17 | | Collaboration diagram for bdm::migamma\_\-fix:\nopagebreak |
18 | | \begin{figure}[H] |
19 | | \begin{center} |
20 | | \leavevmode |
21 | | \includegraphics[height=400pt]{classbdm_1_1migamma__fix__coll__graph} |
22 | | \end{center} |
23 | | \end{figure} |
24 | | \subsection*{Public Member Functions} |
25 | | \begin{CompactItemize} |
26 | | \item |
27 | | \hypertarget{classbdm_1_1migamma__fix_3c6aacebccbe6d73f8d442e82d3cb53a}{ |
28 | | \hyperlink{classbdm_1_1migamma__fix_3c6aacebccbe6d73f8d442e82d3cb53a}{migamma\_\-fix} (const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{rv}, const \hyperlink{classbdm_1_1RV}{RV} \&\hyperlink{classbdm_1_1mpdf_5a5f08950daa08b85b01ddf4e1c36288}{rvc})} |
29 | | \label{classbdm_1_1migamma__fix_3c6aacebccbe6d73f8d442e82d3cb53a} |
| 14 | |
| 15 | |
| 16 | \subsection{Detailed Description} |
| 17 | Inverse-Gamma random walk around a fixed point. |
| 18 | |
| 19 | Mean value, $\mu$, of this density is given by a geometric combination of {\tt rvc} and given fixed point, $p$. $l$ is the coefficient of the geometric combimation \[ \mu = \mu_{t-1} ^{l} p^{1-l}\] |
| 20 | |
| 21 | ==== Check == vv = Standard deviation of the random walk is proportional to one $k$-th the mean. This is achieved by setting $\alpha=k$ and $\beta=k/\mu$. |
| 22 | |
| 23 | The standard deviation of the walk is then: $\mu/\sqrt(k)$. \subsection*{Public Member Functions} |
| 24 | \begin{CompactItemize} |
| 25 | \item |
| 26 | \hypertarget{classbdm_1_1migamma__fix_42a61f9468b2c435386f47ae8a5ddf7e}{ |
| 27 | \hyperlink{classbdm_1_1migamma__fix_42a61f9468b2c435386f47ae8a5ddf7e}{migamma\_\-fix} ()} |
| 28 | \label{classbdm_1_1migamma__fix_42a61f9468b2c435386f47ae8a5ddf7e} |
42 | | \hypertarget{classbdm_1_1migamma_1d7023b1565551d0260eb1ba832bebaf}{ |
43 | | void \hyperlink{classbdm_1_1migamma_1d7023b1565551d0260eb1ba832bebaf}{set\_\-parameters} (double k0)} |
44 | | \label{classbdm_1_1migamma_1d7023b1565551d0260eb1ba832bebaf} |
45 | | |
46 | | \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\item |
| 41 | \hypertarget{classbdm_1_1migamma_8b10ab922e2a7bae2fb6bb3efc7b6151}{ |
| 42 | void \hyperlink{classbdm_1_1migamma_8b10ab922e2a7bae2fb6bb3efc7b6151}{set\_\-parameters} (int len, double k0)} |
| 43 | \label{classbdm_1_1migamma_8b10ab922e2a7bae2fb6bb3efc7b6151} |
| 44 | |
| 45 | \begin{CompactList}\small\item\em Set value of {\tt k}. \item\end{CompactList}\end{CompactItemize} |
| 46 | \begin{Indent}{\bf Matematical operations}\par |
| 47 | \begin{CompactItemize} |
| 48 | \item |
60 | | \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\item |
61 | | \hypertarget{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{ |
62 | | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8}{\_\-rvc} () const } |
63 | | \label{classbdm_1_1mpdf_b3aba7311038bf990d706a64cab60cf8} |
64 | | |
65 | | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
66 | | \hypertarget{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{ |
67 | | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151}{\_\-rv} () const } |
68 | | \label{classbdm_1_1mpdf_222d5280e309c5a053ba73841e98c151} |
69 | | |
70 | | \begin{CompactList}\small\item\em access function \item\end{CompactList}\item |
| 62 | \begin{CompactList}\small\item\em Matrix version of evallogcond. \item\end{CompactList}\end{CompactItemize} |
| 63 | \end{Indent} |
| 64 | \begin{Indent}{\bf Access to attributes}\par |
| 65 | \begin{CompactItemize} |
| 66 | \item |
| 67 | \hypertarget{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10}{ |
| 68 | \hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rv} ()} |
| 69 | \label{classbdm_1_1mpdf_5571482d150fbcb72cc36f6694ce1a10} |
| 70 | |
| 71 | \item |
| 72 | \hypertarget{classbdm_1_1mpdf_26001264236846897bd11e4baad47245}{ |
| 73 | \hyperlink{classbdm_1_1RV}{RV} \textbf{\_\-rvc} ()} |
| 74 | \label{classbdm_1_1mpdf_26001264236846897bd11e4baad47245} |
| 75 | |
| 76 | \item |
| 77 | \hypertarget{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed}{ |
| 78 | int \textbf{dimension} ()} |
| 79 | \label{classbdm_1_1mpdf_1c2bae3e1e90874e72941863974ec0ed} |
| 80 | |
| 81 | \item |
| 82 | \hypertarget{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8}{ |
| 83 | int \textbf{dimensionc} ()} |
| 84 | \label{classbdm_1_1mpdf_35e135910aed187b7290742f50e61bc8} |
| 85 | |
| 86 | \item |
80 | | \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} |
| 96 | \end{CompactItemize} |
| 97 | \end{Indent} |
| 98 | \begin{Indent}{\bf Connection to other objects}\par |
| 99 | \begin{CompactItemize} |
| 100 | \item |
| 101 | \hypertarget{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401}{ |
| 102 | void \textbf{set\_\-rvc} (const \hyperlink{classbdm_1_1RV}{RV} \&rvc0)} |
| 103 | \label{classbdm_1_1mpdf_7631a5570e4ade1420065e8df78f4401} |
| 104 | |
| 105 | \item |
| 106 | \hypertarget{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75}{ |
| 107 | void \textbf{set\_\-rv} (const \hyperlink{classbdm_1_1RV}{RV} \&rv0)} |
| 108 | \label{classbdm_1_1mpdf_18ac26bc2f96ae01ef4eb06178abbd75} |
| 109 | |
| 110 | \item |
| 111 | \hypertarget{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045}{ |
| 112 | bool \textbf{isnamed} ()} |
| 113 | \label{classbdm_1_1mpdf_f8e3798150b42fd1f3e16ddbbe0e7045} |
| 114 | |
| 115 | \end{CompactItemize} |
| 116 | \end{Indent} |
104 | | \hypertarget{classbdm_1_1migamma_4825c0ef11a148bad9b802a496f56f96}{ |
105 | | vec $\ast$ \hyperlink{classbdm_1_1migamma_4825c0ef11a148bad9b802a496f56f96}{\_\-beta}} |
106 | | \label{classbdm_1_1migamma_4825c0ef11a148bad9b802a496f56f96} |
| 140 | \hypertarget{classbdm_1_1migamma_c9847093da59a9ba0ebb68d2c592f5dc}{ |
| 141 | vec \& \hyperlink{classbdm_1_1migamma_c9847093da59a9ba0ebb68d2c592f5dc}{\_\-alpha}} |
| 142 | \label{classbdm_1_1migamma_c9847093da59a9ba0ebb68d2c592f5dc} |
| 143 | |
| 144 | \begin{CompactList}\small\item\em cache of epdf.alpha \item\end{CompactList}\item |
| 145 | \hypertarget{classbdm_1_1migamma_0d854c047001b5465cf1ba21f52904b5}{ |
| 146 | vec \& \hyperlink{classbdm_1_1migamma_0d854c047001b5465cf1ba21f52904b5}{\_\-beta}} |
| 147 | \label{classbdm_1_1migamma_0d854c047001b5465cf1ba21f52904b5} |
109 | | \hypertarget{classbdm_1_1migamma_b6c265b132ff79963bf51dff4c3ef252}{ |
110 | | vec $\ast$ \hyperlink{classbdm_1_1migamma_b6c265b132ff79963bf51dff4c3ef252}{\_\-alpha}} |
111 | | \label{classbdm_1_1migamma_b6c265b132ff79963bf51dff4c3ef252} |
112 | | |
113 | | \begin{CompactList}\small\item\em chaceh of epdf.alpha \item\end{CompactList}\item |
114 | | \hypertarget{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{ |
115 | | \hyperlink{classbdm_1_1RV}{RV} \hyperlink{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51}{rv}} |
116 | | \label{classbdm_1_1mpdf_9bcfb45435d30983f436d41c298cbb51} |
117 | | |
118 | | \begin{CompactList}\small\item\em modeled random variable \item\end{CompactList}\item |
| 150 | \hypertarget{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{ |
| 151 | int \hyperlink{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6}{dimc}} |
| 152 | \label{classbdm_1_1mpdf_7c1900976ff13dbc09c9729b3bbff9e6} |
| 153 | |
| 154 | \begin{CompactList}\small\item\em dimension of the condition \item\end{CompactList}\item |
162 | | \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ vec \& {\em ll}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} |
163 | | \label{classbdm_1_1mpdf_ee26963a637b2ea1fb1933652981e652} |
| 189 | \subsubsection[samplecond\_\-m]{\setlength{\rightskip}{0pt plus 5cm}virtual mat bdm::mpdf::samplecond\_\-m (const vec \& {\em cond}, \/ int {\em N})\hspace{0.3cm}{\tt \mbox{[}inline, virtual, inherited\mbox{]}}}} |
| 190 | \label{classbdm_1_1mpdf_afe4185b26baeb03688202e254d3b005} |