Show
Ignore:
Timestamp:
02/16/09 10:03:13 (16 years ago)
Author:
smidl
Message:

Next major revision

Files:
1 modified

Legend:

Unmodified
Added
Removed
  • doc/html/formula.repository

    r270 r271  
    117117\form#116:$ \beta=\mu(\alpha-1)$ 
    118118\form#117:$ \mu/\sqrt(k)$ 
     119\form#118:$ y_t $ 
     120\form#119:$ dt = [y_t psi_t] $ 
     121\form#120:$ [d_1, d_2, \ldots d_t] $ 
     122\form#121:\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray} 
     123\form#122:$ x_t $ 
     124\form#123:$ A, B, C, D$ 
     125\form#124:$v_t, w_t$ 
     126\form#125:$Q, R\$, respectively. Both prior and posterior densities on the state are Gaussian, i.e. of the class enorm. There is a range of classes that implements this functionality, namely: - KalmanFull which implements the estimation algorithm on full matrices, - KalmanCh which implements the estimation algorithm using choleski decompositions and QR algorithm. \section ekf Extended Kalman Filtering Extended Kalman filtering arise by linearization of non-linear state space model: \f{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \f} where $ 
     127\form#126:$Q, R$ 
     128\form#127:\begin{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \end{eqnarray} 
     129\form#128:$ g(), h() $ 
     130\form#129:\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \] 
     131\form#130:\[ \nu_t = \sum_{i=0}^{n} 1 \] 
     132\form#131:$ \theta_t , r_t $ 
     133\form#132:\[ V_t = V_{t-1} + \phi \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \] 
     134\form#133:\[ \nu_t = \nu_{t-1} + \phi + (1-\phi) \nu_0 \] 
     135\form#134:$ \phi $ 
     136\form#135:$ \phi \in [0,1]$ 
     137\form#136:\[ \mathrm{win_length} = \frac{1}{1-\phi}\] 
     138\form#137:$ \phi=0.9 $ 
     139\form#138:$ V_0 , \nu_0 $ 
     140\form#139:$ V_t , \nu_t $ 
     141\form#140:$ \phi<1 $