public</span>: |
178 | | <a name="l00269"></a>00269 <a class="code" href="classmgamma.html#af43e61b86900c0398d5c0ffc83b94e6" title="Constructor.">mgamma</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ); |
179 | | <a name="l00271"></a>00271 <span class="keywordtype">void</span> <a class="code" href="classmgamma.html#a9d646cf758a70126dde7c48790b6e94" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a> ); |
180 | | <a name="l00272"></a><a class="code" href="classmgamma.html#a61094c9f7a2d64ea77b130cbc031f97">00272</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma.html#a61094c9f7a2d64ea77b130cbc031f97" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {*<a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>=<a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>/val;}; |
181 | | <a name="l00273"></a>00273 }; |
182 | | <a name="l00274"></a>00274 |
183 | | <a name="l00286"></a><a class="code" href="classmgamma__fix.html">00286</a> <span class="keyword">class </span><a class="code" href="classmgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> { |
184 | | <a name="l00287"></a>00287 <span class="keyword">protected</span>: |
185 | | <a name="l00289"></a><a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6">00289</a> <span class="keywordtype">double</span> <a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6" title="parameter l">l</a>; |
186 | | <a name="l00291"></a><a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0">00291</a> vec <a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a>; |
187 | | <a name="l00292"></a>00292 <span class="keyword">public</span>: |
188 | | <a name="l00294"></a><a class="code" href="classmgamma__fix.html#b92c3d2e5fd0381033a072e5ef3bcf80">00294</a> <a class="code" href="classmgamma__fix.html#b92c3d2e5fd0381033a072e5ef3bcf80" title="Constructor.">mgamma_fix</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ) : <a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> ( rv,rvc ),<a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a> ( rv.count() ) {}; |
189 | | <a name="l00296"></a><a class="code" href="classmgamma__fix.html#ec6f846896749e27cb7be9fa48dd1cb1">00296</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma__fix.html#ec6f846896749e27cb7be9fa48dd1cb1" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) { |
190 | | <a name="l00297"></a>00297 <a class="code" href="classmgamma.html#a9d646cf758a70126dde7c48790b6e94" title="Set value of k.">mgamma::set_parameters</a> ( k0 ); |
191 | | <a name="l00298"></a>00298 <a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6" title="parameter l">l</a>=l0; |
192 | | <a name="l00299"></a>00299 }; |
193 | | <a name="l00300"></a>00300 |
194 | | <a name="l00301"></a><a class="code" href="classmgamma__fix.html#6ea3931eec7b7da7b693e45981052460">00301</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma__fix.html#6ea3931eec7b7da7b693e45981052460" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {vec mean=elem_mult ( <a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a>,pow ( val,<a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6" title="parameter l">l</a> ) ); *<a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>=<a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>/mean;}; |
195 | | <a name="l00302"></a>00302 }; |
196 | | <a name="l00303"></a>00303 |
197 | | <a name="l00305"></a><a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212">00305</a> <span class="keyword">enum</span> <a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212" title="Switch between various resampling methods.">RESAMPLING_METHOD</a> { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
198 | | <a name="l00311"></a><a class="code" href="classeEmp.html">00311</a> <span class="keyword">class </span><a class="code" href="classeEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
199 | | <a name="l00312"></a>00312 <span class="keyword">protected</span> : |
200 | | <a name="l00314"></a><a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd">00314</a> <span class="keywordtype">int</span> <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a>; |
201 | | <a name="l00316"></a><a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8">00316</a> vec <a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a>; |
202 | | <a name="l00318"></a><a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a">00318</a> Array<vec> <a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a>; |
203 | | <a name="l00319"></a>00319 <span class="keyword">public</span>: |
204 | | <a name="l00321"></a><a class="code" href="classeEmp.html#0c04b073ecd0dae3d498e680ae27e9e4">00321</a> <a class="code" href="classeEmp.html#0c04b073ecd0dae3d498e680ae27e9e4" title="Default constructor.">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0 ,<span class="keywordtype">int</span> n0 ) :<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv0 ),<a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ( n0 ),<a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a> ( <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ),<a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a> ( <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ) {}; |
205 | | <a name="l00323"></a>00323 <span class="keywordtype">void</span> <a class="code" href="classeEmp.html#6606a656c1b28114f7384c25aaf80e8d" title="Set sample.">set_parameters</a> ( <span class="keyword">const</span> vec &w0, <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
206 | | <a name="l00325"></a><a class="code" href="classeEmp.html#31b2bfb73b72486a5c89f2ab850c7a9b">00325</a> vec& <a class="code" href="classeEmp.html#31b2bfb73b72486a5c89f2ab850c7a9b" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a>;}; |
207 | | <a name="l00327"></a><a class="code" href="classeEmp.html#31b747eca73b16f30370827ba4cc3575">00327</a> Array<vec>& <a class="code" href="classeEmp.html#31b747eca73b16f30370827ba4cc3575" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a>;}; |
208 | | <a name="l00329"></a>00329 ivec <a class="code" href="classeEmp.html#77268292fc4465cb73ddbfb1f2932a59" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( <a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212" title="Switch between various resampling methods.">RESAMPLING_METHOD</a> method = SYSTEMATIC ); |
209 | | <a name="l00331"></a><a class="code" href="classeEmp.html#83f9283f92b805508d896479dc1ccf12">00331</a> vec <a class="code" href="classeEmp.html#83f9283f92b805508d896479dc1ccf12" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} |
210 | | <a name="l00333"></a><a class="code" href="classeEmp.html#23e7358995400865ad2e278945922fb3">00333</a> <span class="keywordtype">double</span> <a class="code" href="classeEmp.html#23e7358995400865ad2e278945922fb3" title="inherited operation : NOT implemneted">evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} |
211 | | <a name="l00334"></a><a class="code" href="classeEmp.html#ba055c19038cc72628d98e25197e982d">00334</a> vec <a class="code" href="classeEmp.html#ba055c19038cc72628d98e25197e982d" title="return expected value">mean</a>()<span class="keyword"> const </span>{ |
212 | | <a name="l00335"></a>00335 vec pom=zeros ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ); |
213 | | <a name="l00336"></a>00336 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a> ( i ) *<a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a> ( i );} |
214 | | <a name="l00337"></a>00337 <span class="keywordflow">return</span> pom; |
215 | | <a name="l00338"></a>00338 } |
216 | | <a name="l00339"></a>00339 }; |
217 | | <a name="l00340"></a>00340 |
218 | | <a name="l00341"></a>00341 |
219 | | <a name="l00343"></a>00343 |
220 | | <a name="l00344"></a>00344 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
221 | | <a name="l00345"></a><a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06">00345</a> <a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06" title="Default constructor.">enorm<sq_T>::enorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv ) :<a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), mu ( rv.count() ),R ( rv.count() ),dim ( rv.count() ) {}; |
222 | | <a name="l00346"></a>00346 |
223 | | <a name="l00347"></a>00347 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
224 | | <a name="l00348"></a><a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af">00348</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af" title="Set mean value mu and covariance R.">enorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) { |
225 | | <a name="l00349"></a>00349 <span class="comment">//Fixme test dimensions of mu0 and R0;</span> |
226 | | <a name="l00350"></a>00350 <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a> = mu0; |
227 | | <a name="l00351"></a>00351 <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a> = R0; |
228 | | <a name="l00352"></a>00352 }; |
229 | | <a name="l00353"></a>00353 |
230 | | <a name="l00354"></a>00354 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
231 | | <a name="l00355"></a><a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2">00355</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2" title="dupdate in exponential form (not really handy)">enorm<sq_T>::dupdate</a> ( mat &v, <span class="keywordtype">double</span> nu ) { |
232 | | <a name="l00356"></a>00356 <span class="comment">//</span> |
233 | | <a name="l00357"></a>00357 }; |
234 | | <a name="l00358"></a>00358 |
235 | | <a name="l00359"></a>00359 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
236 | | <a name="l00360"></a><a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a">00360</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a" title="tupdate in exponential form (not really handy)">enorm<sq_T>::tupdate</a> ( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ) { |
237 | | <a name="l00361"></a>00361 <span class="comment">//</span> |
238 | | <a name="l00362"></a>00362 }; |
239 | | <a name="l00363"></a>00363 |
240 | | <a name="l00364"></a>00364 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
241 | | <a name="l00365"></a><a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5">00365</a> vec <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns the required moment of the epdf.">enorm<sq_T>::sample</a>()<span class="keyword"> const </span>{ |
242 | | <a name="l00366"></a>00366 vec x ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a> ); |
243 | | <a name="l00367"></a>00367 NorRNG.sample_vector ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,x ); |
244 | | <a name="l00368"></a>00368 vec smp = <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
| 174 | <a name="l00249"></a>00249 beta+=dt; |
| 175 | <a name="l00250"></a>00250 <span class="keywordflow">return</span> pred.<a class="code" href="classeDirich.html#7ce60be7119ffc639ede4e583c1f6e77" title="logarithm of the normalizing constant, ">lognc</a>()-lll; |
| 176 | <a name="l00251"></a>00251 } |
| 177 | <a name="l00252"></a><a class="code" href="classmultiBM.html#58257073a90aab5d1aafbc9b805d324a">00252</a> <span class="keywordtype">void</span> <a class="code" href="classmultiBM.html#58257073a90aab5d1aafbc9b805d324a" title="Flatten the posterior.">flatten</a> (<a class="code" href="classBMEF.html" title="Estimator for Exponential family.">BMEF</a>* B ) { |
| 178 | <a name="l00253"></a>00253 <a class="code" href="classeDirich.html" title="Dirichlet posterior density.">eDirich</a>* E=<span class="keyword">dynamic_cast<</span><a class="code" href="classeDirich.html" title="Dirichlet posterior density.">eDirich</a>*<span class="keyword">></span>(B); |
| 179 | <a name="l00254"></a>00254 <span class="comment">// sum(beta) should be equal to sum(B.beta)</span> |
| 180 | <a name="l00255"></a>00255 <span class="keyword">const</span> vec &Eb=E-><a class="code" href="classeDirich.html#6409d0362143a23976b43641ff19e53a" title="access function">_beta</a>(); |
| 181 | <a name="l00256"></a>00256 <a class="code" href="classmultiBM.html#eddee08a724170de63f36e40c57b27b5" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classeEF.html#4f8385dd1cc9740522dc373b1dc3cbf5" title="Power of the density, used e.g. to flatten the density.">pow</a> ( sum(beta)/sum(Eb) ); |
| 182 | <a name="l00257"></a>00257 <span class="keywordflow">if</span>(<a class="code" href="classBM.html#bf6fb59b30141074f8ee1e2f43d03129" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>){<a class="code" href="classBMEF.html#308cf5d4133cd471fdf1ecd5dfa09d02" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classmultiBM.html#eddee08a724170de63f36e40c57b27b5" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classeDirich.html#7ce60be7119ffc639ede4e583c1f6e77" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 183 | <a name="l00258"></a>00258 } |
| 184 | <a name="l00259"></a><a class="code" href="classmultiBM.html#66cdfd83a70bc281840ab0646b941684">00259</a> <span class="keyword">const</span> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& <a class="code" href="classmultiBM.html#66cdfd83a70bc281840ab0646b941684" title="Returns a pointer to the epdf representing posterior density on parameters. Use with...">_epdf</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classmultiBM.html#eddee08a724170de63f36e40c57b27b5" title="Conjugate prior and posterior.">est</a>;}; |
| 185 | <a name="l00261"></a>00261 }; |
| 186 | <a name="l00262"></a>00262 |
| 187 | <a name="l00272"></a><a class="code" href="classegamma.html">00272</a> <span class="keyword">class </span><a class="code" href="classegamma.html" title="Gamma posterior density.">egamma</a> : <span class="keyword">public</span> <a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
| 188 | <a name="l00273"></a>00273 <span class="keyword">protected</span>: |
| 189 | <a name="l00275"></a><a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b">00275</a> vec <a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a>; |
| 190 | <a name="l00277"></a><a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790">00277</a> vec <a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>; |
| 191 | <a name="l00278"></a>00278 <span class="keyword">public</span> : |
| 192 | <a name="l00280"></a><a class="code" href="classegamma.html#4b1d34f3b244ea51a58ec10c468788c1">00280</a> <a class="code" href="classegamma.html#4b1d34f3b244ea51a58ec10c468788c1" title="Default constructor.">egamma</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ) {}; |
| 193 | <a name="l00282"></a><a class="code" href="classegamma.html#8e348b89be82b70471fe8c5630f61339">00282</a> <span class="keywordtype">void</span> <a class="code" href="classegamma.html#8e348b89be82b70471fe8c5630f61339" title="Sets parameters.">set_parameters</a> ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {<a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a>=a,<a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>=b;}; |
| 194 | <a name="l00283"></a>00283 vec <a class="code" href="classegamma.html#8e10c0021b5dfdd9cb62c6959b5ef425" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
| 195 | <a name="l00285"></a>00285 <span class="comment">// mat sample ( int N ) const;</span> |
| 196 | <a name="l00286"></a>00286 <span class="keywordtype">double</span> <a class="code" href="classegamma.html#de84faac8f9799dfe2777ddbedf997ef" title="TODO: is it used anywhere?">evalpdflog</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
| 197 | <a name="l00287"></a>00287 <span class="keywordtype">double</span> <a class="code" href="classegamma.html#d6dbbdb72360f9e54d64501f80318bb6" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
| 198 | <a name="l00289"></a><a class="code" href="classegamma.html#44445c56e60b91b377f207f8d5089790">00289</a> <span class="keywordtype">void</span> <a class="code" href="classegamma.html#44445c56e60b91b377f207f8d5089790" title="Returns poiter to alpha and beta. Potentially dengerous: use with care!">_param</a> ( vec* &a, vec* &b ) {a=&<a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a>;b=&<a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>;}; |
| 199 | <a name="l00290"></a><a class="code" href="classegamma.html#6ab5ba56f7cdb2e5921c3e77524fa50a">00290</a> vec <a class="code" href="classegamma.html#6ab5ba56f7cdb2e5921c3e77524fa50a" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec pom ( <a class="code" href="classegamma.html#376cebd8932546c440f21b182910b01b" title="Vector .">alpha</a> ); pom/=<a class="code" href="classegamma.html#cfc5f136467488a421ab22f886323790" title="Vector .">beta</a>; <span class="keywordflow">return</span> pom;} |
| 200 | <a name="l00291"></a>00291 }; |
| 201 | <a name="l00292"></a>00292 <span class="comment">/*</span> |
| 202 | <a name="l00294"></a>00294 <span class="comment">class emix : public epdf {</span> |
| 203 | <a name="l00295"></a>00295 <span class="comment">protected:</span> |
| 204 | <a name="l00296"></a>00296 <span class="comment"> int n;</span> |
| 205 | <a name="l00297"></a>00297 <span class="comment"> vec &w;</span> |
| 206 | <a name="l00298"></a>00298 <span class="comment"> Array<epdf*> Coms;</span> |
| 207 | <a name="l00299"></a>00299 <span class="comment">public:</span> |
| 208 | <a name="l00301"></a>00301 <span class="comment"> emix ( const RV &rv, vec &w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span> |
| 209 | <a name="l00302"></a>00302 <span class="comment"> void set_parameters( int &i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span> |
| 210 | <a name="l00303"></a>00303 <span class="comment"> vec mean(){vec pom; for(int i=0;i<n;i++){pom+=Coms(i)->mean()*w(i);} return pom;};</span> |
| 211 | <a name="l00304"></a>00304 <span class="comment"> vec sample() {it_error ( "Not implemented" );return 0;}</span> |
| 212 | <a name="l00305"></a>00305 <span class="comment">};</span> |
| 213 | <a name="l00306"></a>00306 <span class="comment">*/</span> |
| 214 | <a name="l00307"></a>00307 |
| 215 | <a name="l00309"></a>00309 |
| 216 | <a name="l00310"></a><a class="code" href="classeuni.html">00310</a> <span class="keyword">class </span><a class="code" href="classeuni.html" title="Uniform distributed density on a rectangular support.">euni</a>: <span class="keyword">public</span> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
| 217 | <a name="l00311"></a>00311 <span class="keyword">protected</span>: |
| 218 | <a name="l00313"></a><a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1">00313</a> vec <a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a>; |
| 219 | <a name="l00315"></a><a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231">00315</a> vec <a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231" title="upper bound on support">high</a>; |
| 220 | <a name="l00317"></a><a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4">00317</a> vec <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a>; |
| 221 | <a name="l00319"></a><a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda">00319</a> <span class="keywordtype">double</span> <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a>; |
| 222 | <a name="l00321"></a><a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3">00321</a> <span class="keywordtype">double</span> <a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3" title="cache of log( nk )">lnk</a>; |
| 223 | <a name="l00322"></a>00322 <span class="keyword">public</span>: |
| 224 | <a name="l00324"></a><a class="code" href="classeuni.html#2537a6c239cff52e3ba814851a1116cd">00324</a> <a class="code" href="classeuni.html#2537a6c239cff52e3ba814851a1116cd" title="Defualt constructor.">euni</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a> ) :<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv ) {} |
| 225 | <a name="l00325"></a><a class="code" href="classeuni.html#2723d4992900b5c5495bfa03628195ed">00325</a> <span class="keywordtype">double</span> <a class="code" href="classeuni.html#2723d4992900b5c5495bfa03628195ed" title="Compute probability of argument val.">eval</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a>;} |
| 226 | <a name="l00326"></a><a class="code" href="classeuni.html#06af95d514a6623ad4688bd2ad50ad71">00326</a> <span class="keywordtype">double</span> <a class="code" href="classeuni.html#06af95d514a6623ad4688bd2ad50ad71" title="Compute log-probability of argument val.">evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3" title="cache of log( nk )">lnk</a>;} |
| 227 | <a name="l00327"></a><a class="code" href="classeuni.html#4a0e09392be17beaee120ba98fc038cd">00327</a> vec <a class="code" href="classeuni.html#4a0e09392be17beaee120ba98fc038cd" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{ |
| 228 | <a name="l00328"></a>00328 vec smp ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ); |
| 229 | <a name="l00329"></a>00329 <span class="preprocessor">#pragma omp critical</span> |
| 230 | <a name="l00330"></a>00330 <span class="preprocessor"></span> UniRNG.sample_vector ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>(),smp ); |
| 231 | <a name="l00331"></a>00331 <span class="keywordflow">return</span> <a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a>+elem_mult ( <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a>,smp ); |
| 232 | <a name="l00332"></a>00332 } |
| 233 | <a name="l00334"></a><a class="code" href="classeuni.html#4fd7c6a05100616ad16ece405cad7bf2">00334</a> <span class="keywordtype">void</span> <a class="code" href="classeuni.html#4fd7c6a05100616ad16ece405cad7bf2" title="set values of low and high ">set_parameters</a> ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) { |
| 234 | <a name="l00335"></a>00335 <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> = high0-low0; |
| 235 | <a name="l00336"></a>00336 it_assert_debug ( min ( <a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> ) >0.0,<span class="stringliteral">"bad support"</span> ); |
| 236 | <a name="l00337"></a>00337 <a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a> = low0; |
| 237 | <a name="l00338"></a>00338 <a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231" title="upper bound on support">high</a> = high0; |
| 238 | <a name="l00339"></a>00339 <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a> = prod ( 1.0/<a class="code" href="classeuni.html#52a6ff4a54010f88a6a19fca605c64a4" title="internal">distance</a> ); |
| 239 | <a name="l00340"></a>00340 <a class="code" href="classeuni.html#f445a0ce24f39d14c1a4eed53fc8e2c3" title="cache of log( nk )">lnk</a> = log ( <a class="code" href="classeuni.html#63105490e946e43372d6187ad1bafdda" title="normalizing coefficients">nk</a> ); |
| 240 | <a name="l00341"></a>00341 } |
| 241 | <a name="l00342"></a><a class="code" href="classeuni.html#8050087e421a9cfd1b4b1f8bd33b1cc1">00342</a> vec <a class="code" href="classeuni.html#8050087e421a9cfd1b4b1f8bd33b1cc1" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec pom=<a class="code" href="classeuni.html#71b6d6b41aeb61a7f76f682b72119231" title="upper bound on support">high</a>; pom-=<a class="code" href="classeuni.html#ef42cd8d7645422048d46c46ec5cdac1" title="lower bound on support">low</a>; pom/=2.0; <span class="keywordflow">return</span> pom;} |
| 242 | <a name="l00343"></a>00343 }; |
| 243 | <a name="l00344"></a>00344 |
| 244 | <a name="l00345"></a>00345 |
| 245 | <a name="l00351"></a>00351 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 246 | <a name="l00352"></a><a class="code" href="classmlnorm.html">00352</a> <span class="keyword">class </span><a class="code" href="classmlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> { |
| 247 | <a name="l00354"></a>00354 <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
| 248 | <a name="l00355"></a>00355 mat A; |
| 249 | <a name="l00356"></a>00356 vec& _mu; <span class="comment">//cached epdf.mu;</span> |
| 250 | <a name="l00357"></a>00357 <span class="keyword">public</span>: |
| 251 | <a name="l00359"></a>00359 <a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5" title="Constructor.">mlnorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ); |
| 252 | <a name="l00361"></a>00361 <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0" title="Set A and R.">set_parameters</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> sq_T &R ); |
| 253 | <a name="l00363"></a>00363 vec <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, <span class="keywordtype">double</span> &lik ); |
| 254 | <a name="l00365"></a>00365 mat <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">samplecond</a> ( vec &cond, vec &lik, <span class="keywordtype">int</span> n ); |
| 255 | <a name="l00367"></a>00367 <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( vec &cond ); |
| 256 | <a name="l00368"></a>00368 }; |
264 | | <a name="l00388"></a>00388 <span class="keywordflow">return</span> X; |
265 | | <a name="l00389"></a>00389 }; |
266 | | <a name="l00390"></a>00390 |
267 | | <a name="l00391"></a>00391 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
268 | | <a name="l00392"></a><a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0">00392</a> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0" title="Compute probability of argument val.">enorm<sq_T>::eval</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
269 | | <a name="l00393"></a>00393 <span class="keywordtype">double</span> pdfl,e; |
270 | | <a name="l00394"></a>00394 pdfl = <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Compute log-probability of argument val.">evalpdflog</a> ( val ); |
271 | | <a name="l00395"></a>00395 e = exp ( pdfl ); |
272 | | <a name="l00396"></a>00396 <span class="keywordflow">return</span> e; |
273 | | <a name="l00397"></a>00397 }; |
274 | | <a name="l00398"></a>00398 |
275 | | <a name="l00399"></a>00399 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
276 | | <a name="l00400"></a><a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401">00400</a> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Compute log-probability of argument val.">enorm<sq_T>::evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
277 | | <a name="l00401"></a>00401 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
278 | | <a name="l00402"></a>00402 <span class="keywordflow">return</span> -0.5* ( +<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>-val ) ) - <a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8" title="logarithm of the normalizing constant, ">lognc</a>(); |
279 | | <a name="l00403"></a>00403 }; |
280 | | <a name="l00404"></a>00404 |
281 | | <a name="l00405"></a>00405 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
282 | | <a name="l00406"></a><a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8">00406</a> <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8" title="logarithm of the normalizing constant, ">enorm<sq_T>::lognc</a> ()<span class="keyword"> const </span>{ |
283 | | <a name="l00407"></a>00407 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
284 | | <a name="l00408"></a>00408 <span class="keywordflow">return</span> -0.5* ( <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.logdet()); |
285 | | <a name="l00409"></a>00409 }; |
286 | | <a name="l00410"></a>00410 |
287 | | <a name="l00411"></a>00411 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
288 | | <a name="l00412"></a><a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5">00412</a> <a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5" title="Constructor.">mlnorm<sq_T>::mlnorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0,<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> ( rv0,rvc0 ),<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv0 ),A ( rv0.count(),rv0.count() ),<a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>(<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>()) { <a class="code" href="classmpdf.html#7aa894208a32f3487827df6d5054424c" title="pointer to internal epdf">ep</a> =&<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
289 | | <a name="l00413"></a>00413 } |
290 | | <a name="l00414"></a>00414 |
291 | | <a name="l00415"></a>00415 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
292 | | <a name="l00416"></a><a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0">00416</a> <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0" title="Set A and R.">mlnorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> sq_T &R0 ) { |
293 | | <a name="l00417"></a>00417 <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( <a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ),R0 ); |
294 | | <a name="l00418"></a>00418 A = A0; |
295 | | <a name="l00419"></a>00419 } |
296 | | <a name="l00420"></a>00420 |
297 | | <a name="l00421"></a>00421 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
298 | | <a name="l00422"></a><a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18">00422</a> vec <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">mlnorm<sq_T>::samplecond</a> ( vec &cond, <span class="keywordtype">double</span> &lik ) { |
299 | | <a name="l00423"></a>00423 this-><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( cond ); |
300 | | <a name="l00424"></a>00424 vec smp = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.sample(); |
301 | | <a name="l00425"></a>00425 lik = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.eval ( smp ); |
302 | | <a name="l00426"></a>00426 <span class="keywordflow">return</span> smp; |
303 | | <a name="l00427"></a>00427 } |
304 | | <a name="l00428"></a>00428 |
305 | | <a name="l00429"></a>00429 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
306 | | <a name="l00430"></a><a class="code" href="classmlnorm.html#215fb88cc8b95d64cdefd6849abdd1e8">00430</a> mat <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">mlnorm<sq_T>::samplecond</a> ( vec &cond, vec &lik, <span class="keywordtype">int</span> n ) { |
307 | | <a name="l00431"></a>00431 <span class="keywordtype">int</span> i; |
308 | | <a name="l00432"></a>00432 <span class="keywordtype">int</span> dim = <a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>(); |
309 | | <a name="l00433"></a>00433 mat Smp ( dim,n ); |
310 | | <a name="l00434"></a>00434 vec smp ( dim ); |
311 | | <a name="l00435"></a>00435 this-><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( cond ); |
312 | | <a name="l00436"></a>00436 |
313 | | <a name="l00437"></a>00437 <span class="keywordflow">for</span> ( i=0; i<n; i++ ) { |
314 | | <a name="l00438"></a>00438 smp = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.sample(); |
315 | | <a name="l00439"></a>00439 lik ( i ) = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.eval ( smp ); |
316 | | <a name="l00440"></a>00440 Smp.set_col ( i ,smp ); |
317 | | <a name="l00441"></a>00441 } |
318 | | <a name="l00442"></a>00442 |
319 | | <a name="l00443"></a>00443 <span class="keywordflow">return</span> Smp; |
320 | | <a name="l00444"></a>00444 } |
321 | | <a name="l00445"></a>00445 |
322 | | <a name="l00446"></a>00446 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
323 | | <a name="l00447"></a><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195">00447</a> <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">mlnorm<sq_T>::condition</a> ( vec &cond ) { |
324 | | <a name="l00448"></a>00448 _mu = A*cond; |
325 | | <a name="l00449"></a>00449 <span class="comment">//R is already assigned;</span> |
326 | | <a name="l00450"></a>00450 } |
327 | | <a name="l00451"></a>00451 |
328 | | <a name="l00453"></a>00453 |
329 | | <a name="l00454"></a>00454 |
330 | | <a name="l00455"></a>00455 <span class="preprocessor">#endif //EF_H</span> |
| 264 | <a name="l00388"></a>00388 <span class="keyword">public</span>: |
| 265 | <a name="l00390"></a>00390 <a class="code" href="classmgamma.html#af43e61b86900c0398d5c0ffc83b94e6" title="Constructor.">mgamma</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ); |
| 266 | <a name="l00392"></a>00392 <span class="keywordtype">void</span> <a class="code" href="classmgamma.html#a9d646cf758a70126dde7c48790b6e94" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a> ); |
| 267 | <a name="l00393"></a><a class="code" href="classmgamma.html#a61094c9f7a2d64ea77b130cbc031f97">00393</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma.html#a61094c9f7a2d64ea77b130cbc031f97" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {*<a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>=<a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>/val;}; |
| 268 | <a name="l00394"></a>00394 }; |
| 269 | <a name="l00395"></a>00395 |
| 270 | <a name="l00407"></a><a class="code" href="classmgamma__fix.html">00407</a> <span class="keyword">class </span><a class="code" href="classmgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> { |
| 271 | <a name="l00408"></a>00408 <span class="keyword">protected</span>: |
| 272 | <a name="l00410"></a><a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6">00410</a> <span class="keywordtype">double</span> <a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6" title="parameter l">l</a>; |
| 273 | <a name="l00412"></a><a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0">00412</a> vec <a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a>; |
| 274 | <a name="l00413"></a>00413 <span class="keyword">public</span>: |
| 275 | <a name="l00415"></a><a class="code" href="classmgamma__fix.html#b92c3d2e5fd0381033a072e5ef3bcf80">00415</a> <a class="code" href="classmgamma__fix.html#b92c3d2e5fd0381033a072e5ef3bcf80" title="Constructor.">mgamma_fix</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>,<span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classmpdf.html#acb7dda792b3cd5576f39fa3129abbab" title="random variable in condition">rvc</a> ) : <a class="code" href="classmgamma.html" title="Gamma random walk.">mgamma</a> ( rv,rvc ),<a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a> ( rv.count() ) {}; |
| 276 | <a name="l00417"></a><a class="code" href="classmgamma__fix.html#ec6f846896749e27cb7be9fa48dd1cb1">00417</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma__fix.html#ec6f846896749e27cb7be9fa48dd1cb1" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) { |
| 277 | <a name="l00418"></a>00418 <a class="code" href="classmgamma.html#a9d646cf758a70126dde7c48790b6e94" title="Set value of k.">mgamma::set_parameters</a> ( k0 ); |
| 278 | <a name="l00419"></a>00419 <a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6" title="parameter l">l</a>=l0; |
| 279 | <a name="l00420"></a>00420 }; |
| 280 | <a name="l00421"></a>00421 |
| 281 | <a name="l00422"></a><a class="code" href="classmgamma__fix.html#6ea3931eec7b7da7b693e45981052460">00422</a> <span class="keywordtype">void</span> <a class="code" href="classmgamma__fix.html#6ea3931eec7b7da7b693e45981052460" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {vec mean=elem_mult ( <a class="code" href="classmgamma__fix.html#81ce49029ecc385418619b200dcafeb0" title="reference vector">refl</a>,pow ( val,<a class="code" href="classmgamma__fix.html#3f48c09caddc298901ad75fe7c0529f6" title="parameter l">l</a> ) ); *<a class="code" href="classmgamma.html#5e90652837448bcc29707e7412f99691" title="cache of epdf.beta">_beta</a>=<a class="code" href="classmgamma.html#43f733cce0245a52363d566099add687" title="Constant .">k</a>/mean;}; |
| 282 | <a name="l00423"></a>00423 }; |
| 283 | <a name="l00424"></a>00424 |
| 284 | <a name="l00426"></a><a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212">00426</a> <span class="keyword">enum</span> <a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212" title="Switch between various resampling methods.">RESAMPLING_METHOD</a> { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
| 285 | <a name="l00432"></a><a class="code" href="classeEmp.html">00432</a> <span class="keyword">class </span><a class="code" href="classeEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
| 286 | <a name="l00433"></a>00433 <span class="keyword">protected</span> : |
| 287 | <a name="l00435"></a><a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd">00435</a> <span class="keywordtype">int</span> <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a>; |
| 288 | <a name="l00437"></a><a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8">00437</a> vec <a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a>; |
| 289 | <a name="l00439"></a><a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a">00439</a> Array<vec> <a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a>; |
| 290 | <a name="l00440"></a>00440 <span class="keyword">public</span>: |
| 291 | <a name="l00442"></a><a class="code" href="classeEmp.html#0c04b073ecd0dae3d498e680ae27e9e4">00442</a> <a class="code" href="classeEmp.html#0c04b073ecd0dae3d498e680ae27e9e4" title="Default constructor.">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0 ,<span class="keywordtype">int</span> n0 ) :<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv0 ),<a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ( n0 ),<a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a> ( <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ),<a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a> ( <a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a> ) {}; |
| 292 | <a name="l00444"></a>00444 <span class="keywordtype">void</span> <a class="code" href="classeEmp.html#6606a656c1b28114f7384c25aaf80e8d" title="Set sample.">set_parameters</a> ( <span class="keyword">const</span> vec &w0, <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
| 293 | <a name="l00446"></a><a class="code" href="classeEmp.html#31b2bfb73b72486a5c89f2ab850c7a9b">00446</a> vec& <a class="code" href="classeEmp.html#31b2bfb73b72486a5c89f2ab850c7a9b" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a>;}; |
| 294 | <a name="l00448"></a><a class="code" href="classeEmp.html#31b747eca73b16f30370827ba4cc3575">00448</a> Array<vec>& <a class="code" href="classeEmp.html#31b747eca73b16f30370827ba4cc3575" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a>;}; |
| 295 | <a name="l00450"></a>00450 ivec <a class="code" href="classeEmp.html#77268292fc4465cb73ddbfb1f2932a59" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( <a class="code" href="libEF_8h.html#99497a3ff630f761cf6bff7babd23212" title="Switch between various resampling methods.">RESAMPLING_METHOD</a> method = SYSTEMATIC ); |
| 296 | <a name="l00452"></a><a class="code" href="classeEmp.html#83f9283f92b805508d896479dc1ccf12">00452</a> vec <a class="code" href="classeEmp.html#83f9283f92b805508d896479dc1ccf12" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} |
| 297 | <a name="l00454"></a><a class="code" href="classeEmp.html#23e7358995400865ad2e278945922fb3">00454</a> <span class="keywordtype">double</span> <a class="code" href="classeEmp.html#23e7358995400865ad2e278945922fb3" title="inherited operation : NOT implemneted">evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} |
| 298 | <a name="l00455"></a><a class="code" href="classeEmp.html#ba055c19038cc72628d98e25197e982d">00455</a> vec <a class="code" href="classeEmp.html#ba055c19038cc72628d98e25197e982d" title="return expected value">mean</a>()<span class="keyword"> const </span>{ |
| 299 | <a name="l00456"></a>00456 vec pom=zeros ( <a class="code" href="classepdf.html#74da992e3f5d598da8850b646b79b9d9" title="Identified of the random variable.">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ); |
| 300 | <a name="l00457"></a>00457 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classeEmp.html#8c33034de0e35f03f8bb85d3d67438fd" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classeEmp.html#a4d6f4bbd6a6824fc39f14676701279a" title="Samples .">samples</a> ( i ) *<a class="code" href="classeEmp.html#ae78d144404ddba843c93b171b215de8" title="Sample weights .">w</a> ( i );} |
| 301 | <a name="l00458"></a>00458 <span class="keywordflow">return</span> pom; |
| 302 | <a name="l00459"></a>00459 } |
| 303 | <a name="l00460"></a>00460 }; |
| 304 | <a name="l00461"></a>00461 |
| 305 | <a name="l00462"></a>00462 |
| 306 | <a name="l00464"></a>00464 |
| 307 | <a name="l00465"></a>00465 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 308 | <a name="l00466"></a><a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06">00466</a> <a class="code" href="classenorm.html#7b5cb487a2570e8109bfdc0df149aa06" title="Default constructor.">enorm<sq_T>::enorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv ) :<a class="code" href="classeEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( rv ), mu ( rv.count() ),R ( rv.count() ),dim ( rv.count() ) {}; |
| 309 | <a name="l00467"></a>00467 |
| 310 | <a name="l00468"></a>00468 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 311 | <a name="l00469"></a><a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af">00469</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#1394a65caa6e00d42e00cc99b12227af" title="Set mean value mu and covariance R.">enorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) { |
| 312 | <a name="l00470"></a>00470 <span class="comment">//Fixme test dimensions of mu0 and R0;</span> |
| 313 | <a name="l00471"></a>00471 <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a> = mu0; |
| 314 | <a name="l00472"></a>00472 <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a> = R0; |
| 315 | <a name="l00473"></a>00473 }; |
| 316 | <a name="l00474"></a>00474 |
| 317 | <a name="l00475"></a>00475 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 318 | <a name="l00476"></a><a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2">00476</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5bf185e31e5954fceb90ada3debd2ff2" title="dupdate in exponential form (not really handy)">enorm<sq_T>::dupdate</a> ( mat &v, <span class="keywordtype">double</span> nu ) { |
| 319 | <a name="l00477"></a>00477 <span class="comment">//</span> |
| 320 | <a name="l00478"></a>00478 }; |
| 321 | <a name="l00479"></a>00479 |
| 322 | <a name="l00480"></a>00480 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 323 | <a name="l00481"></a><a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a">00481</a> <span class="keywordtype">void</span> <a class="code" href="classenorm.html#5b5fd142b6b17ea334597960e3fe126a" title="tupdate in exponential form (not really handy)">enorm<sq_T>::tupdate</a> ( <span class="keywordtype">double</span> phi, mat &vbar, <span class="keywordtype">double</span> nubar ) { |
| 324 | <a name="l00482"></a>00482 <span class="comment">//</span> |
| 325 | <a name="l00483"></a>00483 }; |
| 326 | <a name="l00484"></a>00484 |
| 327 | <a name="l00485"></a>00485 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 328 | <a name="l00486"></a><a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5">00486</a> vec <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns a sample, from density .">enorm<sq_T>::sample</a>()<span class="keyword"> const </span>{ |
| 329 | <a name="l00487"></a>00487 vec x ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a> ); |
| 330 | <a name="l00488"></a>00488 NorRNG.sample_vector ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,x ); |
| 331 | <a name="l00489"></a>00489 vec smp = <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
| 332 | <a name="l00490"></a>00490 |
| 333 | <a name="l00491"></a>00491 smp += <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>; |
| 334 | <a name="l00492"></a>00492 <span class="keywordflow">return</span> smp; |
| 335 | <a name="l00493"></a>00493 }; |
| 336 | <a name="l00494"></a>00494 |
| 337 | <a name="l00495"></a>00495 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 338 | <a name="l00496"></a><a class="code" href="classenorm.html#60f0f3bfa53d6e65843eea9532b16d36">00496</a> mat <a class="code" href="classenorm.html#60b47544f6181ffd4530d3e415ce12c5" title="Returns a sample, from density .">enorm<sq_T>::sample</a> ( <span class="keywordtype">int</span> N )<span class="keyword"> const </span>{ |
| 339 | <a name="l00497"></a>00497 mat X ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,N ); |
| 340 | <a name="l00498"></a>00498 vec x ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a> ); |
| 341 | <a name="l00499"></a>00499 vec pom; |
| 342 | <a name="l00500"></a>00500 <span class="keywordtype">int</span> i; |
| 343 | <a name="l00501"></a>00501 |
| 344 | <a name="l00502"></a>00502 <span class="keywordflow">for</span> ( i=0;i<N;i++ ) { |
| 345 | <a name="l00503"></a>00503 NorRNG.sample_vector ( <a class="code" href="classenorm.html#6938fc390a19cdaf6ad4503fcbaada4e" title="dimension (redundant from rv.count() for easier coding )">dim</a>,x ); |
| 346 | <a name="l00504"></a>00504 pom = <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
| 347 | <a name="l00505"></a>00505 pom +=<a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>; |
| 348 | <a name="l00506"></a>00506 X.set_col ( i, pom ); |
| 349 | <a name="l00507"></a>00507 } |
| 350 | <a name="l00508"></a>00508 |
| 351 | <a name="l00509"></a>00509 <span class="keywordflow">return</span> X; |
| 352 | <a name="l00510"></a>00510 }; |
| 353 | <a name="l00511"></a>00511 |
| 354 | <a name="l00512"></a>00512 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 355 | <a name="l00513"></a><a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0">00513</a> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b9e1dfd33692d7b3f1a59f17b0e61bd0" title="Compute probability of argument val.">enorm<sq_T>::eval</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
| 356 | <a name="l00514"></a>00514 <span class="keywordtype">double</span> pdfl,e; |
| 357 | <a name="l00515"></a>00515 pdfl = <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Evaluate normalized log-probability.">evalpdflog</a> ( val ); |
| 358 | <a name="l00516"></a>00516 e = exp ( pdfl ); |
| 359 | <a name="l00517"></a>00517 <span class="keywordflow">return</span> e; |
| 360 | <a name="l00518"></a>00518 }; |
| 361 | <a name="l00519"></a>00519 |
| 362 | <a name="l00520"></a>00520 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 363 | <a name="l00521"></a><a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401">00521</a> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Evaluate normalized log-probability.">enorm<sq_T>::evalpdflog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
| 364 | <a name="l00522"></a>00522 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
| 365 | <a name="l00523"></a>00523 <span class="keywordflow">return</span> -0.5* ( +<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classenorm.html#71fde0d54bba147e00f612577f95ad20" title="mean value">mu</a>-val ) ) - <a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8" title="logarithm of the normalizing constant, ">lognc</a>(); |
| 366 | <a name="l00524"></a>00524 }; |
| 367 | <a name="l00525"></a>00525 |
| 368 | <a name="l00526"></a>00526 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 369 | <a name="l00527"></a><a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8">00527</a> <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classenorm.html#b289a36a69db59d182bb6eba9c05d4a8" title="logarithm of the normalizing constant, ">enorm<sq_T>::lognc</a> ()<span class="keyword"> const </span>{ |
| 370 | <a name="l00528"></a>00528 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
| 371 | <a name="l00529"></a>00529 <span class="keywordflow">return</span> -0.5* ( <a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classenorm.html#4ccc8d8514d644ef1c98d8ab023748a1" title="Covariance matrix in decomposed form.">R</a>.logdet() ); |
| 372 | <a name="l00530"></a>00530 }; |
| 373 | <a name="l00531"></a>00531 |
| 374 | <a name="l00532"></a>00532 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 375 | <a name="l00533"></a><a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5">00533</a> <a class="code" href="classmlnorm.html#f927203b3f31171c5c10ffc7caa797f5" title="Constructor.">mlnorm<sq_T>::mlnorm</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rv0,<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> &rvc0 ) :<a class="code" href="classmEF.html" title="Exponential family model.">mEF</a> ( rv0,rvc0 ),<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( rv0 ),A ( rv0.count(),rv0.count() ),<a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a> ( <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classenorm.html#0b8cb284e5af920a1b64a21d057ec5ac" title="returns a pointer to the internal mean value. Use with Care!">_mu</a>() ) { |
| 376 | <a name="l00534"></a>00534 <a class="code" href="classmpdf.html#7aa894208a32f3487827df6d5054424c" title="pointer to internal epdf">ep</a> =&<a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
| 377 | <a name="l00535"></a>00535 } |
| 378 | <a name="l00536"></a>00536 |
| 379 | <a name="l00537"></a>00537 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 380 | <a name="l00538"></a><a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0">00538</a> <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#b6749030c5d5abcb3eb6898f74cea3c0" title="Set A and R.">mlnorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> sq_T &R0 ) { |
| 381 | <a name="l00539"></a>00539 <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( <a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>() ),R0 ); |
| 382 | <a name="l00540"></a>00540 A = A0; |
| 383 | <a name="l00541"></a>00541 } |
| 384 | <a name="l00542"></a>00542 |
| 385 | <a name="l00543"></a>00543 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 386 | <a name="l00544"></a><a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18">00544</a> vec <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">mlnorm<sq_T>::samplecond</a> ( vec &cond, <span class="keywordtype">double</span> &lik ) { |
| 387 | <a name="l00545"></a>00545 this-><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( cond ); |
| 388 | <a name="l00546"></a>00546 vec smp = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.sample(); |
| 389 | <a name="l00547"></a>00547 lik = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.eval ( smp ); |
| 390 | <a name="l00548"></a>00548 <span class="keywordflow">return</span> smp; |
| 391 | <a name="l00549"></a>00549 } |
| 392 | <a name="l00550"></a>00550 |
| 393 | <a name="l00551"></a>00551 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 394 | <a name="l00552"></a><a class="code" href="classmlnorm.html#215fb88cc8b95d64cdefd6849abdd1e8">00552</a> mat <a class="code" href="classmlnorm.html#decf3e3b5c8e0812e5b4dbe94fa2ae18" title="Generate one sample of the posterior.">mlnorm<sq_T>::samplecond</a> ( vec &cond, vec &lik, <span class="keywordtype">int</span> n ) { |
| 395 | <a name="l00553"></a>00553 <span class="keywordtype">int</span> i; |
| 396 | <a name="l00554"></a>00554 <span class="keywordtype">int</span> dim = <a class="code" href="classmpdf.html#f6687c07ff07d47812dd565368ca59eb" title="modeled random variable">rv</a>.<a class="code" href="classRV.html#f5c7b8bd589eef09ccdf3329a0addea0" title="Return number of scalars in the RV.">count</a>(); |
| 397 | <a name="l00555"></a>00555 mat Smp ( dim,n ); |
| 398 | <a name="l00556"></a>00556 vec smp ( dim ); |
| 399 | <a name="l00557"></a>00557 this-><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">condition</a> ( cond ); |
| 400 | <a name="l00558"></a>00558 |
| 401 | <a name="l00559"></a>00559 <span class="keywordflow">for</span> ( i=0; i<n; i++ ) { |
| 402 | <a name="l00560"></a>00560 smp = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.sample(); |
| 403 | <a name="l00561"></a>00561 lik ( i ) = <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.eval ( smp ); |
| 404 | <a name="l00562"></a>00562 Smp.set_col ( i ,smp ); |
| 405 | <a name="l00563"></a>00563 } |
| 406 | <a name="l00564"></a>00564 |
| 407 | <a name="l00565"></a>00565 <span class="keywordflow">return</span> Smp; |
| 408 | <a name="l00566"></a>00566 } |
| 409 | <a name="l00567"></a>00567 |
| 410 | <a name="l00568"></a>00568 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 411 | <a name="l00569"></a><a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195">00569</a> <span class="keywordtype">void</span> <a class="code" href="classmlnorm.html#5232fc7e305eceab4e2bd6a8daa44195" title="Set value of rvc . Result of this operation is stored in epdf use function _ep to...">mlnorm<sq_T>::condition</a> ( vec &cond ) { |
| 412 | <a name="l00570"></a>00570 _mu = A*cond; |
| 413 | <a name="l00571"></a>00571 <span class="comment">//R is already assigned;</span> |
| 414 | <a name="l00572"></a>00572 } |
| 415 | <a name="l00573"></a>00573 |
| 416 | <a name="l00575"></a>00575 |
| 417 | <a name="l00576"></a>00576 |
| 418 | <a name="l00577"></a>00577 <span class="preprocessor">#endif //EF_H</span> |