- Timestamp:
- 12/18/08 20:38:46 (16 years ago)
- Location:
- doc/latex
- Files:
-
- 2 added
- 33 modified
- 1 copied
Legend:
- Unmodified
- Added
- Removed
-
doc/latex/classEKFful__unQR.tex
r210 r219 60 60 61 61 \begin{CompactList}\small\item\em Returns a pointer to the \hyperlink{classepdf}{epdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\item 62 \hypertarget{classEKFfull_31f310660d78999286d2a4e9267e85fb}{ 63 const mat \textbf{\_\-R} ()} 64 \label{classEKFfull_31f310660d78999286d2a4e9267e85fb} 65 66 \item 62 67 \hypertarget{classBM_0186270f75189677f390fe088a9947e9}{ 63 68 virtual void \hyperlink{classBM_0186270f75189677f390fe088a9947e9}{bayesB} (const mat \&Dt)} -
doc/latex/classEKFfull.tex
r210 r219 55 55 56 56 \begin{CompactList}\small\item\em Returns a pointer to the \hyperlink{classepdf}{epdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\item 57 \hypertarget{classEKFfull_31f310660d78999286d2a4e9267e85fb}{ 58 const mat \textbf{\_\-R} ()} 59 \label{classEKFfull_31f310660d78999286d2a4e9267e85fb} 60 61 \item 57 62 \hypertarget{classBM_0186270f75189677f390fe088a9947e9}{ 58 63 virtual void \hyperlink{classBM_0186270f75189677f390fe088a9947e9}{bayesB} (const mat \&Dt)} -
doc/latex/classKalmanCh.tex
r210 r219 237 237 Reimplemented in \hyperlink{classEKFCh_96f6edda324a0b7ef8b4e86cc7af60c1}{EKFCh}. 238 238 239 References chmat::\_\-Ch(), Kalman$<$ chmat $>$::\_\-K, Kalman$<$ chmat $>$::\_\-mu, Kalman$<$ chmat $>$::\_\-P, Kalman$<$ chmat $>$::\_\-Ry, Kalman$<$ chmat $>$::\_\-yp, Kalman$<$ chmat $>$::A, Kalman$<$ chmat $>$::B, Kalman$<$ chmat $>$::C, Kalman$<$ chmat $>$::D, Kalman$<$ chmat $>$::dimu, Kalman$<$ chmat $>$::dimx, Kalman$<$ chmat $>$::dimy, BM::evalll, eEF::eval pdflog(), Kalman$<$ chmat $>$::fy, BM::ll, postA, preA, and chmat::to\_\-mat().\hypertarget{classBM_8a8ce6df431689964c41cc6c849cfd06}{239 References chmat::\_\-Ch(), Kalman$<$ chmat $>$::\_\-K, Kalman$<$ chmat $>$::\_\-mu, Kalman$<$ chmat $>$::\_\-P, Kalman$<$ chmat $>$::\_\-Ry, Kalman$<$ chmat $>$::\_\-yp, Kalman$<$ chmat $>$::A, Kalman$<$ chmat $>$::B, Kalman$<$ chmat $>$::C, Kalman$<$ chmat $>$::D, Kalman$<$ chmat $>$::dimu, Kalman$<$ chmat $>$::dimx, Kalman$<$ chmat $>$::dimy, BM::evalll, eEF::evallog(), Kalman$<$ chmat $>$::fy, BM::ll, postA, and preA.\hypertarget{classBM_8a8ce6df431689964c41cc6c849cfd06}{ 240 240 \index{KalmanCh@{KalmanCh}!logpred@{logpred}} 241 241 \index{logpred@{logpred}!KalmanCh@{KalmanCh}} -
doc/latex/classMixEF.tex
r210 r219 233 233 References multiBM::\_\-epdf(), Coms, epdf::mean(), and weights. 234 234 235 Referenced by merger::eval pdflog(), and merger::merge().235 Referenced by merger::evallog(), and merger::merge(). 236 236 237 237 The documentation for this class was generated from the following files:\begin{CompactItemize} -
doc/latex/classPF.tex
r210 r219 157 157 Reimplemented in \hyperlink{classMPF_55daf8e4b6553dd9f47c692de7931623}{MPF$<$ BM\_\-T $>$}. 158 158 159 References \_\-samples, \_\-w, est, mpdf::eval cond(), n, obs, par, eEmp::resample(), and mpdf::samplecond().\hypertarget{classBM_8a8ce6df431689964c41cc6c849cfd06}{159 References \_\-samples, \_\-w, est, mpdf::evallogcond(), n, obs, par, eEmp::resample(), and mpdf::samplecond().\hypertarget{classBM_8a8ce6df431689964c41cc6c849cfd06}{ 160 160 \index{PF@{PF}!logpred@{logpred}} 161 161 \index{logpred@{logpred}!PF@{PF}} -
doc/latex/classRV.tex
r210 r219 201 201 202 202 203 References findself(), ids, len, names, sizes, times, and tsize.203 References concat(), findself(), ids, len, names, sizes, times, and tsize. 204 204 205 205 Referenced by concat(), compositepdf::getrv(), merger::merger(), MPF$<$ BM\_\-T $>$::MPF(), and compositepdf::setrvc().\hypertarget{classRV_bb724fa4e2d9ed7bfd0993b5975018a4}{ … … 212 212 when this rv is a part of bigger rv, this function returns indeces of self in the data vector of the bigger crv. Then, data can be copied via: data\_\-of\_\-this = cdata(ind); 213 213 214 References co unt(), ids, str::ids, len, times, str::times, tostr(), and tsize.214 References concat(), count(), ids, str::ids, len, times, str::times, tostr(), and tsize. 215 215 216 216 Referenced by enorm$<$ sq\_\-T $>$::condition(), datalink\_\-m2e::datalink\_\-m2e(), datalink\_\-m2m::datalink\_\-m2m(), and enorm$<$ sq\_\-T $>$::marginal().\hypertarget{classRV_777a5d87f2b95a60a7de467d7817f16e}{ … … 223 223 generate mutual indeces when copying data betwenn self and crv. Data are copied via: data\_\-of\_\-this(selfi) = data\_\-of\_\-rv2(rv2i) 224 224 225 References findself(), ids, str::ids, len, length(), times, str::times, and tostr().225 References concat(), findself(), ids, str::ids, len, length(), times, str::times, and tostr(). 226 226 227 227 The documentation for this class was generated from the following files:\begin{CompactItemize} -
doc/latex/classeDirich.tex
r210 r219 45 45 46 46 \begin{CompactList}\small\item\em return expected value \item\end{CompactList}\item 47 \hypertarget{classeDirich_ 688a24f04be6d80d4769cf0e4ded7acc}{48 double \hyperlink{classeDirich_ 688a24f04be6d80d4769cf0e4ded7acc}{evalpdflog\_\-nn} (const vec \&val) const }49 \label{classeDirich_ 688a24f04be6d80d4769cf0e4ded7acc}47 \hypertarget{classeDirich_bb4b14ed7794777386de10608a83d142}{ 48 double \hyperlink{classeDirich_bb4b14ed7794777386de10608a83d142}{evallog\_\-nn} (const vec \&val) const } 49 \label{classeDirich_bb4b14ed7794777386de10608a83d142} 50 50 51 51 \begin{CompactList}\small\item\em In this instance, val is ... \item\end{CompactList}\item … … 70 70 71 71 \begin{CompactList}\small\item\em TODO decide if it is really needed. \item\end{CompactList}\item 72 \hypertarget{classeEF_ 6466e8d4aa9dd64698ed288cbb1afc03}{73 virtual double \hyperlink{classeEF_ 6466e8d4aa9dd64698ed288cbb1afc03}{evalpdflog} (const vec \&val) const }74 \label{classeEF_ 6466e8d4aa9dd64698ed288cbb1afc03}72 \hypertarget{classeEF_357512dd565e199904d367294b7dd862}{ 73 virtual double \hyperlink{classeEF_357512dd565e199904d367294b7dd862}{evallog} (const vec \&val) const } 74 \label{classeEF_357512dd565e199904d367294b7dd862} 75 75 76 76 \begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item 77 \hypertarget{classeEF_c 71faf4b2d153efda14bf1f87dca1507}{78 virtual vec \hyperlink{classeEF_c 71faf4b2d153efda14bf1f87dca1507}{evalpdflog} (const mat \&Val) const }79 \label{classeEF_c 71faf4b2d153efda14bf1f87dca1507}77 \hypertarget{classeEF_cff03a658aec11b806c3e3d48f37b81f}{ 78 virtual vec \hyperlink{classeEF_cff03a658aec11b806c3e3d48f37b81f}{evallog} (const mat \&Val) const } 79 \label{classeEF_cff03a658aec11b806c3e3d48f37b81f} 80 80 81 81 \begin{CompactList}\small\item\em Evaluate normalized log-probability for many samples. \item\end{CompactList}\item … … 90 90 91 91 \begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item 92 \hypertarget{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{93 virtual vec \hyperlink{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const }94 \label{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}92 \hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 93 virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 94 \label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 95 95 96 96 \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item -
doc/latex/classeEF.tex
r210 r219 40 40 41 41 \begin{CompactList}\small\item\em TODO decide if it is really needed. \item\end{CompactList}\item 42 \hypertarget{classeEF_4 8cdd33d0e20d1a1aa45683c956bc61c}{43 virtual double \hyperlink{classeEF_4 8cdd33d0e20d1a1aa45683c956bc61c}{evalpdflog\_\-nn} (const vec \&val) const }44 \label{classeEF_4 8cdd33d0e20d1a1aa45683c956bc61c}42 \hypertarget{classeEF_41c70565b4d3fb424599817d008f0c71}{ 43 virtual double \hyperlink{classeEF_41c70565b4d3fb424599817d008f0c71}{evallog\_\-nn} (const vec \&val) const } 44 \label{classeEF_41c70565b4d3fb424599817d008f0c71} 45 45 46 46 \begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item 47 \hypertarget{classeEF_ 6466e8d4aa9dd64698ed288cbb1afc03}{48 virtual double \hyperlink{classeEF_ 6466e8d4aa9dd64698ed288cbb1afc03}{evalpdflog} (const vec \&val) const }49 \label{classeEF_ 6466e8d4aa9dd64698ed288cbb1afc03}47 \hypertarget{classeEF_357512dd565e199904d367294b7dd862}{ 48 virtual double \hyperlink{classeEF_357512dd565e199904d367294b7dd862}{evallog} (const vec \&val) const } 49 \label{classeEF_357512dd565e199904d367294b7dd862} 50 50 51 51 \begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item 52 \hypertarget{classeEF_c 71faf4b2d153efda14bf1f87dca1507}{53 virtual vec \hyperlink{classeEF_c 71faf4b2d153efda14bf1f87dca1507}{evalpdflog} (const mat \&Val) const }54 \label{classeEF_c 71faf4b2d153efda14bf1f87dca1507}52 \hypertarget{classeEF_cff03a658aec11b806c3e3d48f37b81f}{ 53 virtual vec \hyperlink{classeEF_cff03a658aec11b806c3e3d48f37b81f}{evallog} (const mat \&Val) const } 54 \label{classeEF_cff03a658aec11b806c3e3d48f37b81f} 55 55 56 56 \begin{CompactList}\small\item\em Evaluate normalized log-probability for many samples. \item\end{CompactList}\item … … 70 70 71 71 \begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item 72 \hypertarget{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{73 virtual vec \hyperlink{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const }74 \label{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}72 \hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 73 virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 74 \label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 75 75 76 76 \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item -
doc/latex/classeEmp.tex
r210 r219 75 75 76 76 \begin{CompactList}\small\item\em inherited operation : NOT implemneted \item\end{CompactList}\item 77 \hypertarget{classeEmp_ 23e7358995400865ad2e278945922fb3}{78 double \hyperlink{classeEmp_ 23e7358995400865ad2e278945922fb3}{evalpdflog} (const vec \&val) const }79 \label{classeEmp_ 23e7358995400865ad2e278945922fb3}77 \hypertarget{classeEmp_884f16c9fc1f888408686a660a95dacd}{ 78 double \hyperlink{classeEmp_884f16c9fc1f888408686a660a95dacd}{evallog} (const vec \&val) const } 79 \label{classeEmp_884f16c9fc1f888408686a660a95dacd} 80 80 81 81 \begin{CompactList}\small\item\em inherited operation : NOT implemneted \item\end{CompactList}\item … … 90 90 91 91 \begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item 92 \hypertarget{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{93 virtual vec \hyperlink{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const }94 \label{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}92 \hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 93 virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 94 \label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 95 95 96 96 \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item -
doc/latex/classegamma.tex
r210 r219 40 40 41 41 \begin{CompactList}\small\item\em Returns a sample, $x$ from density $epdf(rv)$. \item\end{CompactList}\item 42 \hypertarget{classegamma_ de84faac8f9799dfe2777ddbedf997ef}{43 double \hyperlink{classegamma_ de84faac8f9799dfe2777ddbedf997ef}{evalpdflog} (const vec \&val) const }44 \label{classegamma_ de84faac8f9799dfe2777ddbedf997ef}42 \hypertarget{classegamma_74a49a4c696f44e54bb6b0515e155a9b}{ 43 double \hyperlink{classegamma_74a49a4c696f44e54bb6b0515e155a9b}{evallog} (const vec \&val) const } 44 \label{classegamma_74a49a4c696f44e54bb6b0515e155a9b} 45 45 46 46 \begin{CompactList}\small\item\em TODO: is it used anywhere? \item\end{CompactList}\item … … 65 65 66 66 \begin{CompactList}\small\item\em TODO decide if it is really needed. \item\end{CompactList}\item 67 \hypertarget{classeEF_4 8cdd33d0e20d1a1aa45683c956bc61c}{68 virtual double \hyperlink{classeEF_4 8cdd33d0e20d1a1aa45683c956bc61c}{evalpdflog\_\-nn} (const vec \&val) const }69 \label{classeEF_4 8cdd33d0e20d1a1aa45683c956bc61c}67 \hypertarget{classeEF_41c70565b4d3fb424599817d008f0c71}{ 68 virtual double \hyperlink{classeEF_41c70565b4d3fb424599817d008f0c71}{evallog\_\-nn} (const vec \&val) const } 69 \label{classeEF_41c70565b4d3fb424599817d008f0c71} 70 70 71 71 \begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item 72 \hypertarget{classeEF_c 71faf4b2d153efda14bf1f87dca1507}{73 virtual vec \hyperlink{classeEF_c 71faf4b2d153efda14bf1f87dca1507}{evalpdflog} (const mat \&Val) const }74 \label{classeEF_c 71faf4b2d153efda14bf1f87dca1507}72 \hypertarget{classeEF_cff03a658aec11b806c3e3d48f37b81f}{ 73 virtual vec \hyperlink{classeEF_cff03a658aec11b806c3e3d48f37b81f}{evallog} (const mat \&Val) const } 74 \label{classeEF_cff03a658aec11b806c3e3d48f37b81f} 75 75 76 76 \begin{CompactList}\small\item\em Evaluate normalized log-probability for many samples. \item\end{CompactList}\item … … 85 85 86 86 \begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item 87 \hypertarget{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{88 virtual vec \hyperlink{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const }89 \label{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}87 \hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 88 virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 89 \label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 90 90 91 91 \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item -
doc/latex/classegiw.tex
r210 r219 50 50 51 51 \item 52 \hypertarget{classegiw_2 ab1e525d692be8272a6f383d60b94cd}{53 double \hyperlink{classegiw_2 ab1e525d692be8272a6f383d60b94cd}{evalpdflog\_\-nn} (const vec \&val) const }54 \label{classegiw_2 ab1e525d692be8272a6f383d60b94cd}52 \hypertarget{classegiw_2d94daac10d66bb743e4ddc8c1ba7268}{ 53 double \hyperlink{classegiw_2d94daac10d66bb743e4ddc8c1ba7268}{evallog\_\-nn} (const vec \&val) const } 54 \label{classegiw_2d94daac10d66bb743e4ddc8c1ba7268} 55 55 56 56 \begin{CompactList}\small\item\em In this instance, val= \mbox{[}theta, r\mbox{]}. For multivariate instances, it is stored columnwise val = \mbox{[}theta\_\-1 theta\_\-2 ... r\_\-1 r\_\-2 \mbox{]}. \item\end{CompactList}\item … … 90 90 91 91 \begin{CompactList}\small\item\em TODO decide if it is really needed. \item\end{CompactList}\item 92 \hypertarget{classeEF_ 6466e8d4aa9dd64698ed288cbb1afc03}{93 virtual double \hyperlink{classeEF_ 6466e8d4aa9dd64698ed288cbb1afc03}{evalpdflog} (const vec \&val) const }94 \label{classeEF_ 6466e8d4aa9dd64698ed288cbb1afc03}92 \hypertarget{classeEF_357512dd565e199904d367294b7dd862}{ 93 virtual double \hyperlink{classeEF_357512dd565e199904d367294b7dd862}{evallog} (const vec \&val) const } 94 \label{classeEF_357512dd565e199904d367294b7dd862} 95 95 96 96 \begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item 97 \hypertarget{classeEF_c 71faf4b2d153efda14bf1f87dca1507}{98 virtual vec \hyperlink{classeEF_c 71faf4b2d153efda14bf1f87dca1507}{evalpdflog} (const mat \&Val) const }99 \label{classeEF_c 71faf4b2d153efda14bf1f87dca1507}97 \hypertarget{classeEF_cff03a658aec11b806c3e3d48f37b81f}{ 98 virtual vec \hyperlink{classeEF_cff03a658aec11b806c3e3d48f37b81f}{evallog} (const mat \&Val) const } 99 \label{classeEF_cff03a658aec11b806c3e3d48f37b81f} 100 100 101 101 \begin{CompactList}\small\item\em Evaluate normalized log-probability for many samples. \item\end{CompactList}\item … … 105 105 106 106 \begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item 107 \hypertarget{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{108 virtual vec \hyperlink{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const }109 \label{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}107 \hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 108 virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 109 \label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 110 110 111 111 \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item -
doc/latex/classemix.tex
r210 r219 42 42 43 43 \begin{CompactList}\small\item\em return expected value \item\end{CompactList}\item 44 \hypertarget{classemix_ 469e910479b3402589104ef3bb1b5741}{45 double \hyperlink{classemix_ 469e910479b3402589104ef3bb1b5741}{evalpdflog} (const vec \&val) const }46 \label{classemix_ 469e910479b3402589104ef3bb1b5741}44 \hypertarget{classemix_82691a72b583dab957cbd60d9283e47a}{ 45 double \hyperlink{classemix_82691a72b583dab957cbd60d9283e47a}{evallog} (const vec \&val) const } 46 \label{classemix_82691a72b583dab957cbd60d9283e47a} 47 47 48 48 \begin{CompactList}\small\item\em Compute log-probability of argument {\tt val}. \item\end{CompactList}\item 49 \hypertarget{classemix_ 375bfba7c79915c88c2e612bcf83dacb}{50 vec \hyperlink{classemix_ 375bfba7c79915c88c2e612bcf83dacb}{evalpdflog\_\-m} (const mat \&Val) const }51 \label{classemix_ 375bfba7c79915c88c2e612bcf83dacb}49 \hypertarget{classemix_b3eb9e153e8bfdb6bb47adecc278cbca}{ 50 vec \hyperlink{classemix_b3eb9e153e8bfdb6bb47adecc278cbca}{evallog\_\-m} (const mat \&Val) const } 51 \label{classemix_b3eb9e153e8bfdb6bb47adecc278cbca} 52 52 53 53 \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item 54 \hypertarget{classemix_ 07b5638de45d1fe83eb4da37594fcc68}{55 mat \ textbf{evalpdflog\_\-M} (const mat \&Val) const }56 \label{classemix_ 07b5638de45d1fe83eb4da37594fcc68}54 \hypertarget{classemix_44ae2b86c650c2ccb967969c1859d268}{ 55 mat \hyperlink{classemix_44ae2b86c650c2ccb967969c1859d268}{evallog\_\-M} (const mat \&Val) const } 56 \label{classemix_44ae2b86c650c2ccb967969c1859d268} 57 57 58 \ item58 \begin{CompactList}\small\item\em Auxiliary function that returns pdflog for each component. \item\end{CompactList}\item 59 59 \hypertarget{classemix_33afde698093d458ce71875f7ee7384a}{ 60 60 \hyperlink{classemix}{emix} $\ast$ \hyperlink{classemix_33afde698093d458ce71875f7ee7384a}{marginal} (const \hyperlink{classRV}{RV} \&\hyperlink{classepdf_74da992e3f5d598da8850b646b79b9d9}{rv}) const } -
doc/latex/classenorm.tex
r210 r219 50 50 51 51 \begin{CompactList}\small\item\em TODO is it used? \item\end{CompactList}\item 52 \hypertarget{classenorm_b9e1dfd33692d7b3f1a59f17b0e61bd0}{ 53 double \textbf{eval} (const vec \&val) const } 54 \label{classenorm_b9e1dfd33692d7b3f1a59f17b0e61bd0} 55 56 \item 57 \hypertarget{classenorm_c1e3dcba256b0153cfdb286120e110be}{ 58 double \hyperlink{classenorm_c1e3dcba256b0153cfdb286120e110be}{evalpdflog\_\-nn} (const vec \&val) const } 59 \label{classenorm_c1e3dcba256b0153cfdb286120e110be} 52 \hypertarget{classenorm_50cb0a083d97a7adbbd97c92e712c46c}{ 53 double \hyperlink{classenorm_50cb0a083d97a7adbbd97c92e712c46c}{evallog\_\-nn} (const vec \&val) const } 54 \label{classenorm_50cb0a083d97a7adbbd97c92e712c46c} 60 55 61 56 \begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item … … 95 90 96 91 \begin{CompactList}\small\item\em returns pointers to the internal variance and its inverse. Use with Care! \item\end{CompactList}\item 92 \hypertarget{classenorm_d01385983048ece700b426549bbaee56}{ 93 const sq\_\-T \& \textbf{\_\-R} () const } 94 \label{classenorm_d01385983048ece700b426549bbaee56} 95 96 \item 97 97 \hypertarget{classeEF_a89bef8996410609004fa019b5b48964}{ 98 98 virtual void \hyperlink{classeEF_a89bef8996410609004fa019b5b48964}{dupdate} (mat \&v)} … … 100 100 101 101 \begin{CompactList}\small\item\em TODO decide if it is really needed. \item\end{CompactList}\item 102 \hypertarget{classeEF_ 6466e8d4aa9dd64698ed288cbb1afc03}{103 virtual double \hyperlink{classeEF_ 6466e8d4aa9dd64698ed288cbb1afc03}{evalpdflog} (const vec \&val) const }104 \label{classeEF_ 6466e8d4aa9dd64698ed288cbb1afc03}102 \hypertarget{classeEF_357512dd565e199904d367294b7dd862}{ 103 virtual double \hyperlink{classeEF_357512dd565e199904d367294b7dd862}{evallog} (const vec \&val) const } 104 \label{classeEF_357512dd565e199904d367294b7dd862} 105 105 106 106 \begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item 107 \hypertarget{classeEF_c 71faf4b2d153efda14bf1f87dca1507}{108 virtual vec \hyperlink{classeEF_c 71faf4b2d153efda14bf1f87dca1507}{evalpdflog} (const mat \&Val) const }109 \label{classeEF_c 71faf4b2d153efda14bf1f87dca1507}107 \hypertarget{classeEF_cff03a658aec11b806c3e3d48f37b81f}{ 108 virtual vec \hyperlink{classeEF_cff03a658aec11b806c3e3d48f37b81f}{evallog} (const mat \&Val) const } 109 \label{classeEF_cff03a658aec11b806c3e3d48f37b81f} 110 110 111 111 \begin{CompactList}\small\item\em Evaluate normalized log-probability for many samples. \item\end{CompactList}\item … … 120 120 121 121 \begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item 122 \hypertarget{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{123 virtual vec \hyperlink{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const }124 \label{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}122 \hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 123 virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 124 \label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 125 125 126 126 \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item -
doc/latex/classepdf.tex
r210 r219 45 45 46 46 \begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item 47 \hypertarget{classepdf_ 6aef3eca74899692503769c18add1a4c}{48 virtual double \hyperlink{classepdf_ 6aef3eca74899692503769c18add1a4c}{evalpdflog} (const vec \&val) const =0}49 \label{classepdf_ 6aef3eca74899692503769c18add1a4c}47 \hypertarget{classepdf_e1996af1da1fa1214270066a96ca113e}{ 48 virtual double \hyperlink{classepdf_e1996af1da1fa1214270066a96ca113e}{evallog} (const vec \&val) const =0} 49 \label{classepdf_e1996af1da1fa1214270066a96ca113e} 50 50 51 51 \begin{CompactList}\small\item\em Compute log-probability of argument {\tt val}. \item\end{CompactList}\item 52 \hypertarget{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{53 virtual vec \hyperlink{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const }54 \label{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}52 \hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 53 virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 54 \label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 55 55 56 56 \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item -
doc/latex/classeprod.tex
r210 r219 40 40 41 41 \begin{CompactList}\small\item\em Returns a sample, $x$ from density $epdf(rv)$. \item\end{CompactList}\item 42 \hypertarget{classeprod_ 5adef154e3655a872c284b02635b8b35}{43 double \hyperlink{classeprod_ 5adef154e3655a872c284b02635b8b35}{evalpdflog} (const vec \&val) const }44 \label{classeprod_ 5adef154e3655a872c284b02635b8b35}42 \hypertarget{classeprod_0af49e491414d6f270dc347bcb054eb6}{ 43 double \hyperlink{classeprod_0af49e491414d6f270dc347bcb054eb6}{evallog} (const vec \&val) const } 44 \label{classeprod_0af49e491414d6f270dc347bcb054eb6} 45 45 46 46 \begin{CompactList}\small\item\em Compute log-probability of argument {\tt val}. \item\end{CompactList}\item … … 60 60 61 61 \begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item 62 \hypertarget{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{63 virtual vec \hyperlink{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const }64 \label{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}62 \hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 63 virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 64 \label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 65 65 66 66 \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item -
doc/latex/classeuni.tex
r210 r219 35 35 36 36 \item 37 \hypertarget{classeuni_ 06af95d514a6623ad4688bd2ad50ad71}{38 double \hyperlink{classeuni_ 06af95d514a6623ad4688bd2ad50ad71}{evalpdflog} (const vec \&val) const }39 \label{classeuni_ 06af95d514a6623ad4688bd2ad50ad71}37 \hypertarget{classeuni_357b36417ef4c9211d12e7a4a602fd6a}{ 38 double \hyperlink{classeuni_357b36417ef4c9211d12e7a4a602fd6a}{evallog} (const vec \&val) const } 39 \label{classeuni_357b36417ef4c9211d12e7a4a602fd6a} 40 40 41 41 \begin{CompactList}\small\item\em Compute log-probability of argument {\tt val}. \item\end{CompactList}\item … … 60 60 61 61 \begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item 62 \hypertarget{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{63 virtual vec \hyperlink{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const }64 \label{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}62 \hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 63 virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 64 \label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 65 65 66 66 \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item -
doc/latex/classfsqmat.tex
r210 r219 246 246 References M. 247 247 248 Referenced by EKF$<$ sq\_\-T $>$::bayes(), and egiw::eval pdflog\_\-nn().\hypertarget{classfsqmat_842a774077ee34ac3c36d180ab33e103}{248 Referenced by EKF$<$ sq\_\-T $>$::bayes(), and egiw::evallog\_\-nn().\hypertarget{classfsqmat_842a774077ee34ac3c36d180ab33e103}{ 249 249 \index{fsqmat@{fsqmat}!sqrt\_\-mult@{sqrt\_\-mult}} 250 250 \index{sqrt\_\-mult@{sqrt\_\-mult}!fsqmat@{fsqmat}} -
doc/latex/classldmat.tex
r181 r219 96 96 97 97 \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item 98 \hypertarget{ classldmat_0fceb6b5b637cec89bb0a3d2e6be1306}{99 int \hyperlink{ classldmat_0fceb6b5b637cec89bb0a3d2e6be1306}{cols} () const }100 \label{ classldmat_0fceb6b5b637cec89bb0a3d2e6be1306}98 \hypertarget{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{ 99 int \hyperlink{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{cols} () const } 100 \label{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306} 101 101 102 102 \begin{CompactList}\small\item\em access function \item\end{CompactList}\item 103 \hypertarget{ classldmat_96dfb21865db4f5bd36fa70f9b0b1163}{104 int \hyperlink{ classldmat_96dfb21865db4f5bd36fa70f9b0b1163}{rows} () const }105 \label{ classldmat_96dfb21865db4f5bd36fa70f9b0b1163}103 \hypertarget{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{ 104 int \hyperlink{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{rows} () const } 105 \label{group__math_g96dfb21865db4f5bd36fa70f9b0b1163} 106 106 107 107 \begin{CompactList}\small\item\em access function \item\end{CompactList}\item … … 141 141 142 142 \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item 143 \hyperlink{classldmat}{ldmat} \& \hyperlink{ classldmat_ca445ee152a56043af946ea095b2d8f8}{operator+=} (const \hyperlink{classldmat}{ldmat} \&ldA)143 \hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_gca445ee152a56043af946ea095b2d8f8}{operator+=} (const \hyperlink{classldmat}{ldmat} \&ldA) 144 144 \begin{CompactList}\small\item\em add another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item 145 \hyperlink{classldmat}{ldmat} \& \hyperlink{ classldmat_e3f4d2d85ab1ba384c852329aa31d0fb}{operator-=} (const \hyperlink{classldmat}{ldmat} \&ldA)145 \hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_ge3f4d2d85ab1ba384c852329aa31d0fb}{operator-=} (const \hyperlink{classldmat}{ldmat} \&ldA) 146 146 \begin{CompactList}\small\item\em subtract another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item 147 147 \hypertarget{classldmat_875b7e6dcf73ae7001329099019fdb1d}{ … … 195 195 Implements \hyperlink{classsqmat_b223484796661f2dadb5607a86ce0581}{sqmat}. 196 196 197 References D, sqmat::dim, and L.197 References D, sqmat::dim, dydr(), and L. 198 198 199 199 Referenced by add(), ARX::bayes(), and ARX::logpred().\hypertarget{classldmat_e967b9425007f0cb6cd59b845f9756d8}{ … … 262 262 263 263 264 References clear(), D, L, and ldform().\hypertarget{classldmat_e7207748909325bb0f99b43f090a2b7e}{264 References clear(), D, L, ldform(), and ltuinv().\hypertarget{classldmat_e7207748909325bb0f99b43f090a2b7e}{ 265 265 \index{ldmat@{ldmat}!mult\_\-sym@{mult\_\-sym}} 266 266 \index{mult\_\-sym@{mult\_\-sym}!ldmat@{ldmat}} … … 312 312 References D, sqmat::dim, and L. 313 313 314 Referenced by inv(), ldmat(), mult\_\-sym(), and mult\_\-sym\_\-t().\hypertarget{classldmat_ca445ee152a56043af946ea095b2d8f8}{ 315 \index{ldmat@{ldmat}!operator+=@{operator+=}} 316 \index{operator+=@{operator+=}!ldmat@{ldmat}} 317 \subsubsection[operator+=]{\setlength{\rightskip}{0pt plus 5cm}{\bf ldmat} \& ldmat::operator+= (const {\bf ldmat} \& {\em ldA})\hspace{0.3cm}{\tt \mbox{[}inline\mbox{]}}}} 318 \label{classldmat_ca445ee152a56043af946ea095b2d8f8} 319 320 321 add another \hyperlink{classldmat}{ldmat} matrix 322 323 Operations: mapping of add operation to operators \hypertarget{classldmat_e3f4d2d85ab1ba384c852329aa31d0fb}{ 324 \index{ldmat@{ldmat}!operator-=@{operator-=}} 325 \index{operator-=@{operator-=}!ldmat@{ldmat}} 326 \subsubsection[operator-=]{\setlength{\rightskip}{0pt plus 5cm}{\bf ldmat} \& ldmat::operator-= (const {\bf ldmat} \& {\em ldA})\hspace{0.3cm}{\tt \mbox{[}inline\mbox{]}}}} 327 \label{classldmat_e3f4d2d85ab1ba384c852329aa31d0fb} 328 329 330 subtract another \hyperlink{classldmat}{ldmat} matrix 331 332 mapping of negative add operation to operators 314 Referenced by inv(), ldmat(), mult\_\-sym(), and mult\_\-sym\_\-t(). 333 315 334 316 The documentation for this class was generated from the following files:\begin{CompactItemize} -
doc/latex/classmEF.tex
r210 r219 32 32 virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 33 33 \begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item 34 virtual mat \hyperlink{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N)34 virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 35 35 \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 36 36 \hypertarget{classmpdf_0f95a0cc6ab40611f46804682446ed83}{ … … 39 39 40 40 \begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classmpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item 41 \hypertarget{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{42 virtual double \hyperlink{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)}43 \label{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}41 \hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 42 virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 43 \label{classmpdf_2ef8a6374029d990a678782f6decebbe} 44 44 45 45 \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 46 \hypertarget{classmpdf_ b7b2da35080cd15f1be365b805e7277e}{47 virtual vec \ textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)}48 \label{classmpdf_ b7b2da35080cd15f1be365b805e7277e}46 \hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 47 virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 48 \label{classmpdf_95fcff214848f66f1b489459370573fa} 49 49 50 \ item50 \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item 51 51 \hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 52 52 \hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } … … 108 108 Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 109 109 110 References mpdf::condition(), mpdf::ep, epdf::eval pdflog(), and epdf::sample().110 References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 111 111 112 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{113 \index{mEF@{mEF}!samplecond @{samplecond}}114 \index{samplecond @{samplecond}!mEF@{mEF}}115 \subsubsection[samplecond ]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond(const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}}116 \label{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}112 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 113 \index{mEF@{mEF}!samplecond\_\-m@{samplecond\_\-m}} 114 \index{samplecond\_\-m@{samplecond\_\-m}!mEF@{mEF}} 115 \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} 116 \label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 117 117 118 118 … … 126 126 127 127 128 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 129 130 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 128 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 131 129 132 130 The documentation for this class was generated from the following file:\begin{CompactItemize} -
doc/latex/classmepdf.tex
r210 r219 37 37 virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 38 38 \begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item 39 virtual mat \hyperlink{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N)39 virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 40 40 \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 41 \hypertarget{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{42 virtual double \hyperlink{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)}43 \label{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}41 \hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 42 virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 43 \label{classmpdf_2ef8a6374029d990a678782f6decebbe} 44 44 45 45 \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 46 \hypertarget{classmpdf_ b7b2da35080cd15f1be365b805e7277e}{47 virtual vec \ textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)}48 \label{classmpdf_ b7b2da35080cd15f1be365b805e7277e}46 \hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 47 virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 48 \label{classmpdf_95fcff214848f66f1b489459370573fa} 49 49 50 \ item50 \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item 51 51 \hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 52 52 \hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } … … 108 108 Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 109 109 110 References mpdf::condition(), mpdf::ep, epdf::eval pdflog(), and epdf::sample().110 References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 111 111 112 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{113 \index{mepdf@{mepdf}!samplecond @{samplecond}}114 \index{samplecond @{samplecond}!mepdf@{mepdf}}115 \subsubsection[samplecond ]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond(const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}}116 \label{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}112 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 113 \index{mepdf@{mepdf}!samplecond\_\-m@{samplecond\_\-m}} 114 \index{samplecond\_\-m@{samplecond\_\-m}!mepdf@{mepdf}} 115 \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} 116 \label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 117 117 118 118 … … 126 126 127 127 128 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 129 130 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 128 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 131 129 132 130 The documentation for this class was generated from the following file:\begin{CompactItemize} -
doc/latex/classmerger.tex
r210 r219 57 57 vec \hyperlink{classmerger_379198c3d2063bfa63f5d1245a2511ba}{sample} () const 58 58 \item 59 \hypertarget{classmerger_ 8c37688902b1a1e9fa32edc5709e5a00}{60 double \hyperlink{classmerger_ 8c37688902b1a1e9fa32edc5709e5a00}{evalpdflog} (const vec \&dt) const }61 \label{classmerger_ 8c37688902b1a1e9fa32edc5709e5a00}59 \hypertarget{classmerger_632cd7e0bcd149c0dc85042063364f6b}{ 60 double \hyperlink{classmerger_632cd7e0bcd149c0dc85042063364f6b}{evallog} (const vec \&dt) const } 61 \label{classmerger_632cd7e0bcd149c0dc85042063364f6b} 62 62 63 63 \begin{CompactList}\small\item\em Compute log-probability of argument {\tt val}. \item\end{CompactList}\item … … 99 99 100 100 \begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item 101 \hypertarget{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{102 virtual vec \hyperlink{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const }103 \label{classepdf_ cebbdd7a85e6328f7358fc0ba8eee06c}101 \hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 102 virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 103 \label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 104 104 105 105 \begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item -
doc/latex/classmgamma.tex
r210 r219 42 42 virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 43 43 \begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item 44 virtual mat \hyperlink{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N)44 virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 45 45 \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 46 \hypertarget{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{47 virtual double \hyperlink{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)}48 \label{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}46 \hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 47 virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 48 \label{classmpdf_2ef8a6374029d990a678782f6decebbe} 49 49 50 50 \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 51 \hypertarget{classmpdf_ b7b2da35080cd15f1be365b805e7277e}{52 virtual vec \ textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)}53 \label{classmpdf_ b7b2da35080cd15f1be365b805e7277e}51 \hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 52 virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 53 \label{classmpdf_95fcff214848f66f1b489459370573fa} 54 54 55 \ item55 \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item 56 56 \hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 57 57 \hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } … … 130 130 Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 131 131 132 References mpdf::condition(), mpdf::ep, epdf::eval pdflog(), and epdf::sample().132 References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 133 133 134 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{135 \index{mgamma@{mgamma}!samplecond @{samplecond}}136 \index{samplecond @{samplecond}!mgamma@{mgamma}}137 \subsubsection[samplecond ]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond(const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}}138 \label{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}134 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 135 \index{mgamma@{mgamma}!samplecond\_\-m@{samplecond\_\-m}} 136 \index{samplecond\_\-m@{samplecond\_\-m}!mgamma@{mgamma}} 137 \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} 138 \label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 139 139 140 140 … … 148 148 149 149 150 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 151 152 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 150 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 153 151 154 152 The documentation for this class was generated from the following files:\begin{CompactItemize} -
doc/latex/classmgamma__fix.tex
r210 r219 47 47 virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 48 48 \begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item 49 virtual mat \hyperlink{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N)49 virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 50 50 \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 51 \hypertarget{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{52 virtual double \hyperlink{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)}53 \label{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}51 \hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 52 virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 53 \label{classmpdf_2ef8a6374029d990a678782f6decebbe} 54 54 55 55 \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 56 \hypertarget{classmpdf_ b7b2da35080cd15f1be365b805e7277e}{57 virtual vec \ textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)}58 \label{classmpdf_ b7b2da35080cd15f1be365b805e7277e}56 \hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 57 virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 58 \label{classmpdf_95fcff214848f66f1b489459370573fa} 59 59 60 \ item60 \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item 61 61 \hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 62 62 \hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } … … 147 147 Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 148 148 149 References mpdf::condition(), mpdf::ep, epdf::eval pdflog(), and epdf::sample().149 References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 150 150 151 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{152 \index{mgamma\_\-fix@{mgamma\_\-fix}!samplecond @{samplecond}}153 \index{samplecond @{samplecond}!mgamma_fix@{mgamma\_\-fix}}154 \subsubsection[samplecond ]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond(const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}}155 \label{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}151 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 152 \index{mgamma\_\-fix@{mgamma\_\-fix}!samplecond\_\-m@{samplecond\_\-m}} 153 \index{samplecond\_\-m@{samplecond\_\-m}!mgamma_fix@{mgamma\_\-fix}} 154 \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} 155 \label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 156 156 157 157 … … 165 165 166 166 167 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 168 169 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 167 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 170 168 171 169 The documentation for this class was generated from the following file:\begin{CompactItemize} -
doc/latex/classmlnorm.tex
r210 r219 57 57 virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 58 58 \begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item 59 virtual mat \hyperlink{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N)59 virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 60 60 \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 61 \hypertarget{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{62 virtual double \hyperlink{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)}63 \label{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}61 \hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 62 virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 63 \label{classmpdf_2ef8a6374029d990a678782f6decebbe} 64 64 65 65 \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 66 \hypertarget{classmpdf_ b7b2da35080cd15f1be365b805e7277e}{67 virtual vec \ textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)}68 \label{classmpdf_ b7b2da35080cd15f1be365b805e7277e}66 \hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 67 virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 68 \label{classmpdf_95fcff214848f66f1b489459370573fa} 69 69 70 \ item70 \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item 71 71 \hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 72 72 \hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } … … 158 158 Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 159 159 160 References mpdf::condition(), mpdf::ep, epdf::eval pdflog(), and epdf::sample().160 References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 161 161 162 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{163 \index{mlnorm@{mlnorm}!samplecond @{samplecond}}164 \index{samplecond @{samplecond}!mlnorm@{mlnorm}}165 \subsubsection[samplecond ]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond(const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}}166 \label{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}162 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 163 \index{mlnorm@{mlnorm}!samplecond\_\-m@{samplecond\_\-m}} 164 \index{samplecond\_\-m@{samplecond\_\-m}!mlnorm@{mlnorm}} 165 \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} 166 \label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 167 167 168 168 … … 176 176 177 177 178 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 179 180 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 178 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 181 179 182 180 The documentation for this class was generated from the following file:\begin{CompactItemize} -
doc/latex/classmlstudent.tex
r210 r219 59 59 virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 60 60 \begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item 61 virtual mat \hyperlink{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N)61 virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 62 62 \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 63 \hypertarget{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{64 virtual double \hyperlink{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)}65 \label{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}63 \hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 64 virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 65 \label{classmpdf_2ef8a6374029d990a678782f6decebbe} 66 66 67 67 \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 68 \hypertarget{classmpdf_ b7b2da35080cd15f1be365b805e7277e}{69 virtual vec \ textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)}70 \label{classmpdf_ b7b2da35080cd15f1be365b805e7277e}68 \hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 69 virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 70 \label{classmpdf_95fcff214848f66f1b489459370573fa} 71 71 72 \ item72 \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item 73 73 \hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 74 74 \hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } … … 171 171 Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 172 172 173 References mpdf::condition(), mpdf::ep, epdf::eval pdflog(), and epdf::sample().173 References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 174 174 175 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{176 \index{mlstudent@{mlstudent}!samplecond @{samplecond}}177 \index{samplecond @{samplecond}!mlstudent@{mlstudent}}178 \subsubsection[samplecond ]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond(const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}}179 \label{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}175 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 176 \index{mlstudent@{mlstudent}!samplecond\_\-m@{samplecond\_\-m}} 177 \index{samplecond\_\-m@{samplecond\_\-m}!mlstudent@{mlstudent}} 178 \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} 179 \label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 180 180 181 181 … … 189 189 190 190 191 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 192 193 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 191 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 194 192 195 193 The documentation for this class was generated from the following file:\begin{CompactItemize} -
doc/latex/classmmix.tex
r210 r219 42 42 virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 43 43 \begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item 44 virtual mat \hyperlink{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N)44 virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 45 45 \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 46 \hypertarget{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{47 virtual double \hyperlink{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)}48 \label{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}46 \hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 47 virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 48 \label{classmpdf_2ef8a6374029d990a678782f6decebbe} 49 49 50 50 \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 51 \hypertarget{classmpdf_ b7b2da35080cd15f1be365b805e7277e}{52 virtual vec \ textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)}53 \label{classmpdf_ b7b2da35080cd15f1be365b805e7277e}51 \hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 52 virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 53 \label{classmpdf_95fcff214848f66f1b489459370573fa} 54 54 55 \ item55 \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item 56 56 \hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 57 57 \hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } … … 123 123 Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 124 124 125 References mpdf::condition(), mpdf::ep, epdf::eval pdflog(), and epdf::sample().125 References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 126 126 127 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{128 \index{mmix@{mmix}!samplecond @{samplecond}}129 \index{samplecond @{samplecond}!mmix@{mmix}}130 \subsubsection[samplecond ]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond(const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}}131 \label{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}127 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 128 \index{mmix@{mmix}!samplecond\_\-m@{samplecond\_\-m}} 129 \index{samplecond\_\-m@{samplecond\_\-m}!mmix@{mmix}} 130 \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} 131 \label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 132 132 133 133 … … 141 141 142 142 143 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 144 145 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 143 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 146 144 147 145 The documentation for this class was generated from the following file:\begin{CompactItemize} -
doc/latex/classmpdf.tex
r210 r219 27 27 virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 28 28 \begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item 29 virtual mat \hyperlink{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N)29 virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 30 30 \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 31 31 \hypertarget{classmpdf_0f95a0cc6ab40611f46804682446ed83}{ … … 34 34 35 35 \begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classmpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item 36 \hypertarget{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{37 virtual double \hyperlink{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)}38 \label{classmpdf_ 80b738ece5bd4f8c4edaee4b38906f91}36 \hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 37 virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 38 \label{classmpdf_2ef8a6374029d990a678782f6decebbe} 39 39 40 40 \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 41 \hypertarget{classmpdf_ b7b2da35080cd15f1be365b805e7277e}{42 virtual vec \ textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)}43 \label{classmpdf_ b7b2da35080cd15f1be365b805e7277e}41 \hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 42 virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 43 \label{classmpdf_95fcff214848f66f1b489459370573fa} 44 44 45 \ item45 \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item 46 46 \hypertarget{classmpdf_6788be9f3a888796499c5293a318fcfb}{ 47 47 virtual \hyperlink{classmpdf_6788be9f3a888796499c5293a318fcfb}{$\sim$mpdf} ()} … … 111 111 Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 112 112 113 References condition(), ep, epdf::eval pdflog(), and epdf::sample().113 References condition(), ep, epdf::evallog(), and epdf::sample(). 114 114 115 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{116 \index{mpdf@{mpdf}!samplecond @{samplecond}}117 \index{samplecond @{samplecond}!mpdf@{mpdf}}118 \subsubsection[samplecond ]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond(const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual\mbox{]}}}}119 \label{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}115 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 116 \index{mpdf@{mpdf}!samplecond\_\-m@{samplecond\_\-m}} 117 \index{samplecond\_\-m@{samplecond\_\-m}!mpdf@{mpdf}} 118 \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual\mbox{]}}}} 119 \label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 120 120 121 121 … … 129 129 130 130 131 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 132 133 References condition(), RV::count(), ep, epdf::evalpdflog(), rv, and epdf::sample(). 131 References condition(), RV::count(), ep, epdf::evallog(), rv, and epdf::sample(). 134 132 135 133 The documentation for this class was generated from the following file:\begin{CompactItemize} -
doc/latex/classmprod.tex
r210 r219 30 30 31 31 \begin{CompactList}\small\item\em Constructor from list of mFacs,. \item\end{CompactList}\item 32 \hypertarget{classmprod_ 1e662c8d90a96bf19235a05373d6887a}{33 double \hyperlink{classmprod_ 1e662c8d90a96bf19235a05373d6887a}{evalcond} (const vec \&val, const vec \&cond)}34 \label{classmprod_ 1e662c8d90a96bf19235a05373d6887a}32 \hypertarget{classmprod_f5e1075f133f203113d92084b4a47c28}{ 33 double \hyperlink{classmprod_f5e1075f133f203113d92084b4a47c28}{evallogcond} (const vec \&val, const vec \&cond)} 34 \label{classmprod_f5e1075f133f203113d92084b4a47c28} 35 35 36 36 \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item 37 37 vec \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{samplecond} (const vec \&cond, double \&ll) 38 38 \begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item 39 mat \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{samplecond} (const vec \&cond, vec \&ll, int N) 40 \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 39 \hypertarget{classmprod_e171c40e210539c2af01d6237785620b}{ 40 mat \textbf{samplecond} (const vec \&cond, vec \&ll, int N)} 41 \label{classmprod_e171c40e210539c2af01d6237785620b} 42 43 \item 41 44 \hyperlink{classRV}{RV} \hyperlink{classcompositepdf_635d219fb3e32852400d6f98aa4bdc93}{getrv} (bool checkoverlap=false) 42 45 \begin{CompactList}\small\item\em find common rv, flag \item\end{CompactList}\item … … 46 49 47 50 \begin{CompactList}\small\item\em common rvc of all mpdfs is written to rvc \item\end{CompactList}\item 51 virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 52 \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 48 53 \hypertarget{classmpdf_0f95a0cc6ab40611f46804682446ed83}{ 49 54 virtual void \hyperlink{classmpdf_0f95a0cc6ab40611f46804682446ed83}{condition} (const vec \&cond)} … … 51 56 52 57 \begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classmpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item 53 \hypertarget{classmpdf_ b7b2da35080cd15f1be365b805e7277e}{54 virtual vec \ textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)}55 \label{classmpdf_ b7b2da35080cd15f1be365b805e7277e}58 \hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 59 virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 60 \label{classmpdf_95fcff214848f66f1b489459370573fa} 56 61 57 \ item62 \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item 58 63 \hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 59 64 \hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } … … 135 140 Reimplemented from \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{mpdf}. 136 141 137 References RV::count(), dls, epdfs, compositepdf::mpdfs, compositepdf::n, and mpdf::rv. 138 139 Referenced by samplecond().\hypertarget{classmprod_e171c40e210539c2af01d6237785620b}{ 140 \index{mprod@{mprod}!samplecond@{samplecond}} 141 \index{samplecond@{samplecond}!mprod@{mprod}} 142 \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}mat mprod::samplecond (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual\mbox{]}}}} 143 \label{classmprod_e171c40e210539c2af01d6237785620b} 144 145 146 Returns. 147 148 \begin{Desc} 149 \item[Parameters:] 150 \begin{description} 151 \item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} 152 \end{Desc} 153 154 155 Reimplemented from \hyperlink{classmpdf_0e37163660f93df2a4d723cedb1da89c}{mpdf}. 156 157 References RV::count(), mpdf::rv, and samplecond().\hypertarget{classcompositepdf_635d219fb3e32852400d6f98aa4bdc93}{ 142 References RV::count(), dls, epdfs, compositepdf::mpdfs, compositepdf::n, and mpdf::rv.\hypertarget{classcompositepdf_635d219fb3e32852400d6f98aa4bdc93}{ 158 143 \index{mprod@{mprod}!getrv@{getrv}} 159 144 \index{getrv@{getrv}!mprod@{mprod}} … … 171 156 172 157 173 References RV::add(), compositepdf::mpdfs, and compositepdf::n. 158 References RV::add(), compositepdf::mpdfs, and compositepdf::n.\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 159 \index{mprod@{mprod}!samplecond\_\-m@{samplecond\_\-m}} 160 \index{samplecond\_\-m@{samplecond\_\-m}!mprod@{mprod}} 161 \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} 162 \label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 163 164 165 Returns. 166 167 \begin{Desc} 168 \item[Parameters:] 169 \begin{description} 170 \item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} 171 \end{Desc} 172 173 174 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 174 175 175 176 The documentation for this class was generated from the following file:\begin{CompactItemize} -
doc/latex/classmratio.tex
r210 r219 27 27 \hyperlink{classmratio_c2452f4fc3046cfe8f2453deb343b3ac}{mratio} (const \hyperlink{classepdf}{epdf} $\ast$nom0, const \hyperlink{classRV}{RV} \&\hyperlink{classmpdf_f6687c07ff07d47812dd565368ca59eb}{rv}, bool copy=false) 28 28 \item 29 \hypertarget{classmratio_ 6d440ca39571004425c2bffbc227d3dc}{30 double \hyperlink{classmratio_ 6d440ca39571004425c2bffbc227d3dc}{evalcond} (const vec \&val, const vec \&cond)}31 \label{classmratio_ 6d440ca39571004425c2bffbc227d3dc}29 \hypertarget{classmratio_9fb0df09a2e975e8b9f7ce41ecd65a09}{ 30 double \hyperlink{classmratio_9fb0df09a2e975e8b9f7ce41ecd65a09}{evallogcond} (const vec \&val, const vec \&cond)} 31 \label{classmratio_9fb0df09a2e975e8b9f7ce41ecd65a09} 32 32 33 33 \begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item … … 44 44 virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 45 45 \begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item 46 virtual mat \hyperlink{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N)46 virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 47 47 \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item 48 48 \hypertarget{classmpdf_0f95a0cc6ab40611f46804682446ed83}{ … … 51 51 52 52 \begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classmpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item 53 \hypertarget{classmpdf_ b7b2da35080cd15f1be365b805e7277e}{54 virtual vec \ textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)}55 \label{classmpdf_ b7b2da35080cd15f1be365b805e7277e}53 \hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 54 virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 55 \label{classmpdf_95fcff214848f66f1b489459370573fa} 56 56 57 \ item57 \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item 58 58 \hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 59 59 \hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } … … 116 116 In particular this type of arise by conditioning of a mixture model. 117 117 118 At present the only supported operation is \hyperlink{classmratio_ 6d440ca39571004425c2bffbc227d3dc}{evalcond()}.118 At present the only supported operation is \hyperlink{classmratio_9fb0df09a2e975e8b9f7ce41ecd65a09}{evallogcond()}. 119 119 120 120 \subsection{Constructor \& Destructor Documentation} … … 149 149 Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 150 150 151 References mpdf::condition(), mpdf::ep, epdf::eval pdflog(), and epdf::sample().151 References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 152 152 153 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}{154 \index{mratio@{mratio}!samplecond @{samplecond}}155 \index{samplecond @{samplecond}!mratio@{mratio}}156 \subsubsection[samplecond ]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond(const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}}157 \label{classmpdf_ 0e37163660f93df2a4d723cedb1da89c}153 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 154 \index{mratio@{mratio}!samplecond\_\-m@{samplecond\_\-m}} 155 \index{samplecond\_\-m@{samplecond\_\-m}!mratio@{mratio}} 156 \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} 157 \label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 158 158 159 159 … … 167 167 168 168 169 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 170 171 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 169 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 172 170 173 171 The documentation for this class was generated from the following file:\begin{CompactItemize} -
doc/latex/doxygen.sty
r210 r219 11 11 \rhead[\fancyplain{}{\bfseries\leftmark}] 12 12 {\fancyplain{}{\bfseries\thepage}} 13 \rfoot[\fancyplain{}{\bfseries\scriptsize Generated on Wed Nov 12 20:46:052008 for mixpp by Doxygen }]{}14 \lfoot[]{\fancyplain{}{\bfseries\scriptsize Generated on Wed Nov 12 20:46:052008 for mixpp by Doxygen }}13 \rfoot[\fancyplain{}{\bfseries\scriptsize Generated on Thu Dec 4 14:42:12 2008 for mixpp by Doxygen }]{} 14 \lfoot[]{\fancyplain{}{\bfseries\scriptsize Generated on Thu Dec 4 14:42:12 2008 for mixpp by Doxygen }} 15 15 \cfoot{} 16 16 \newenvironment{Code} -
doc/latex/group__core.tex
r210 r219 1 \hypertarget{ libBM_8h}{2 \section{ work/git/mixpp/bdm/stat/libBM.h File Reference}3 \label{ libBM_8h}\index{work/git/mixpp/bdm/stat/libBM.h@{work/git/mixpp/bdm/stat/libBM.h}}1 \hypertarget{group__core}{ 2 \section{Core BDM classes} 3 \label{group__core}\index{Core BDM classes@{Core BDM classes}} 4 4 } 5 Bayesian Models (bm) that use Bayes rule to learn from observations.6 7 {\tt \#include $<$itpp/itbase.h$>$}\par8 {\tt \#include \char`\"{}../itpp\_\-ext.h\char`\"{}}\par9 10 11 Include dependency graph for libBM.h:\nopagebreak12 \begin{figure}[H]13 \begin{center}14 \leavevmode15 \includegraphics[width=106pt]{libBM_8h__incl}16 \end{center}17 \end{figure}18 19 20 This graph shows which files directly or indirectly include this file:\nopagebreak21 \begin{figure}[H]22 \begin{center}23 \leavevmode24 \includegraphics[width=420pt]{libBM_8h__dep__incl}25 \end{center}26 \end{figure}27 5 \subsection*{Classes} 28 6 \begin{CompactItemize} … … 57 35 \begin{CompactItemize} 58 36 \item 59 \hypertarget{ libBM_8h_33c114e83980d883c5b211c47d5322a4}{60 \hyperlink{classRV}{RV} \hyperlink{ libBM_8h_33c114e83980d883c5b211c47d5322a4}{concat} (const \hyperlink{classRV}{RV} \&rv1, const \hyperlink{classRV}{RV} \&rv2)}61 \label{ libBM_8h_33c114e83980d883c5b211c47d5322a4}37 \hypertarget{group__core_g33c114e83980d883c5b211c47d5322a4}{ 38 \hyperlink{classRV}{RV} \hyperlink{group__core_g33c114e83980d883c5b211c47d5322a4}{concat} (const \hyperlink{classRV}{RV} \&rv1, const \hyperlink{classRV}{RV} \&rv2)} 39 \label{group__core_g33c114e83980d883c5b211c47d5322a4} 62 40 63 41 \begin{CompactList}\small\item\em Concat two random variables. \item\end{CompactList}\end{CompactItemize} 42 \subsection*{Variables} 43 \begin{CompactItemize} 44 \item 45 \hypertarget{group__core_g9ea0562597470f6058ec209ee72db5fa}{ 46 \hyperlink{classRV}{RV} \hyperlink{group__core_g9ea0562597470f6058ec209ee72db5fa}{RV0}} 47 \label{group__core_g9ea0562597470f6058ec209ee72db5fa} 64 48 65 66 \subsection{Detailed Description} 67 Bayesian Models (bm) that use Bayes rule to learn from observations. 68 69 \begin{Desc} 70 \item[Author:]Vaclav Smidl.\end{Desc} 71 ----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty 72 73 Using IT++ for numerical operations ----------------------------------- 49 \begin{CompactList}\small\item\em Default empty \hyperlink{classRV}{RV} that can be used as default argument. \item\end{CompactList}\end{CompactItemize} -
doc/latex/libBM_8h.tex
r210 r219 57 57 \begin{CompactItemize} 58 58 \item 59 \hypertarget{ libBM_8h_33c114e83980d883c5b211c47d5322a4}{60 \hyperlink{classRV}{RV} \hyperlink{ libBM_8h_33c114e83980d883c5b211c47d5322a4}{concat} (const \hyperlink{classRV}{RV} \&rv1, const \hyperlink{classRV}{RV} \&rv2)}61 \label{ libBM_8h_33c114e83980d883c5b211c47d5322a4}59 \hypertarget{group__core_g33c114e83980d883c5b211c47d5322a4}{ 60 \hyperlink{classRV}{RV} \hyperlink{group__core_g33c114e83980d883c5b211c47d5322a4}{concat} (const \hyperlink{classRV}{RV} \&rv1, const \hyperlink{classRV}{RV} \&rv2)} 61 \label{group__core_g33c114e83980d883c5b211c47d5322a4} 62 62 63 63 \begin{CompactList}\small\item\em Concat two random variables. \item\end{CompactList}\end{CompactItemize} 64 \subsection*{Variables} 65 \begin{CompactItemize} 66 \item 67 \hypertarget{group__core_g9ea0562597470f6058ec209ee72db5fa}{ 68 \hyperlink{classRV}{RV} \hyperlink{group__core_g9ea0562597470f6058ec209ee72db5fa}{RV0}} 69 \label{group__core_g9ea0562597470f6058ec209ee72db5fa} 70 71 \begin{CompactList}\small\item\em Default empty \hyperlink{classRV}{RV} that can be used as default argument. \item\end{CompactList}\end{CompactItemize} 64 72 65 73 -
doc/latex/libDC_8h.tex
r181 r219 37 37 \begin{CompactItemize} 38 38 \item 39 \hypertarget{ libDC_8h_4ed56e73b49db8e7f4a63fa926a8dca4}{40 void \hyperlink{ libDC_8h_4ed56e73b49db8e7f4a63fa926a8dca4}{dydr} (double $\ast$r, double $\ast$f, double $\ast$Dr, double $\ast$Df, double $\ast$R, int jl, int jh, double $\ast$kr, int m, int mx)}41 \label{ libDC_8h_4ed56e73b49db8e7f4a63fa926a8dca4}39 \hypertarget{group__math_g4ed56e73b49db8e7f4a63fa926a8dca4}{ 40 void \hyperlink{group__math_g4ed56e73b49db8e7f4a63fa926a8dca4}{dydr} (double $\ast$r, double $\ast$f, double $\ast$Dr, double $\ast$Df, double $\ast$R, int jl, int jh, double $\ast$kr, int m, int mx)} 41 \label{group__math_g4ed56e73b49db8e7f4a63fa926a8dca4} 42 42 43 43 \begin{CompactList}\small\item\em Auxiliary function dydr; dyadic reduction. \item\end{CompactList}\item 44 \hypertarget{ libDC_8h_6715d039e6d5d97005cf9e2522dfa474}{45 mat \hyperlink{ libDC_8h_6715d039e6d5d97005cf9e2522dfa474}{ltuinv} (const mat \&L)}46 \label{ libDC_8h_6715d039e6d5d97005cf9e2522dfa474}44 \hypertarget{group__math_g6715d039e6d5d97005cf9e2522dfa474}{ 45 mat \hyperlink{group__math_g6715d039e6d5d97005cf9e2522dfa474}{ltuinv} (const mat \&L)} 46 \label{group__math_g6715d039e6d5d97005cf9e2522dfa474} 47 47 48 48 \begin{CompactList}\small\item\em Auxiliary function ltuinv; inversion of a triangular matrix;. \item\end{CompactList}\end{CompactItemize} -
doc/latex/refman.tex
r210 r219 39 39 {\large Generated by Doxygen 1.5.6}\\ 40 40 \vspace*{0.5cm} 41 {\small Wed Nov 12 20:46:052008}\\41 {\small Thu Dec 4 14:42:13 2008}\\ 42 42 \end{center} 43 43 \end{titlepage} … … 53 53 \hypertarget{codingrules}{} 54 54 \include{codingrules} 55 \chapter{Introduction to Bayesian Decision Making Toolbox BDM} 56 \label{intro} 57 \hypertarget{intro}{} 58 \include{intro} 55 \chapter{Module Index} 56 \input{modules} 59 57 \chapter{Class Index} 60 58 \input{hierarchy} … … 63 61 \chapter{File Index} 64 62 \input{files} 63 \chapter{Module Documentation} 64 \input{group__math} 65 \include{group__core} 65 66 \chapter{Class Documentation} 66 67 \input{classARX}