Changeset 219 for doc/latex

Show
Ignore:
Timestamp:
12/18/08 20:38:46 (16 years ago)
Author:
smidl
Message:

doc

Location:
doc/latex
Files:
2 added
33 modified
1 copied

Legend:

Unmodified
Added
Removed
  • doc/latex/classEKFful__unQR.tex

    r210 r219  
    6060 
    6161\begin{CompactList}\small\item\em Returns a pointer to the \hyperlink{classepdf}{epdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\item  
     62\hypertarget{classEKFfull_31f310660d78999286d2a4e9267e85fb}{ 
     63const mat \textbf{\_\-R} ()} 
     64\label{classEKFfull_31f310660d78999286d2a4e9267e85fb} 
     65 
     66\item  
    6267\hypertarget{classBM_0186270f75189677f390fe088a9947e9}{ 
    6368virtual void \hyperlink{classBM_0186270f75189677f390fe088a9947e9}{bayesB} (const mat \&Dt)} 
  • doc/latex/classEKFfull.tex

    r210 r219  
    5555 
    5656\begin{CompactList}\small\item\em Returns a pointer to the \hyperlink{classepdf}{epdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\item  
     57\hypertarget{classEKFfull_31f310660d78999286d2a4e9267e85fb}{ 
     58const mat \textbf{\_\-R} ()} 
     59\label{classEKFfull_31f310660d78999286d2a4e9267e85fb} 
     60 
     61\item  
    5762\hypertarget{classBM_0186270f75189677f390fe088a9947e9}{ 
    5863virtual void \hyperlink{classBM_0186270f75189677f390fe088a9947e9}{bayesB} (const mat \&Dt)} 
  • doc/latex/classKalmanCh.tex

    r210 r219  
    237237Reimplemented in \hyperlink{classEKFCh_96f6edda324a0b7ef8b4e86cc7af60c1}{EKFCh}. 
    238238 
    239 References chmat::\_\-Ch(), Kalman$<$ chmat $>$::\_\-K, Kalman$<$ chmat $>$::\_\-mu, Kalman$<$ chmat $>$::\_\-P, Kalman$<$ chmat $>$::\_\-Ry, Kalman$<$ chmat $>$::\_\-yp, Kalman$<$ chmat $>$::A, Kalman$<$ chmat $>$::B, Kalman$<$ chmat $>$::C, Kalman$<$ chmat $>$::D, Kalman$<$ chmat $>$::dimu, Kalman$<$ chmat $>$::dimx, Kalman$<$ chmat $>$::dimy, BM::evalll, eEF::evalpdflog(), Kalman$<$ chmat $>$::fy, BM::ll, postA, preA, and chmat::to\_\-mat().\hypertarget{classBM_8a8ce6df431689964c41cc6c849cfd06}{ 
     239References chmat::\_\-Ch(), Kalman$<$ chmat $>$::\_\-K, Kalman$<$ chmat $>$::\_\-mu, Kalman$<$ chmat $>$::\_\-P, Kalman$<$ chmat $>$::\_\-Ry, Kalman$<$ chmat $>$::\_\-yp, Kalman$<$ chmat $>$::A, Kalman$<$ chmat $>$::B, Kalman$<$ chmat $>$::C, Kalman$<$ chmat $>$::D, Kalman$<$ chmat $>$::dimu, Kalman$<$ chmat $>$::dimx, Kalman$<$ chmat $>$::dimy, BM::evalll, eEF::evallog(), Kalman$<$ chmat $>$::fy, BM::ll, postA, and preA.\hypertarget{classBM_8a8ce6df431689964c41cc6c849cfd06}{ 
    240240\index{KalmanCh@{KalmanCh}!logpred@{logpred}} 
    241241\index{logpred@{logpred}!KalmanCh@{KalmanCh}} 
  • doc/latex/classMixEF.tex

    r210 r219  
    233233References multiBM::\_\-epdf(), Coms, epdf::mean(), and weights. 
    234234 
    235 Referenced by merger::evalpdflog(), and merger::merge(). 
     235Referenced by merger::evallog(), and merger::merge(). 
    236236 
    237237The documentation for this class was generated from the following files:\begin{CompactItemize} 
  • doc/latex/classPF.tex

    r210 r219  
    157157Reimplemented in \hyperlink{classMPF_55daf8e4b6553dd9f47c692de7931623}{MPF$<$ BM\_\-T $>$}. 
    158158 
    159 References \_\-samples, \_\-w, est, mpdf::evalcond(), n, obs, par, eEmp::resample(), and mpdf::samplecond().\hypertarget{classBM_8a8ce6df431689964c41cc6c849cfd06}{ 
     159References \_\-samples, \_\-w, est, mpdf::evallogcond(), n, obs, par, eEmp::resample(), and mpdf::samplecond().\hypertarget{classBM_8a8ce6df431689964c41cc6c849cfd06}{ 
    160160\index{PF@{PF}!logpred@{logpred}} 
    161161\index{logpred@{logpred}!PF@{PF}} 
  • doc/latex/classRV.tex

    r210 r219  
    201201 
    202202 
    203 References findself(), ids, len, names, sizes, times, and tsize. 
     203References concat(), findself(), ids, len, names, sizes, times, and tsize. 
    204204 
    205205Referenced by concat(), compositepdf::getrv(), merger::merger(), MPF$<$ BM\_\-T $>$::MPF(), and compositepdf::setrvc().\hypertarget{classRV_bb724fa4e2d9ed7bfd0993b5975018a4}{ 
     
    212212when this rv is a part of bigger rv, this function returns indeces of self in the data vector of the bigger crv. Then, data can be copied via: data\_\-of\_\-this = cdata(ind);  
    213213 
    214 References count(), ids, str::ids, len, times, str::times, tostr(), and tsize. 
     214References concat(), count(), ids, str::ids, len, times, str::times, tostr(), and tsize. 
    215215 
    216216Referenced by enorm$<$ sq\_\-T $>$::condition(), datalink\_\-m2e::datalink\_\-m2e(), datalink\_\-m2m::datalink\_\-m2m(), and enorm$<$ sq\_\-T $>$::marginal().\hypertarget{classRV_777a5d87f2b95a60a7de467d7817f16e}{ 
     
    223223generate mutual indeces when copying data betwenn self and crv. Data are copied via: data\_\-of\_\-this(selfi) = data\_\-of\_\-rv2(rv2i)  
    224224 
    225 References findself(), ids, str::ids, len, length(), times, str::times, and tostr(). 
     225References concat(), findself(), ids, str::ids, len, length(), times, str::times, and tostr(). 
    226226 
    227227The documentation for this class was generated from the following files:\begin{CompactItemize} 
  • doc/latex/classeDirich.tex

    r210 r219  
    4545 
    4646\begin{CompactList}\small\item\em return expected value \item\end{CompactList}\item  
    47 \hypertarget{classeDirich_688a24f04be6d80d4769cf0e4ded7acc}{ 
    48 double \hyperlink{classeDirich_688a24f04be6d80d4769cf0e4ded7acc}{evalpdflog\_\-nn} (const vec \&val) const } 
    49 \label{classeDirich_688a24f04be6d80d4769cf0e4ded7acc} 
     47\hypertarget{classeDirich_bb4b14ed7794777386de10608a83d142}{ 
     48double \hyperlink{classeDirich_bb4b14ed7794777386de10608a83d142}{evallog\_\-nn} (const vec \&val) const } 
     49\label{classeDirich_bb4b14ed7794777386de10608a83d142} 
    5050 
    5151\begin{CompactList}\small\item\em In this instance, val is ... \item\end{CompactList}\item  
     
    7070 
    7171\begin{CompactList}\small\item\em TODO decide if it is really needed. \item\end{CompactList}\item  
    72 \hypertarget{classeEF_6466e8d4aa9dd64698ed288cbb1afc03}{ 
    73 virtual double \hyperlink{classeEF_6466e8d4aa9dd64698ed288cbb1afc03}{evalpdflog} (const vec \&val) const } 
    74 \label{classeEF_6466e8d4aa9dd64698ed288cbb1afc03} 
     72\hypertarget{classeEF_357512dd565e199904d367294b7dd862}{ 
     73virtual double \hyperlink{classeEF_357512dd565e199904d367294b7dd862}{evallog} (const vec \&val) const } 
     74\label{classeEF_357512dd565e199904d367294b7dd862} 
    7575 
    7676\begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item  
    77 \hypertarget{classeEF_c71faf4b2d153efda14bf1f87dca1507}{ 
    78 virtual vec \hyperlink{classeEF_c71faf4b2d153efda14bf1f87dca1507}{evalpdflog} (const mat \&Val) const } 
    79 \label{classeEF_c71faf4b2d153efda14bf1f87dca1507} 
     77\hypertarget{classeEF_cff03a658aec11b806c3e3d48f37b81f}{ 
     78virtual vec \hyperlink{classeEF_cff03a658aec11b806c3e3d48f37b81f}{evallog} (const mat \&Val) const } 
     79\label{classeEF_cff03a658aec11b806c3e3d48f37b81f} 
    8080 
    8181\begin{CompactList}\small\item\em Evaluate normalized log-probability for many samples. \item\end{CompactList}\item  
     
    9090 
    9191\begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item  
    92 \hypertarget{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{ 
    93 virtual vec \hyperlink{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const } 
    94 \label{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c} 
     92\hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 
     93virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 
     94\label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 
    9595 
    9696\begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item  
  • doc/latex/classeEF.tex

    r210 r219  
    4040 
    4141\begin{CompactList}\small\item\em TODO decide if it is really needed. \item\end{CompactList}\item  
    42 \hypertarget{classeEF_48cdd33d0e20d1a1aa45683c956bc61c}{ 
    43 virtual double \hyperlink{classeEF_48cdd33d0e20d1a1aa45683c956bc61c}{evalpdflog\_\-nn} (const vec \&val) const } 
    44 \label{classeEF_48cdd33d0e20d1a1aa45683c956bc61c} 
     42\hypertarget{classeEF_41c70565b4d3fb424599817d008f0c71}{ 
     43virtual double \hyperlink{classeEF_41c70565b4d3fb424599817d008f0c71}{evallog\_\-nn} (const vec \&val) const } 
     44\label{classeEF_41c70565b4d3fb424599817d008f0c71} 
    4545 
    4646\begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item  
    47 \hypertarget{classeEF_6466e8d4aa9dd64698ed288cbb1afc03}{ 
    48 virtual double \hyperlink{classeEF_6466e8d4aa9dd64698ed288cbb1afc03}{evalpdflog} (const vec \&val) const } 
    49 \label{classeEF_6466e8d4aa9dd64698ed288cbb1afc03} 
     47\hypertarget{classeEF_357512dd565e199904d367294b7dd862}{ 
     48virtual double \hyperlink{classeEF_357512dd565e199904d367294b7dd862}{evallog} (const vec \&val) const } 
     49\label{classeEF_357512dd565e199904d367294b7dd862} 
    5050 
    5151\begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item  
    52 \hypertarget{classeEF_c71faf4b2d153efda14bf1f87dca1507}{ 
    53 virtual vec \hyperlink{classeEF_c71faf4b2d153efda14bf1f87dca1507}{evalpdflog} (const mat \&Val) const } 
    54 \label{classeEF_c71faf4b2d153efda14bf1f87dca1507} 
     52\hypertarget{classeEF_cff03a658aec11b806c3e3d48f37b81f}{ 
     53virtual vec \hyperlink{classeEF_cff03a658aec11b806c3e3d48f37b81f}{evallog} (const mat \&Val) const } 
     54\label{classeEF_cff03a658aec11b806c3e3d48f37b81f} 
    5555 
    5656\begin{CompactList}\small\item\em Evaluate normalized log-probability for many samples. \item\end{CompactList}\item  
     
    7070 
    7171\begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item  
    72 \hypertarget{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{ 
    73 virtual vec \hyperlink{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const } 
    74 \label{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c} 
     72\hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 
     73virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 
     74\label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 
    7575 
    7676\begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item  
  • doc/latex/classeEmp.tex

    r210 r219  
    7575 
    7676\begin{CompactList}\small\item\em inherited operation : NOT implemneted \item\end{CompactList}\item  
    77 \hypertarget{classeEmp_23e7358995400865ad2e278945922fb3}{ 
    78 double \hyperlink{classeEmp_23e7358995400865ad2e278945922fb3}{evalpdflog} (const vec \&val) const } 
    79 \label{classeEmp_23e7358995400865ad2e278945922fb3} 
     77\hypertarget{classeEmp_884f16c9fc1f888408686a660a95dacd}{ 
     78double \hyperlink{classeEmp_884f16c9fc1f888408686a660a95dacd}{evallog} (const vec \&val) const } 
     79\label{classeEmp_884f16c9fc1f888408686a660a95dacd} 
    8080 
    8181\begin{CompactList}\small\item\em inherited operation : NOT implemneted \item\end{CompactList}\item  
     
    9090 
    9191\begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item  
    92 \hypertarget{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{ 
    93 virtual vec \hyperlink{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const } 
    94 \label{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c} 
     92\hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 
     93virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 
     94\label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 
    9595 
    9696\begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item  
  • doc/latex/classegamma.tex

    r210 r219  
    4040 
    4141\begin{CompactList}\small\item\em Returns a sample, $x$ from density $epdf(rv)$. \item\end{CompactList}\item  
    42 \hypertarget{classegamma_de84faac8f9799dfe2777ddbedf997ef}{ 
    43 double \hyperlink{classegamma_de84faac8f9799dfe2777ddbedf997ef}{evalpdflog} (const vec \&val) const } 
    44 \label{classegamma_de84faac8f9799dfe2777ddbedf997ef} 
     42\hypertarget{classegamma_74a49a4c696f44e54bb6b0515e155a9b}{ 
     43double \hyperlink{classegamma_74a49a4c696f44e54bb6b0515e155a9b}{evallog} (const vec \&val) const } 
     44\label{classegamma_74a49a4c696f44e54bb6b0515e155a9b} 
    4545 
    4646\begin{CompactList}\small\item\em TODO: is it used anywhere? \item\end{CompactList}\item  
     
    6565 
    6666\begin{CompactList}\small\item\em TODO decide if it is really needed. \item\end{CompactList}\item  
    67 \hypertarget{classeEF_48cdd33d0e20d1a1aa45683c956bc61c}{ 
    68 virtual double \hyperlink{classeEF_48cdd33d0e20d1a1aa45683c956bc61c}{evalpdflog\_\-nn} (const vec \&val) const } 
    69 \label{classeEF_48cdd33d0e20d1a1aa45683c956bc61c} 
     67\hypertarget{classeEF_41c70565b4d3fb424599817d008f0c71}{ 
     68virtual double \hyperlink{classeEF_41c70565b4d3fb424599817d008f0c71}{evallog\_\-nn} (const vec \&val) const } 
     69\label{classeEF_41c70565b4d3fb424599817d008f0c71} 
    7070 
    7171\begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item  
    72 \hypertarget{classeEF_c71faf4b2d153efda14bf1f87dca1507}{ 
    73 virtual vec \hyperlink{classeEF_c71faf4b2d153efda14bf1f87dca1507}{evalpdflog} (const mat \&Val) const } 
    74 \label{classeEF_c71faf4b2d153efda14bf1f87dca1507} 
     72\hypertarget{classeEF_cff03a658aec11b806c3e3d48f37b81f}{ 
     73virtual vec \hyperlink{classeEF_cff03a658aec11b806c3e3d48f37b81f}{evallog} (const mat \&Val) const } 
     74\label{classeEF_cff03a658aec11b806c3e3d48f37b81f} 
    7575 
    7676\begin{CompactList}\small\item\em Evaluate normalized log-probability for many samples. \item\end{CompactList}\item  
     
    8585 
    8686\begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item  
    87 \hypertarget{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{ 
    88 virtual vec \hyperlink{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const } 
    89 \label{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c} 
     87\hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 
     88virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 
     89\label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 
    9090 
    9191\begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item  
  • doc/latex/classegiw.tex

    r210 r219  
    5050 
    5151\item  
    52 \hypertarget{classegiw_2ab1e525d692be8272a6f383d60b94cd}{ 
    53 double \hyperlink{classegiw_2ab1e525d692be8272a6f383d60b94cd}{evalpdflog\_\-nn} (const vec \&val) const } 
    54 \label{classegiw_2ab1e525d692be8272a6f383d60b94cd} 
     52\hypertarget{classegiw_2d94daac10d66bb743e4ddc8c1ba7268}{ 
     53double \hyperlink{classegiw_2d94daac10d66bb743e4ddc8c1ba7268}{evallog\_\-nn} (const vec \&val) const } 
     54\label{classegiw_2d94daac10d66bb743e4ddc8c1ba7268} 
    5555 
    5656\begin{CompactList}\small\item\em In this instance, val= \mbox{[}theta, r\mbox{]}. For multivariate instances, it is stored columnwise val = \mbox{[}theta\_\-1 theta\_\-2 ... r\_\-1 r\_\-2 \mbox{]}. \item\end{CompactList}\item  
     
    9090 
    9191\begin{CompactList}\small\item\em TODO decide if it is really needed. \item\end{CompactList}\item  
    92 \hypertarget{classeEF_6466e8d4aa9dd64698ed288cbb1afc03}{ 
    93 virtual double \hyperlink{classeEF_6466e8d4aa9dd64698ed288cbb1afc03}{evalpdflog} (const vec \&val) const } 
    94 \label{classeEF_6466e8d4aa9dd64698ed288cbb1afc03} 
     92\hypertarget{classeEF_357512dd565e199904d367294b7dd862}{ 
     93virtual double \hyperlink{classeEF_357512dd565e199904d367294b7dd862}{evallog} (const vec \&val) const } 
     94\label{classeEF_357512dd565e199904d367294b7dd862} 
    9595 
    9696\begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item  
    97 \hypertarget{classeEF_c71faf4b2d153efda14bf1f87dca1507}{ 
    98 virtual vec \hyperlink{classeEF_c71faf4b2d153efda14bf1f87dca1507}{evalpdflog} (const mat \&Val) const } 
    99 \label{classeEF_c71faf4b2d153efda14bf1f87dca1507} 
     97\hypertarget{classeEF_cff03a658aec11b806c3e3d48f37b81f}{ 
     98virtual vec \hyperlink{classeEF_cff03a658aec11b806c3e3d48f37b81f}{evallog} (const mat \&Val) const } 
     99\label{classeEF_cff03a658aec11b806c3e3d48f37b81f} 
    100100 
    101101\begin{CompactList}\small\item\em Evaluate normalized log-probability for many samples. \item\end{CompactList}\item  
     
    105105 
    106106\begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item  
    107 \hypertarget{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{ 
    108 virtual vec \hyperlink{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const } 
    109 \label{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c} 
     107\hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 
     108virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 
     109\label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 
    110110 
    111111\begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item  
  • doc/latex/classemix.tex

    r210 r219  
    4242 
    4343\begin{CompactList}\small\item\em return expected value \item\end{CompactList}\item  
    44 \hypertarget{classemix_469e910479b3402589104ef3bb1b5741}{ 
    45 double \hyperlink{classemix_469e910479b3402589104ef3bb1b5741}{evalpdflog} (const vec \&val) const } 
    46 \label{classemix_469e910479b3402589104ef3bb1b5741} 
     44\hypertarget{classemix_82691a72b583dab957cbd60d9283e47a}{ 
     45double \hyperlink{classemix_82691a72b583dab957cbd60d9283e47a}{evallog} (const vec \&val) const } 
     46\label{classemix_82691a72b583dab957cbd60d9283e47a} 
    4747 
    4848\begin{CompactList}\small\item\em Compute log-probability of argument {\tt val}. \item\end{CompactList}\item  
    49 \hypertarget{classemix_375bfba7c79915c88c2e612bcf83dacb}{ 
    50 vec \hyperlink{classemix_375bfba7c79915c88c2e612bcf83dacb}{evalpdflog\_\-m} (const mat \&Val) const } 
    51 \label{classemix_375bfba7c79915c88c2e612bcf83dacb} 
     49\hypertarget{classemix_b3eb9e153e8bfdb6bb47adecc278cbca}{ 
     50vec \hyperlink{classemix_b3eb9e153e8bfdb6bb47adecc278cbca}{evallog\_\-m} (const mat \&Val) const } 
     51\label{classemix_b3eb9e153e8bfdb6bb47adecc278cbca} 
    5252 
    5353\begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item  
    54 \hypertarget{classemix_07b5638de45d1fe83eb4da37594fcc68}{ 
    55 mat \textbf{evalpdflog\_\-M} (const mat \&Val) const } 
    56 \label{classemix_07b5638de45d1fe83eb4da37594fcc68} 
     54\hypertarget{classemix_44ae2b86c650c2ccb967969c1859d268}{ 
     55mat \hyperlink{classemix_44ae2b86c650c2ccb967969c1859d268}{evallog\_\-M} (const mat \&Val) const } 
     56\label{classemix_44ae2b86c650c2ccb967969c1859d268} 
    5757 
    58 \item  
     58\begin{CompactList}\small\item\em Auxiliary function that returns pdflog for each component. \item\end{CompactList}\item  
    5959\hypertarget{classemix_33afde698093d458ce71875f7ee7384a}{ 
    6060\hyperlink{classemix}{emix} $\ast$ \hyperlink{classemix_33afde698093d458ce71875f7ee7384a}{marginal} (const \hyperlink{classRV}{RV} \&\hyperlink{classepdf_74da992e3f5d598da8850b646b79b9d9}{rv}) const } 
  • doc/latex/classenorm.tex

    r210 r219  
    5050 
    5151\begin{CompactList}\small\item\em TODO is it used? \item\end{CompactList}\item  
    52 \hypertarget{classenorm_b9e1dfd33692d7b3f1a59f17b0e61bd0}{ 
    53 double \textbf{eval} (const vec \&val) const } 
    54 \label{classenorm_b9e1dfd33692d7b3f1a59f17b0e61bd0} 
    55  
    56 \item  
    57 \hypertarget{classenorm_c1e3dcba256b0153cfdb286120e110be}{ 
    58 double \hyperlink{classenorm_c1e3dcba256b0153cfdb286120e110be}{evalpdflog\_\-nn} (const vec \&val) const } 
    59 \label{classenorm_c1e3dcba256b0153cfdb286120e110be} 
     52\hypertarget{classenorm_50cb0a083d97a7adbbd97c92e712c46c}{ 
     53double \hyperlink{classenorm_50cb0a083d97a7adbbd97c92e712c46c}{evallog\_\-nn} (const vec \&val) const } 
     54\label{classenorm_50cb0a083d97a7adbbd97c92e712c46c} 
    6055 
    6156\begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item  
     
    9590 
    9691\begin{CompactList}\small\item\em returns pointers to the internal variance and its inverse. Use with Care! \item\end{CompactList}\item  
     92\hypertarget{classenorm_d01385983048ece700b426549bbaee56}{ 
     93const sq\_\-T \& \textbf{\_\-R} () const } 
     94\label{classenorm_d01385983048ece700b426549bbaee56} 
     95 
     96\item  
    9797\hypertarget{classeEF_a89bef8996410609004fa019b5b48964}{ 
    9898virtual void \hyperlink{classeEF_a89bef8996410609004fa019b5b48964}{dupdate} (mat \&v)} 
     
    100100 
    101101\begin{CompactList}\small\item\em TODO decide if it is really needed. \item\end{CompactList}\item  
    102 \hypertarget{classeEF_6466e8d4aa9dd64698ed288cbb1afc03}{ 
    103 virtual double \hyperlink{classeEF_6466e8d4aa9dd64698ed288cbb1afc03}{evalpdflog} (const vec \&val) const } 
    104 \label{classeEF_6466e8d4aa9dd64698ed288cbb1afc03} 
     102\hypertarget{classeEF_357512dd565e199904d367294b7dd862}{ 
     103virtual double \hyperlink{classeEF_357512dd565e199904d367294b7dd862}{evallog} (const vec \&val) const } 
     104\label{classeEF_357512dd565e199904d367294b7dd862} 
    105105 
    106106\begin{CompactList}\small\item\em Evaluate normalized log-probability. \item\end{CompactList}\item  
    107 \hypertarget{classeEF_c71faf4b2d153efda14bf1f87dca1507}{ 
    108 virtual vec \hyperlink{classeEF_c71faf4b2d153efda14bf1f87dca1507}{evalpdflog} (const mat \&Val) const } 
    109 \label{classeEF_c71faf4b2d153efda14bf1f87dca1507} 
     107\hypertarget{classeEF_cff03a658aec11b806c3e3d48f37b81f}{ 
     108virtual vec \hyperlink{classeEF_cff03a658aec11b806c3e3d48f37b81f}{evallog} (const mat \&Val) const } 
     109\label{classeEF_cff03a658aec11b806c3e3d48f37b81f} 
    110110 
    111111\begin{CompactList}\small\item\em Evaluate normalized log-probability for many samples. \item\end{CompactList}\item  
     
    120120 
    121121\begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item  
    122 \hypertarget{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{ 
    123 virtual vec \hyperlink{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const } 
    124 \label{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c} 
     122\hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 
     123virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 
     124\label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 
    125125 
    126126\begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item  
  • doc/latex/classepdf.tex

    r210 r219  
    4545 
    4646\begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item  
    47 \hypertarget{classepdf_6aef3eca74899692503769c18add1a4c}{ 
    48 virtual double \hyperlink{classepdf_6aef3eca74899692503769c18add1a4c}{evalpdflog} (const vec \&val) const =0} 
    49 \label{classepdf_6aef3eca74899692503769c18add1a4c} 
     47\hypertarget{classepdf_e1996af1da1fa1214270066a96ca113e}{ 
     48virtual double \hyperlink{classepdf_e1996af1da1fa1214270066a96ca113e}{evallog} (const vec \&val) const =0} 
     49\label{classepdf_e1996af1da1fa1214270066a96ca113e} 
    5050 
    5151\begin{CompactList}\small\item\em Compute log-probability of argument {\tt val}. \item\end{CompactList}\item  
    52 \hypertarget{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{ 
    53 virtual vec \hyperlink{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const } 
    54 \label{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c} 
     52\hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 
     53virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 
     54\label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 
    5555 
    5656\begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item  
  • doc/latex/classeprod.tex

    r210 r219  
    4040 
    4141\begin{CompactList}\small\item\em Returns a sample, $x$ from density $epdf(rv)$. \item\end{CompactList}\item  
    42 \hypertarget{classeprod_5adef154e3655a872c284b02635b8b35}{ 
    43 double \hyperlink{classeprod_5adef154e3655a872c284b02635b8b35}{evalpdflog} (const vec \&val) const } 
    44 \label{classeprod_5adef154e3655a872c284b02635b8b35} 
     42\hypertarget{classeprod_0af49e491414d6f270dc347bcb054eb6}{ 
     43double \hyperlink{classeprod_0af49e491414d6f270dc347bcb054eb6}{evallog} (const vec \&val) const } 
     44\label{classeprod_0af49e491414d6f270dc347bcb054eb6} 
    4545 
    4646\begin{CompactList}\small\item\em Compute log-probability of argument {\tt val}. \item\end{CompactList}\item  
     
    6060 
    6161\begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item  
    62 \hypertarget{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{ 
    63 virtual vec \hyperlink{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const } 
    64 \label{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c} 
     62\hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 
     63virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 
     64\label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 
    6565 
    6666\begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item  
  • doc/latex/classeuni.tex

    r210 r219  
    3535 
    3636\item  
    37 \hypertarget{classeuni_06af95d514a6623ad4688bd2ad50ad71}{ 
    38 double \hyperlink{classeuni_06af95d514a6623ad4688bd2ad50ad71}{evalpdflog} (const vec \&val) const } 
    39 \label{classeuni_06af95d514a6623ad4688bd2ad50ad71} 
     37\hypertarget{classeuni_357b36417ef4c9211d12e7a4a602fd6a}{ 
     38double \hyperlink{classeuni_357b36417ef4c9211d12e7a4a602fd6a}{evallog} (const vec \&val) const } 
     39\label{classeuni_357b36417ef4c9211d12e7a4a602fd6a} 
    4040 
    4141\begin{CompactList}\small\item\em Compute log-probability of argument {\tt val}. \item\end{CompactList}\item  
     
    6060 
    6161\begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item  
    62 \hypertarget{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{ 
    63 virtual vec \hyperlink{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const } 
    64 \label{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c} 
     62\hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 
     63virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 
     64\label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 
    6565 
    6666\begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item  
  • doc/latex/classfsqmat.tex

    r210 r219  
    246246References M. 
    247247 
    248 Referenced by EKF$<$ sq\_\-T $>$::bayes(), and egiw::evalpdflog\_\-nn().\hypertarget{classfsqmat_842a774077ee34ac3c36d180ab33e103}{ 
     248Referenced by EKF$<$ sq\_\-T $>$::bayes(), and egiw::evallog\_\-nn().\hypertarget{classfsqmat_842a774077ee34ac3c36d180ab33e103}{ 
    249249\index{fsqmat@{fsqmat}!sqrt\_\-mult@{sqrt\_\-mult}} 
    250250\index{sqrt\_\-mult@{sqrt\_\-mult}!fsqmat@{fsqmat}} 
  • doc/latex/classldmat.tex

    r181 r219  
    9696 
    9797\begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item  
    98 \hypertarget{classldmat_0fceb6b5b637cec89bb0a3d2e6be1306}{ 
    99 int \hyperlink{classldmat_0fceb6b5b637cec89bb0a3d2e6be1306}{cols} () const } 
    100 \label{classldmat_0fceb6b5b637cec89bb0a3d2e6be1306} 
     98\hypertarget{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{ 
     99int \hyperlink{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306}{cols} () const } 
     100\label{group__math_g0fceb6b5b637cec89bb0a3d2e6be1306} 
    101101 
    102102\begin{CompactList}\small\item\em access function \item\end{CompactList}\item  
    103 \hypertarget{classldmat_96dfb21865db4f5bd36fa70f9b0b1163}{ 
    104 int \hyperlink{classldmat_96dfb21865db4f5bd36fa70f9b0b1163}{rows} () const } 
    105 \label{classldmat_96dfb21865db4f5bd36fa70f9b0b1163} 
     103\hypertarget{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{ 
     104int \hyperlink{group__math_g96dfb21865db4f5bd36fa70f9b0b1163}{rows} () const } 
     105\label{group__math_g96dfb21865db4f5bd36fa70f9b0b1163} 
    106106 
    107107\begin{CompactList}\small\item\em access function \item\end{CompactList}\item  
     
    141141 
    142142\begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item  
    143 \hyperlink{classldmat}{ldmat} \& \hyperlink{classldmat_ca445ee152a56043af946ea095b2d8f8}{operator+=} (const \hyperlink{classldmat}{ldmat} \&ldA) 
     143\hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_gca445ee152a56043af946ea095b2d8f8}{operator+=} (const \hyperlink{classldmat}{ldmat} \&ldA) 
    144144\begin{CompactList}\small\item\em add another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item  
    145 \hyperlink{classldmat}{ldmat} \& \hyperlink{classldmat_e3f4d2d85ab1ba384c852329aa31d0fb}{operator-=} (const \hyperlink{classldmat}{ldmat} \&ldA) 
     145\hyperlink{classldmat}{ldmat} \& \hyperlink{group__math_ge3f4d2d85ab1ba384c852329aa31d0fb}{operator-=} (const \hyperlink{classldmat}{ldmat} \&ldA) 
    146146\begin{CompactList}\small\item\em subtract another \hyperlink{classldmat}{ldmat} matrix \item\end{CompactList}\item  
    147147\hypertarget{classldmat_875b7e6dcf73ae7001329099019fdb1d}{ 
     
    195195Implements \hyperlink{classsqmat_b223484796661f2dadb5607a86ce0581}{sqmat}. 
    196196 
    197 References D, sqmat::dim, and L. 
     197References D, sqmat::dim, dydr(), and L. 
    198198 
    199199Referenced by add(), ARX::bayes(), and ARX::logpred().\hypertarget{classldmat_e967b9425007f0cb6cd59b845f9756d8}{ 
     
    262262 
    263263 
    264 References clear(), D, L, and ldform().\hypertarget{classldmat_e7207748909325bb0f99b43f090a2b7e}{ 
     264References clear(), D, L, ldform(), and ltuinv().\hypertarget{classldmat_e7207748909325bb0f99b43f090a2b7e}{ 
    265265\index{ldmat@{ldmat}!mult\_\-sym@{mult\_\-sym}} 
    266266\index{mult\_\-sym@{mult\_\-sym}!ldmat@{ldmat}} 
     
    312312References D, sqmat::dim, and L. 
    313313 
    314 Referenced by inv(), ldmat(), mult\_\-sym(), and mult\_\-sym\_\-t().\hypertarget{classldmat_ca445ee152a56043af946ea095b2d8f8}{ 
    315 \index{ldmat@{ldmat}!operator+=@{operator+=}} 
    316 \index{operator+=@{operator+=}!ldmat@{ldmat}} 
    317 \subsubsection[operator+=]{\setlength{\rightskip}{0pt plus 5cm}{\bf ldmat} \& ldmat::operator+= (const {\bf ldmat} \& {\em ldA})\hspace{0.3cm}{\tt  \mbox{[}inline\mbox{]}}}} 
    318 \label{classldmat_ca445ee152a56043af946ea095b2d8f8} 
    319  
    320  
    321 add another \hyperlink{classldmat}{ldmat} matrix  
    322  
    323 Operations: mapping of add operation to operators \hypertarget{classldmat_e3f4d2d85ab1ba384c852329aa31d0fb}{ 
    324 \index{ldmat@{ldmat}!operator-=@{operator-=}} 
    325 \index{operator-=@{operator-=}!ldmat@{ldmat}} 
    326 \subsubsection[operator-=]{\setlength{\rightskip}{0pt plus 5cm}{\bf ldmat} \& ldmat::operator-= (const {\bf ldmat} \& {\em ldA})\hspace{0.3cm}{\tt  \mbox{[}inline\mbox{]}}}} 
    327 \label{classldmat_e3f4d2d85ab1ba384c852329aa31d0fb} 
    328  
    329  
    330 subtract another \hyperlink{classldmat}{ldmat} matrix  
    331  
    332 mapping of negative add operation to operators  
     314Referenced by inv(), ldmat(), mult\_\-sym(), and mult\_\-sym\_\-t(). 
    333315 
    334316The documentation for this class was generated from the following files:\begin{CompactItemize} 
  • doc/latex/classmEF.tex

    r210 r219  
    3232virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 
    3333\begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item  
    34 virtual mat \hyperlink{classmpdf_0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N) 
     34virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 
    3535\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item  
    3636\hypertarget{classmpdf_0f95a0cc6ab40611f46804682446ed83}{ 
     
    3939 
    4040\begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classmpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item  
    41 \hypertarget{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{ 
    42 virtual double \hyperlink{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)} 
    43 \label{classmpdf_80b738ece5bd4f8c4edaee4b38906f91} 
     41\hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 
     42virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 
     43\label{classmpdf_2ef8a6374029d990a678782f6decebbe} 
    4444 
    4545\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item  
    46 \hypertarget{classmpdf_b7b2da35080cd15f1be365b805e7277e}{ 
    47 virtual vec \textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)} 
    48 \label{classmpdf_b7b2da35080cd15f1be365b805e7277e} 
     46\hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 
     47virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 
     48\label{classmpdf_95fcff214848f66f1b489459370573fa} 
    4949 
    50 \item  
     50\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item  
    5151\hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 
    5252\hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } 
     
    108108Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 
    109109 
    110 References mpdf::condition(), mpdf::ep, epdf::evalpdflog(), and epdf::sample(). 
     110References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 
    111111 
    112 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_0e37163660f93df2a4d723cedb1da89c}{ 
    113 \index{mEF@{mEF}!samplecond@{samplecond}} 
    114 \index{samplecond@{samplecond}!mEF@{mEF}} 
    115 \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
    116 \label{classmpdf_0e37163660f93df2a4d723cedb1da89c} 
     112Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 
     113\index{mEF@{mEF}!samplecond\_\-m@{samplecond\_\-m}} 
     114\index{samplecond\_\-m@{samplecond\_\-m}!mEF@{mEF}} 
     115\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
     116\label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 
    117117 
    118118 
     
    126126 
    127127 
    128 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 
    129  
    130 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 
     128References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 
    131129 
    132130The documentation for this class was generated from the following file:\begin{CompactItemize} 
  • doc/latex/classmepdf.tex

    r210 r219  
    3737virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 
    3838\begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item  
    39 virtual mat \hyperlink{classmpdf_0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N) 
     39virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 
    4040\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item  
    41 \hypertarget{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{ 
    42 virtual double \hyperlink{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)} 
    43 \label{classmpdf_80b738ece5bd4f8c4edaee4b38906f91} 
     41\hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 
     42virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 
     43\label{classmpdf_2ef8a6374029d990a678782f6decebbe} 
    4444 
    4545\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item  
    46 \hypertarget{classmpdf_b7b2da35080cd15f1be365b805e7277e}{ 
    47 virtual vec \textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)} 
    48 \label{classmpdf_b7b2da35080cd15f1be365b805e7277e} 
     46\hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 
     47virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 
     48\label{classmpdf_95fcff214848f66f1b489459370573fa} 
    4949 
    50 \item  
     50\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item  
    5151\hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 
    5252\hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } 
     
    108108Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 
    109109 
    110 References mpdf::condition(), mpdf::ep, epdf::evalpdflog(), and epdf::sample(). 
     110References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 
    111111 
    112 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_0e37163660f93df2a4d723cedb1da89c}{ 
    113 \index{mepdf@{mepdf}!samplecond@{samplecond}} 
    114 \index{samplecond@{samplecond}!mepdf@{mepdf}} 
    115 \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
    116 \label{classmpdf_0e37163660f93df2a4d723cedb1da89c} 
     112Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 
     113\index{mepdf@{mepdf}!samplecond\_\-m@{samplecond\_\-m}} 
     114\index{samplecond\_\-m@{samplecond\_\-m}!mepdf@{mepdf}} 
     115\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
     116\label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 
    117117 
    118118 
     
    126126 
    127127 
    128 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 
    129  
    130 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 
     128References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 
    131129 
    132130The documentation for this class was generated from the following file:\begin{CompactItemize} 
  • doc/latex/classmerger.tex

    r210 r219  
    5757vec \hyperlink{classmerger_379198c3d2063bfa63f5d1245a2511ba}{sample} () const  
    5858\item  
    59 \hypertarget{classmerger_8c37688902b1a1e9fa32edc5709e5a00}{ 
    60 double \hyperlink{classmerger_8c37688902b1a1e9fa32edc5709e5a00}{evalpdflog} (const vec \&dt) const } 
    61 \label{classmerger_8c37688902b1a1e9fa32edc5709e5a00} 
     59\hypertarget{classmerger_632cd7e0bcd149c0dc85042063364f6b}{ 
     60double \hyperlink{classmerger_632cd7e0bcd149c0dc85042063364f6b}{evallog} (const vec \&dt) const } 
     61\label{classmerger_632cd7e0bcd149c0dc85042063364f6b} 
    6262 
    6363\begin{CompactList}\small\item\em Compute log-probability of argument {\tt val}. \item\end{CompactList}\item  
     
    9999 
    100100\begin{CompactList}\small\item\em Returns N samples from density $epdf(rv)$. \item\end{CompactList}\item  
    101 \hypertarget{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{ 
    102 virtual vec \hyperlink{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c}{evalpdflog\_\-m} (const mat \&Val) const } 
    103 \label{classepdf_cebbdd7a85e6328f7358fc0ba8eee06c} 
     101\hypertarget{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{ 
     102virtual vec \hyperlink{classepdf_2495a04bbacb9b55fe5a3a59b78affca}{evallog\_\-m} (const mat \&Val) const } 
     103\label{classepdf_2495a04bbacb9b55fe5a3a59b78affca} 
    104104 
    105105\begin{CompactList}\small\item\em Compute log-probability of multiple values argument {\tt val}. \item\end{CompactList}\item  
  • doc/latex/classmgamma.tex

    r210 r219  
    4242virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 
    4343\begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item  
    44 virtual mat \hyperlink{classmpdf_0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N) 
     44virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 
    4545\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item  
    46 \hypertarget{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{ 
    47 virtual double \hyperlink{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)} 
    48 \label{classmpdf_80b738ece5bd4f8c4edaee4b38906f91} 
     46\hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 
     47virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 
     48\label{classmpdf_2ef8a6374029d990a678782f6decebbe} 
    4949 
    5050\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item  
    51 \hypertarget{classmpdf_b7b2da35080cd15f1be365b805e7277e}{ 
    52 virtual vec \textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)} 
    53 \label{classmpdf_b7b2da35080cd15f1be365b805e7277e} 
     51\hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 
     52virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 
     53\label{classmpdf_95fcff214848f66f1b489459370573fa} 
    5454 
    55 \item  
     55\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item  
    5656\hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 
    5757\hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } 
     
    130130Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 
    131131 
    132 References mpdf::condition(), mpdf::ep, epdf::evalpdflog(), and epdf::sample(). 
     132References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 
    133133 
    134 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_0e37163660f93df2a4d723cedb1da89c}{ 
    135 \index{mgamma@{mgamma}!samplecond@{samplecond}} 
    136 \index{samplecond@{samplecond}!mgamma@{mgamma}} 
    137 \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
    138 \label{classmpdf_0e37163660f93df2a4d723cedb1da89c} 
     134Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 
     135\index{mgamma@{mgamma}!samplecond\_\-m@{samplecond\_\-m}} 
     136\index{samplecond\_\-m@{samplecond\_\-m}!mgamma@{mgamma}} 
     137\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
     138\label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 
    139139 
    140140 
     
    148148 
    149149 
    150 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 
    151  
    152 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 
     150References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 
    153151 
    154152The documentation for this class was generated from the following files:\begin{CompactItemize} 
  • doc/latex/classmgamma__fix.tex

    r210 r219  
    4747virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 
    4848\begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item  
    49 virtual mat \hyperlink{classmpdf_0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N) 
     49virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 
    5050\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item  
    51 \hypertarget{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{ 
    52 virtual double \hyperlink{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)} 
    53 \label{classmpdf_80b738ece5bd4f8c4edaee4b38906f91} 
     51\hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 
     52virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 
     53\label{classmpdf_2ef8a6374029d990a678782f6decebbe} 
    5454 
    5555\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item  
    56 \hypertarget{classmpdf_b7b2da35080cd15f1be365b805e7277e}{ 
    57 virtual vec \textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)} 
    58 \label{classmpdf_b7b2da35080cd15f1be365b805e7277e} 
     56\hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 
     57virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 
     58\label{classmpdf_95fcff214848f66f1b489459370573fa} 
    5959 
    60 \item  
     60\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item  
    6161\hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 
    6262\hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } 
     
    147147Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 
    148148 
    149 References mpdf::condition(), mpdf::ep, epdf::evalpdflog(), and epdf::sample(). 
     149References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 
    150150 
    151 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_0e37163660f93df2a4d723cedb1da89c}{ 
    152 \index{mgamma\_\-fix@{mgamma\_\-fix}!samplecond@{samplecond}} 
    153 \index{samplecond@{samplecond}!mgamma_fix@{mgamma\_\-fix}} 
    154 \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
    155 \label{classmpdf_0e37163660f93df2a4d723cedb1da89c} 
     151Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 
     152\index{mgamma\_\-fix@{mgamma\_\-fix}!samplecond\_\-m@{samplecond\_\-m}} 
     153\index{samplecond\_\-m@{samplecond\_\-m}!mgamma_fix@{mgamma\_\-fix}} 
     154\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
     155\label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 
    156156 
    157157 
     
    165165 
    166166 
    167 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 
    168  
    169 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 
     167References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 
    170168 
    171169The documentation for this class was generated from the following file:\begin{CompactItemize} 
  • doc/latex/classmlnorm.tex

    r210 r219  
    5757virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 
    5858\begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item  
    59 virtual mat \hyperlink{classmpdf_0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N) 
     59virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 
    6060\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item  
    61 \hypertarget{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{ 
    62 virtual double \hyperlink{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)} 
    63 \label{classmpdf_80b738ece5bd4f8c4edaee4b38906f91} 
     61\hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 
     62virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 
     63\label{classmpdf_2ef8a6374029d990a678782f6decebbe} 
    6464 
    6565\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item  
    66 \hypertarget{classmpdf_b7b2da35080cd15f1be365b805e7277e}{ 
    67 virtual vec \textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)} 
    68 \label{classmpdf_b7b2da35080cd15f1be365b805e7277e} 
     66\hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 
     67virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 
     68\label{classmpdf_95fcff214848f66f1b489459370573fa} 
    6969 
    70 \item  
     70\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item  
    7171\hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 
    7272\hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } 
     
    158158Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 
    159159 
    160 References mpdf::condition(), mpdf::ep, epdf::evalpdflog(), and epdf::sample(). 
     160References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 
    161161 
    162 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_0e37163660f93df2a4d723cedb1da89c}{ 
    163 \index{mlnorm@{mlnorm}!samplecond@{samplecond}} 
    164 \index{samplecond@{samplecond}!mlnorm@{mlnorm}} 
    165 \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
    166 \label{classmpdf_0e37163660f93df2a4d723cedb1da89c} 
     162Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 
     163\index{mlnorm@{mlnorm}!samplecond\_\-m@{samplecond\_\-m}} 
     164\index{samplecond\_\-m@{samplecond\_\-m}!mlnorm@{mlnorm}} 
     165\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
     166\label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 
    167167 
    168168 
     
    176176 
    177177 
    178 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 
    179  
    180 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 
     178References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 
    181179 
    182180The documentation for this class was generated from the following file:\begin{CompactItemize} 
  • doc/latex/classmlstudent.tex

    r210 r219  
    5959virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 
    6060\begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item  
    61 virtual mat \hyperlink{classmpdf_0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N) 
     61virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 
    6262\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item  
    63 \hypertarget{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{ 
    64 virtual double \hyperlink{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)} 
    65 \label{classmpdf_80b738ece5bd4f8c4edaee4b38906f91} 
     63\hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 
     64virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 
     65\label{classmpdf_2ef8a6374029d990a678782f6decebbe} 
    6666 
    6767\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item  
    68 \hypertarget{classmpdf_b7b2da35080cd15f1be365b805e7277e}{ 
    69 virtual vec \textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)} 
    70 \label{classmpdf_b7b2da35080cd15f1be365b805e7277e} 
     68\hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 
     69virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 
     70\label{classmpdf_95fcff214848f66f1b489459370573fa} 
    7171 
    72 \item  
     72\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item  
    7373\hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 
    7474\hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } 
     
    171171Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 
    172172 
    173 References mpdf::condition(), mpdf::ep, epdf::evalpdflog(), and epdf::sample(). 
     173References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 
    174174 
    175 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_0e37163660f93df2a4d723cedb1da89c}{ 
    176 \index{mlstudent@{mlstudent}!samplecond@{samplecond}} 
    177 \index{samplecond@{samplecond}!mlstudent@{mlstudent}} 
    178 \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
    179 \label{classmpdf_0e37163660f93df2a4d723cedb1da89c} 
     175Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 
     176\index{mlstudent@{mlstudent}!samplecond\_\-m@{samplecond\_\-m}} 
     177\index{samplecond\_\-m@{samplecond\_\-m}!mlstudent@{mlstudent}} 
     178\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
     179\label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 
    180180 
    181181 
     
    189189 
    190190 
    191 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 
    192  
    193 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 
     191References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 
    194192 
    195193The documentation for this class was generated from the following file:\begin{CompactItemize} 
  • doc/latex/classmmix.tex

    r210 r219  
    4242virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 
    4343\begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item  
    44 virtual mat \hyperlink{classmpdf_0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N) 
     44virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 
    4545\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item  
    46 \hypertarget{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{ 
    47 virtual double \hyperlink{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)} 
    48 \label{classmpdf_80b738ece5bd4f8c4edaee4b38906f91} 
     46\hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 
     47virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 
     48\label{classmpdf_2ef8a6374029d990a678782f6decebbe} 
    4949 
    5050\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item  
    51 \hypertarget{classmpdf_b7b2da35080cd15f1be365b805e7277e}{ 
    52 virtual vec \textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)} 
    53 \label{classmpdf_b7b2da35080cd15f1be365b805e7277e} 
     51\hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 
     52virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 
     53\label{classmpdf_95fcff214848f66f1b489459370573fa} 
    5454 
    55 \item  
     55\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item  
    5656\hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 
    5757\hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } 
     
    123123Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 
    124124 
    125 References mpdf::condition(), mpdf::ep, epdf::evalpdflog(), and epdf::sample(). 
     125References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 
    126126 
    127 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_0e37163660f93df2a4d723cedb1da89c}{ 
    128 \index{mmix@{mmix}!samplecond@{samplecond}} 
    129 \index{samplecond@{samplecond}!mmix@{mmix}} 
    130 \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
    131 \label{classmpdf_0e37163660f93df2a4d723cedb1da89c} 
     127Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 
     128\index{mmix@{mmix}!samplecond\_\-m@{samplecond\_\-m}} 
     129\index{samplecond\_\-m@{samplecond\_\-m}!mmix@{mmix}} 
     130\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
     131\label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 
    132132 
    133133 
     
    141141 
    142142 
    143 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 
    144  
    145 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 
     143References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 
    146144 
    147145The documentation for this class was generated from the following file:\begin{CompactItemize} 
  • doc/latex/classmpdf.tex

    r210 r219  
    2727virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 
    2828\begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item  
    29 virtual mat \hyperlink{classmpdf_0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N) 
     29virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 
    3030\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item  
    3131\hypertarget{classmpdf_0f95a0cc6ab40611f46804682446ed83}{ 
     
    3434 
    3535\begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classmpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item  
    36 \hypertarget{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{ 
    37 virtual double \hyperlink{classmpdf_80b738ece5bd4f8c4edaee4b38906f91}{evalcond} (const vec \&dt, const vec \&cond)} 
    38 \label{classmpdf_80b738ece5bd4f8c4edaee4b38906f91} 
     36\hypertarget{classmpdf_2ef8a6374029d990a678782f6decebbe}{ 
     37virtual double \hyperlink{classmpdf_2ef8a6374029d990a678782f6decebbe}{evallogcond} (const vec \&dt, const vec \&cond)} 
     38\label{classmpdf_2ef8a6374029d990a678782f6decebbe} 
    3939 
    4040\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item  
    41 \hypertarget{classmpdf_b7b2da35080cd15f1be365b805e7277e}{ 
    42 virtual vec \textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)} 
    43 \label{classmpdf_b7b2da35080cd15f1be365b805e7277e} 
     41\hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 
     42virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 
     43\label{classmpdf_95fcff214848f66f1b489459370573fa} 
    4444 
    45 \item  
     45\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item  
    4646\hypertarget{classmpdf_6788be9f3a888796499c5293a318fcfb}{ 
    4747virtual \hyperlink{classmpdf_6788be9f3a888796499c5293a318fcfb}{$\sim$mpdf} ()} 
     
    111111Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 
    112112 
    113 References condition(), ep, epdf::evalpdflog(), and epdf::sample(). 
     113References condition(), ep, epdf::evallog(), and epdf::sample(). 
    114114 
    115 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_0e37163660f93df2a4d723cedb1da89c}{ 
    116 \index{mpdf@{mpdf}!samplecond@{samplecond}} 
    117 \index{samplecond@{samplecond}!mpdf@{mpdf}} 
    118 \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual\mbox{]}}}} 
    119 \label{classmpdf_0e37163660f93df2a4d723cedb1da89c} 
     115Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 
     116\index{mpdf@{mpdf}!samplecond\_\-m@{samplecond\_\-m}} 
     117\index{samplecond\_\-m@{samplecond\_\-m}!mpdf@{mpdf}} 
     118\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual\mbox{]}}}} 
     119\label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 
    120120 
    121121 
     
    129129 
    130130 
    131 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 
    132  
    133 References condition(), RV::count(), ep, epdf::evalpdflog(), rv, and epdf::sample(). 
     131References condition(), RV::count(), ep, epdf::evallog(), rv, and epdf::sample(). 
    134132 
    135133The documentation for this class was generated from the following file:\begin{CompactItemize} 
  • doc/latex/classmprod.tex

    r210 r219  
    3030 
    3131\begin{CompactList}\small\item\em Constructor from list of mFacs,. \item\end{CompactList}\item  
    32 \hypertarget{classmprod_1e662c8d90a96bf19235a05373d6887a}{ 
    33 double \hyperlink{classmprod_1e662c8d90a96bf19235a05373d6887a}{evalcond} (const vec \&val, const vec \&cond)} 
    34 \label{classmprod_1e662c8d90a96bf19235a05373d6887a} 
     32\hypertarget{classmprod_f5e1075f133f203113d92084b4a47c28}{ 
     33double \hyperlink{classmprod_f5e1075f133f203113d92084b4a47c28}{evallogcond} (const vec \&val, const vec \&cond)} 
     34\label{classmprod_f5e1075f133f203113d92084b4a47c28} 
    3535 
    3636\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item  
    3737vec \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{samplecond} (const vec \&cond, double \&ll) 
    3838\begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item  
    39 mat \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{samplecond} (const vec \&cond, vec \&ll, int N) 
    40 \begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item  
     39\hypertarget{classmprod_e171c40e210539c2af01d6237785620b}{ 
     40mat \textbf{samplecond} (const vec \&cond, vec \&ll, int N)} 
     41\label{classmprod_e171c40e210539c2af01d6237785620b} 
     42 
     43\item  
    4144\hyperlink{classRV}{RV} \hyperlink{classcompositepdf_635d219fb3e32852400d6f98aa4bdc93}{getrv} (bool checkoverlap=false) 
    4245\begin{CompactList}\small\item\em find common rv, flag \item\end{CompactList}\item  
     
    4649 
    4750\begin{CompactList}\small\item\em common rvc of all mpdfs is written to rvc \item\end{CompactList}\item  
     51virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 
     52\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item  
    4853\hypertarget{classmpdf_0f95a0cc6ab40611f46804682446ed83}{ 
    4954virtual void \hyperlink{classmpdf_0f95a0cc6ab40611f46804682446ed83}{condition} (const vec \&cond)} 
     
    5156 
    5257\begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classmpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item  
    53 \hypertarget{classmpdf_b7b2da35080cd15f1be365b805e7277e}{ 
    54 virtual vec \textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)} 
    55 \label{classmpdf_b7b2da35080cd15f1be365b805e7277e} 
     58\hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 
     59virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 
     60\label{classmpdf_95fcff214848f66f1b489459370573fa} 
    5661 
    57 \item  
     62\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item  
    5863\hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 
    5964\hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } 
     
    135140Reimplemented from \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{mpdf}. 
    136141 
    137 References RV::count(), dls, epdfs, compositepdf::mpdfs, compositepdf::n, and mpdf::rv. 
    138  
    139 Referenced by samplecond().\hypertarget{classmprod_e171c40e210539c2af01d6237785620b}{ 
    140 \index{mprod@{mprod}!samplecond@{samplecond}} 
    141 \index{samplecond@{samplecond}!mprod@{mprod}} 
    142 \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}mat mprod::samplecond (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual\mbox{]}}}} 
    143 \label{classmprod_e171c40e210539c2af01d6237785620b} 
    144  
    145  
    146 Returns.  
    147  
    148 \begin{Desc} 
    149 \item[Parameters:] 
    150 \begin{description} 
    151 \item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} 
    152 \end{Desc} 
    153  
    154  
    155 Reimplemented from \hyperlink{classmpdf_0e37163660f93df2a4d723cedb1da89c}{mpdf}. 
    156  
    157 References RV::count(), mpdf::rv, and samplecond().\hypertarget{classcompositepdf_635d219fb3e32852400d6f98aa4bdc93}{ 
     142References RV::count(), dls, epdfs, compositepdf::mpdfs, compositepdf::n, and mpdf::rv.\hypertarget{classcompositepdf_635d219fb3e32852400d6f98aa4bdc93}{ 
    158143\index{mprod@{mprod}!getrv@{getrv}} 
    159144\index{getrv@{getrv}!mprod@{mprod}} 
     
    171156 
    172157 
    173 References RV::add(), compositepdf::mpdfs, and compositepdf::n. 
     158References RV::add(), compositepdf::mpdfs, and compositepdf::n.\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 
     159\index{mprod@{mprod}!samplecond\_\-m@{samplecond\_\-m}} 
     160\index{samplecond\_\-m@{samplecond\_\-m}!mprod@{mprod}} 
     161\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
     162\label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 
     163 
     164 
     165Returns.  
     166 
     167\begin{Desc} 
     168\item[Parameters:] 
     169\begin{description} 
     170\item[{\em N}]samples from the density conditioned on {\tt cond}, $x \sim epdf(rv|cond)$. \item[{\em cond}]is numeric value of {\tt rv} \item[{\em ll}]is a return value of log-likelihood of the sample. \end{description} 
     171\end{Desc} 
     172 
     173 
     174References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 
    174175 
    175176The documentation for this class was generated from the following file:\begin{CompactItemize} 
  • doc/latex/classmratio.tex

    r210 r219  
    2727\hyperlink{classmratio_c2452f4fc3046cfe8f2453deb343b3ac}{mratio} (const \hyperlink{classepdf}{epdf} $\ast$nom0, const \hyperlink{classRV}{RV} \&\hyperlink{classmpdf_f6687c07ff07d47812dd565368ca59eb}{rv}, bool copy=false) 
    2828\item  
    29 \hypertarget{classmratio_6d440ca39571004425c2bffbc227d3dc}{ 
    30 double \hyperlink{classmratio_6d440ca39571004425c2bffbc227d3dc}{evalcond} (const vec \&val, const vec \&cond)} 
    31 \label{classmratio_6d440ca39571004425c2bffbc227d3dc} 
     29\hypertarget{classmratio_9fb0df09a2e975e8b9f7ce41ecd65a09}{ 
     30double \hyperlink{classmratio_9fb0df09a2e975e8b9f7ce41ecd65a09}{evallogcond} (const vec \&val, const vec \&cond)} 
     31\label{classmratio_9fb0df09a2e975e8b9f7ce41ecd65a09} 
    3232 
    3333\begin{CompactList}\small\item\em Shortcut for conditioning and evaluation of the internal \hyperlink{classepdf}{epdf}. In some cases, this operation can be implemented efficiently. \item\end{CompactList}\item  
     
    4444virtual vec \hyperlink{classmpdf_3f172b79ec4a5ebc87898a5381141f1b}{samplecond} (const vec \&cond, double \&ll) 
    4545\begin{CompactList}\small\item\em Returns the required moment of the \hyperlink{classepdf}{epdf}. \item\end{CompactList}\item  
    46 virtual mat \hyperlink{classmpdf_0e37163660f93df2a4d723cedb1da89c}{samplecond} (const vec \&cond, vec \&ll, int N) 
     46virtual mat \hyperlink{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{samplecond\_\-m} (const vec \&cond, vec \&ll, int N) 
    4747\begin{CompactList}\small\item\em Returns. \item\end{CompactList}\item  
    4848\hypertarget{classmpdf_0f95a0cc6ab40611f46804682446ed83}{ 
     
    5151 
    5252\begin{CompactList}\small\item\em Update {\tt ep} so that it represents this \hyperlink{classmpdf}{mpdf} conditioned on {\tt rvc} = cond. \item\end{CompactList}\item  
    53 \hypertarget{classmpdf_b7b2da35080cd15f1be365b805e7277e}{ 
    54 virtual vec \textbf{evalcond\_\-m} (const mat \&Dt, const vec \&cond)} 
    55 \label{classmpdf_b7b2da35080cd15f1be365b805e7277e} 
     53\hypertarget{classmpdf_95fcff214848f66f1b489459370573fa}{ 
     54virtual vec \hyperlink{classmpdf_95fcff214848f66f1b489459370573fa}{evallogcond\_\-m} (const mat \&Dt, const vec \&cond)} 
     55\label{classmpdf_95fcff214848f66f1b489459370573fa} 
    5656 
    57 \item  
     57\begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item  
    5858\hypertarget{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{ 
    5959\hyperlink{classRV}{RV} \hyperlink{classmpdf_15ef062183b1ccdf794732d5fa0b77cd}{\_\-rvc} () const } 
     
    116116In particular this type of arise by conditioning of a mixture model. 
    117117 
    118 At present the only supported operation is \hyperlink{classmratio_6d440ca39571004425c2bffbc227d3dc}{evalcond()}.  
     118At present the only supported operation is \hyperlink{classmratio_9fb0df09a2e975e8b9f7ce41ecd65a09}{evallogcond()}.  
    119119 
    120120\subsection{Constructor \& Destructor Documentation} 
     
    149149Reimplemented in \hyperlink{classmprod_a48887eb8738a9e5550bfc38eb8e9d68}{mprod}. 
    150150 
    151 References mpdf::condition(), mpdf::ep, epdf::evalpdflog(), and epdf::sample(). 
     151References mpdf::condition(), mpdf::ep, epdf::evallog(), and epdf::sample(). 
    152152 
    153 Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_0e37163660f93df2a4d723cedb1da89c}{ 
    154 \index{mratio@{mratio}!samplecond@{samplecond}} 
    155 \index{samplecond@{samplecond}!mratio@{mratio}} 
    156 \subsubsection[samplecond]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
    157 \label{classmpdf_0e37163660f93df2a4d723cedb1da89c} 
     153Referenced by MPF$<$ BM\_\-T $>$::bayes(), and PF::bayes().\hypertarget{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5}{ 
     154\index{mratio@{mratio}!samplecond\_\-m@{samplecond\_\-m}} 
     155\index{samplecond\_\-m@{samplecond\_\-m}!mratio@{mratio}} 
     156\subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat mpdf::samplecond\_\-m (const vec \& {\em cond}, \/  vec \& {\em ll}, \/  int {\em N})\hspace{0.3cm}{\tt  \mbox{[}inline, virtual, inherited\mbox{]}}}} 
     157\label{classmpdf_b1dae6171ee39a6a05976c7b1007a3c5} 
    158158 
    159159 
     
    167167 
    168168 
    169 Reimplemented in \hyperlink{classmprod_e171c40e210539c2af01d6237785620b}{mprod}. 
    170  
    171 References mpdf::condition(), RV::count(), mpdf::ep, epdf::evalpdflog(), mpdf::rv, and epdf::sample(). 
     169References mpdf::condition(), RV::count(), mpdf::ep, epdf::evallog(), mpdf::rv, and epdf::sample(). 
    172170 
    173171The documentation for this class was generated from the following file:\begin{CompactItemize} 
  • doc/latex/doxygen.sty

    r210 r219  
    1111\rhead[\fancyplain{}{\bfseries\leftmark}] 
    1212        {\fancyplain{}{\bfseries\thepage}} 
    13 \rfoot[\fancyplain{}{\bfseries\scriptsize Generated on Wed Nov 12 20:46:05 2008 for mixpp by Doxygen }]{} 
    14 \lfoot[]{\fancyplain{}{\bfseries\scriptsize Generated on Wed Nov 12 20:46:05 2008 for mixpp by Doxygen }} 
     13\rfoot[\fancyplain{}{\bfseries\scriptsize Generated on Thu Dec 4 14:42:12 2008 for mixpp by Doxygen }]{} 
     14\lfoot[]{\fancyplain{}{\bfseries\scriptsize Generated on Thu Dec 4 14:42:12 2008 for mixpp by Doxygen }} 
    1515\cfoot{} 
    1616\newenvironment{Code} 
  • doc/latex/group__core.tex

    r210 r219  
    1 \hypertarget{libBM_8h}{ 
    2 \section{work/git/mixpp/bdm/stat/libBM.h File Reference} 
    3 \label{libBM_8h}\index{work/git/mixpp/bdm/stat/libBM.h@{work/git/mixpp/bdm/stat/libBM.h}} 
     1\hypertarget{group__core}{ 
     2\section{Core BDM classes} 
     3\label{group__core}\index{Core BDM classes@{Core BDM classes}} 
    44} 
    5 Bayesian Models (bm) that use Bayes rule to learn from observations.  
    6  
    7 {\tt \#include $<$itpp/itbase.h$>$}\par 
    8 {\tt \#include \char`\"{}../itpp\_\-ext.h\char`\"{}}\par 
    9  
    10  
    11 Include dependency graph for libBM.h:\nopagebreak 
    12 \begin{figure}[H] 
    13 \begin{center} 
    14 \leavevmode 
    15 \includegraphics[width=106pt]{libBM_8h__incl} 
    16 \end{center} 
    17 \end{figure} 
    18  
    19  
    20 This graph shows which files directly or indirectly include this file:\nopagebreak 
    21 \begin{figure}[H] 
    22 \begin{center} 
    23 \leavevmode 
    24 \includegraphics[width=420pt]{libBM_8h__dep__incl} 
    25 \end{center} 
    26 \end{figure} 
    275\subsection*{Classes} 
    286\begin{CompactItemize} 
     
    5735\begin{CompactItemize} 
    5836\item  
    59 \hypertarget{libBM_8h_33c114e83980d883c5b211c47d5322a4}{ 
    60 \hyperlink{classRV}{RV} \hyperlink{libBM_8h_33c114e83980d883c5b211c47d5322a4}{concat} (const \hyperlink{classRV}{RV} \&rv1, const \hyperlink{classRV}{RV} \&rv2)} 
    61 \label{libBM_8h_33c114e83980d883c5b211c47d5322a4} 
     37\hypertarget{group__core_g33c114e83980d883c5b211c47d5322a4}{ 
     38\hyperlink{classRV}{RV} \hyperlink{group__core_g33c114e83980d883c5b211c47d5322a4}{concat} (const \hyperlink{classRV}{RV} \&rv1, const \hyperlink{classRV}{RV} \&rv2)} 
     39\label{group__core_g33c114e83980d883c5b211c47d5322a4} 
    6240 
    6341\begin{CompactList}\small\item\em Concat two random variables. \item\end{CompactList}\end{CompactItemize} 
     42\subsection*{Variables} 
     43\begin{CompactItemize} 
     44\item  
     45\hypertarget{group__core_g9ea0562597470f6058ec209ee72db5fa}{ 
     46\hyperlink{classRV}{RV} \hyperlink{group__core_g9ea0562597470f6058ec209ee72db5fa}{RV0}} 
     47\label{group__core_g9ea0562597470f6058ec209ee72db5fa} 
    6448 
    65  
    66 \subsection{Detailed Description} 
    67 Bayesian Models (bm) that use Bayes rule to learn from observations.  
    68  
    69 \begin{Desc} 
    70 \item[Author:]Vaclav Smidl.\end{Desc} 
    71 ----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertainty 
    72  
    73 Using IT++ for numerical operations -----------------------------------  
     49\begin{CompactList}\small\item\em Default empty \hyperlink{classRV}{RV} that can be used as default argument. \item\end{CompactList}\end{CompactItemize} 
  • doc/latex/libBM_8h.tex

    r210 r219  
    5757\begin{CompactItemize} 
    5858\item  
    59 \hypertarget{libBM_8h_33c114e83980d883c5b211c47d5322a4}{ 
    60 \hyperlink{classRV}{RV} \hyperlink{libBM_8h_33c114e83980d883c5b211c47d5322a4}{concat} (const \hyperlink{classRV}{RV} \&rv1, const \hyperlink{classRV}{RV} \&rv2)} 
    61 \label{libBM_8h_33c114e83980d883c5b211c47d5322a4} 
     59\hypertarget{group__core_g33c114e83980d883c5b211c47d5322a4}{ 
     60\hyperlink{classRV}{RV} \hyperlink{group__core_g33c114e83980d883c5b211c47d5322a4}{concat} (const \hyperlink{classRV}{RV} \&rv1, const \hyperlink{classRV}{RV} \&rv2)} 
     61\label{group__core_g33c114e83980d883c5b211c47d5322a4} 
    6262 
    6363\begin{CompactList}\small\item\em Concat two random variables. \item\end{CompactList}\end{CompactItemize} 
     64\subsection*{Variables} 
     65\begin{CompactItemize} 
     66\item  
     67\hypertarget{group__core_g9ea0562597470f6058ec209ee72db5fa}{ 
     68\hyperlink{classRV}{RV} \hyperlink{group__core_g9ea0562597470f6058ec209ee72db5fa}{RV0}} 
     69\label{group__core_g9ea0562597470f6058ec209ee72db5fa} 
     70 
     71\begin{CompactList}\small\item\em Default empty \hyperlink{classRV}{RV} that can be used as default argument. \item\end{CompactList}\end{CompactItemize} 
    6472 
    6573 
  • doc/latex/libDC_8h.tex

    r181 r219  
    3737\begin{CompactItemize} 
    3838\item  
    39 \hypertarget{libDC_8h_4ed56e73b49db8e7f4a63fa926a8dca4}{ 
    40 void \hyperlink{libDC_8h_4ed56e73b49db8e7f4a63fa926a8dca4}{dydr} (double $\ast$r, double $\ast$f, double $\ast$Dr, double $\ast$Df, double $\ast$R, int jl, int jh, double $\ast$kr, int m, int mx)} 
    41 \label{libDC_8h_4ed56e73b49db8e7f4a63fa926a8dca4} 
     39\hypertarget{group__math_g4ed56e73b49db8e7f4a63fa926a8dca4}{ 
     40void \hyperlink{group__math_g4ed56e73b49db8e7f4a63fa926a8dca4}{dydr} (double $\ast$r, double $\ast$f, double $\ast$Dr, double $\ast$Df, double $\ast$R, int jl, int jh, double $\ast$kr, int m, int mx)} 
     41\label{group__math_g4ed56e73b49db8e7f4a63fa926a8dca4} 
    4242 
    4343\begin{CompactList}\small\item\em Auxiliary function dydr; dyadic reduction. \item\end{CompactList}\item  
    44 \hypertarget{libDC_8h_6715d039e6d5d97005cf9e2522dfa474}{ 
    45 mat \hyperlink{libDC_8h_6715d039e6d5d97005cf9e2522dfa474}{ltuinv} (const mat \&L)} 
    46 \label{libDC_8h_6715d039e6d5d97005cf9e2522dfa474} 
     44\hypertarget{group__math_g6715d039e6d5d97005cf9e2522dfa474}{ 
     45mat \hyperlink{group__math_g6715d039e6d5d97005cf9e2522dfa474}{ltuinv} (const mat \&L)} 
     46\label{group__math_g6715d039e6d5d97005cf9e2522dfa474} 
    4747 
    4848\begin{CompactList}\small\item\em Auxiliary function ltuinv; inversion of a triangular matrix;. \item\end{CompactList}\end{CompactItemize} 
  • doc/latex/refman.tex

    r210 r219  
    3939{\large Generated by Doxygen 1.5.6}\\ 
    4040\vspace*{0.5cm} 
    41 {\small Wed Nov 12 20:46:05 2008}\\ 
     41{\small Thu Dec 4 14:42:13 2008}\\ 
    4242\end{center} 
    4343\end{titlepage} 
     
    5353\hypertarget{codingrules}{} 
    5454\include{codingrules} 
    55 \chapter{Introduction to Bayesian Decision Making Toolbox BDM} 
    56 \label{intro} 
    57 \hypertarget{intro}{} 
    58 \include{intro} 
     55\chapter{Module Index} 
     56\input{modules} 
    5957\chapter{Class Index} 
    6058\input{hierarchy} 
     
    6361\chapter{File Index} 
    6462\input{files} 
     63\chapter{Module Documentation} 
     64\input{group__math} 
     65\include{group__core} 
    6566\chapter{Class Documentation} 
    6667\input{classARX}