95 | | <a name="l00133"></a><a class="code" href="classbdm_1_1KalmanCh.html">00133</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1KalmanCh.html" title="Kalman filter in square root form.">KalmanCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><chmat>{ |
96 | | <a name="l00134"></a>00134 <span class="keyword">protected</span>: |
97 | | <a name="l00136"></a><a class="code" href="classbdm_1_1KalmanCh.html#48611c8582706cfa62e832be0972e75d">00136</a> mat <a class="code" href="classbdm_1_1KalmanCh.html#48611c8582706cfa62e832be0972e75d" title="pre array (triangular matrix)">preA</a>; |
98 | | <a name="l00138"></a><a class="code" href="classbdm_1_1KalmanCh.html#bcbd68f51d4b57246e7784ca5900171f">00138</a> mat <a class="code" href="classbdm_1_1KalmanCh.html#bcbd68f51d4b57246e7784ca5900171f" title="post array (triangular matrix)">postA</a>; |
99 | | <a name="l00139"></a>00139 |
100 | | <a name="l00140"></a>00140 <span class="keyword">public</span>: |
101 | | <a name="l00142"></a><a class="code" href="classbdm_1_1KalmanCh.html#830486554e1a2c7652541dbc9dcd3fb3">00142</a> <a class="code" href="classbdm_1_1KalmanCh.html#830486554e1a2c7652541dbc9dcd3fb3" title="Default constructor.">KalmanCh</a> ():<a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><<a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>>(),<a class="code" href="classbdm_1_1KalmanCh.html#48611c8582706cfa62e832be0972e75d" title="pre array (triangular matrix)">preA</a>(),<a class="code" href="classbdm_1_1KalmanCh.html#bcbd68f51d4b57246e7784ca5900171f" title="post array (triangular matrix)">postA</a>(){}; |
102 | | <a name="l00144"></a>00144 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1KalmanCh.html#ab3a87ba1831e53f193a9dfbaf56a879" title="Set parameters with check of relevance.">set_parameters</a> ( <span class="keyword">const</span> mat &A0,<span class="keyword">const</span> mat &B0,<span class="keyword">const</span> mat &C0,<span class="keyword">const</span> mat &D0,<span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> &R0,<span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> &Q0 ); |
103 | | <a name="l00145"></a><a class="code" href="classbdm_1_1KalmanCh.html#f559387dd38bd6002be490cc62987290">00145</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1KalmanCh.html#f559387dd38bd6002be490cc62987290" title="Set estimate values, used e.g. in initialization.">set_est</a> ( <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> &P0 ) { |
104 | | <a name="l00146"></a>00146 <a class="code" href="classbdm_1_1Kalman.html#383f329ff18bbe219254c8b3b916f40d" title="posterior density on $x_t$">est</a>.<a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> ( mu0,P0 ); |
105 | | <a name="l00147"></a>00147 }; |
106 | | <a name="l00148"></a>00148 |
107 | | <a name="l00149"></a>00149 |
108 | | <a name="l00163"></a>00163 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1KalmanCh.html#b41fe5540548100b08e1684c3be767b6" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
109 | | <a name="l00164"></a>00164 }; |
110 | | <a name="l00165"></a>00165 |
111 | | <a name="l00171"></a><a class="code" href="classbdm_1_1EKFfull.html">00171</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1EKFfull.html" title="Extended Kalman Filter in full matrices.">EKFfull</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1KalmanFull.html" title="Basic Kalman filter with full matrices (education purpose only)! Will be deleted...">KalmanFull</a>, <span class="keyword">public</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> { |
112 | | <a name="l00172"></a>00172 |
113 | | <a name="l00174"></a>00174 <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* pfxu; |
114 | | <a name="l00176"></a>00176 <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* phxu; |
115 | | <a name="l00177"></a>00177 |
116 | | <a name="l00178"></a>00178 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<fsqmat></a> E; |
117 | | <a name="l00179"></a>00179 <span class="keyword">public</span>: |
118 | | <a name="l00181"></a>00181 <a class="code" href="classbdm_1_1EKFfull.html#6939c345389abb8b2481457b4cfe1165" title="Default constructor.">EKFfull</a> ( ); |
119 | | <a name="l00183"></a>00183 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1EKFfull.html#78748da361ba61fef162b0d8956d1743" title="Set nonlinear functions for mean values and covariance matrices.">set_parameters</a> ( <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* pfxu, <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* phxu, <span class="keyword">const</span> mat Q0, <span class="keyword">const</span> mat R0 ); |
120 | | <a name="l00185"></a>00185 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1EKFfull.html#f149ae8e9ce14d9931a7bb2850736699" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
121 | | <a name="l00187"></a><a class="code" href="classbdm_1_1EKFfull.html#7562b3d3c17241dab3baf70258742eb2">00187</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1EKFfull.html#7562b3d3c17241dab3baf70258742eb2" title="set estimates">set_est</a> (vec mu0, mat P0){<a class="code" href="classbdm_1_1KalmanFull.html#2defb75e58892615c5f95fd844f3a666" title="Mean value of the posterior density.">mu</a>=mu0;<a class="code" href="classbdm_1_1KalmanFull.html#acacd228e100c3e937de575ad2d7cd9c" title="Variance of the posterior density.">P</a>=P0;}; |
122 | | <a name="l00189"></a><a class="code" href="classbdm_1_1EKFfull.html#6ccc4fa7da522d1c2257156f72291a8a">00189</a> <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& <a class="code" href="classbdm_1_1EKFfull.html#6ccc4fa7da522d1c2257156f72291a8a" title="dummy!">_epdf</a>()<span class="keyword">const</span>{<span class="keywordflow">return</span> E;}; |
123 | | <a name="l00190"></a>00190 <span class="keyword">const</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<fsqmat></a>* _e()<span class="keyword">const</span>{<span class="keywordflow">return</span> &E;}; |
124 | | <a name="l00191"></a>00191 <span class="keyword">const</span> mat _R(){<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1KalmanFull.html#acacd228e100c3e937de575ad2d7cd9c" title="Variance of the posterior density.">P</a>;} |
125 | | <a name="l00192"></a>00192 }; |
126 | | <a name="l00193"></a>00193 |
127 | | <a name="l00199"></a>00199 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
128 | | <a name="l00200"></a><a class="code" href="classbdm_1_1EKF.html">00200</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1EKF.html" title="Extended Kalman Filter.">EKF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><fsqmat> { |
129 | | <a name="l00202"></a>00202 <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* pfxu; |
130 | | <a name="l00204"></a>00204 <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* phxu; |
131 | | <a name="l00205"></a>00205 <span class="keyword">public</span>: |
132 | | <a name="l00207"></a>00207 <a class="code" href="classbdm_1_1EKF.html#d087a8bb408d26ac4f5c542746b81059" title="Default constructor.">EKF</a> ( <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvx, <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classbdm_1_1Kalman.html#3fe475a1e920b20b63bb342c0e1571f7" title="Indetifier of output rv.">rvy</a>, <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classbdm_1_1Kalman.html#149e27424fd1a7cc1c998ea088618a94" title="Indetifier of exogeneous rv.">rvu</a> ); |
133 | | <a name="l00209"></a>00209 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1EKF.html#00fec1a0a6a467eb83fb36c65eba7bcb" title="Set nonlinear functions for mean values and covariance matrices.">set_parameters</a> ( <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* pfxu, <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* phxu, <span class="keyword">const</span> sq_T Q0, <span class="keyword">const</span> sq_T R0 ); |
134 | | <a name="l00211"></a>00211 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1EKF.html#3fb182ecc29b10ca1163cecbf3bcccfa" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
135 | | <a name="l00212"></a>00212 }; |
136 | | <a name="l00213"></a>00213 |
137 | | <a name="l00220"></a><a class="code" href="classbdm_1_1EKFCh.html">00220</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1EKFCh.html" title="Extended Kalman Filter in Square root.">EKFCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1KalmanCh.html" title="Kalman filter in square root form.">KalmanCh</a> { |
138 | | <a name="l00221"></a>00221 <span class="keyword">protected</span>: |
139 | | <a name="l00223"></a><a class="code" href="classbdm_1_1EKFCh.html#e1e895f994398a55bc425551fc275ba3">00223</a> <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* <a class="code" href="classbdm_1_1EKFCh.html#e1e895f994398a55bc425551fc275ba3" title="Internal Model f(x,u).">pfxu</a>; |
140 | | <a name="l00225"></a><a class="code" href="classbdm_1_1EKFCh.html#6b34c69641826322467b704e8252f317">00225</a> <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* <a class="code" href="classbdm_1_1EKFCh.html#6b34c69641826322467b704e8252f317" title="Observation Model h(x,u).">phxu</a>; |
141 | | <a name="l00226"></a>00226 <span class="keyword">public</span>: |
142 | | <a name="l00228"></a>00228 <a class="code" href="classbdm_1_1EKFCh.html#8b3228a594532b6a0db0fdc065bc5b9f" title="Default constructor.">EKFCh</a> (); |
143 | | <a name="l00230"></a>00230 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1EKFCh.html#50f9fbffad721f35e5ccb75d0f6b842a" title="Set nonlinear functions for mean values and covariance matrices.">set_parameters</a> ( <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* <a class="code" href="classbdm_1_1EKFCh.html#e1e895f994398a55bc425551fc275ba3" title="Internal Model f(x,u).">pfxu</a>, <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* <a class="code" href="classbdm_1_1EKFCh.html#6b34c69641826322467b704e8252f317" title="Observation Model h(x,u).">phxu</a>, <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> Q0, <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> R0 ); |
144 | | <a name="l00232"></a>00232 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1EKFCh.html#4c8609c37290b158f88a31dae4047225" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
145 | | <a name="l00233"></a>00233 }; |
146 | | <a name="l00234"></a>00234 |
147 | | <a name="l00239"></a><a class="code" href="classbdm_1_1KFcondQR.html">00239</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1KFcondQR.html" title="Kalman Filter with conditional diagonal matrices R and Q.">KFcondQR</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><ldmat>, <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMcond.html" title="Conditional Bayesian Filter.">BMcond</a> { |
148 | | <a name="l00240"></a>00240 <span class="comment">//protected:</span> |
149 | | <a name="l00241"></a>00241 <span class="keyword">public</span>: |
150 | | <a name="l00243"></a><a class="code" href="classbdm_1_1KFcondQR.html#b586ac962751a6af76b2e0fd7e066194">00243</a> <a class="code" href="classbdm_1_1KFcondQR.html#b586ac962751a6af76b2e0fd7e066194" title="Default constructor.">KFcondQR</a> ( ) : <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><<a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>> ( ),<a class="code" href="classbdm_1_1BMcond.html" title="Conditional Bayesian Filter.">BMcond</a> ( ) {}; |
151 | | <a name="l00244"></a>00244 |
152 | | <a name="l00245"></a>00245 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1KFcondQR.html#0288d47032757774a525f196ac3da21d" title="Substitute val for rvc.">condition</a> ( <span class="keyword">const</span> vec &RQ ); |
153 | | <a name="l00246"></a>00246 }; |
154 | | <a name="l00247"></a>00247 |
155 | | <a name="l00252"></a><a class="code" href="classbdm_1_1KFcondR.html">00252</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1KFcondR.html" title="Kalman Filter with conditional diagonal matrices R and Q.">KFcondR</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><ldmat>, <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMcond.html" title="Conditional Bayesian Filter.">BMcond</a> { |
156 | | <a name="l00253"></a>00253 <span class="comment">//protected:</span> |
157 | | <a name="l00254"></a>00254 <span class="keyword">public</span>: |
158 | | <a name="l00256"></a><a class="code" href="classbdm_1_1KFcondR.html#f11639d79f10b1e7dad16a0d8233450d">00256</a> <a class="code" href="classbdm_1_1KFcondR.html#f11639d79f10b1e7dad16a0d8233450d" title="Default constructor.">KFcondR</a> ( ) : <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><<a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>> ( ),<a class="code" href="classbdm_1_1BMcond.html" title="Conditional Bayesian Filter.">BMcond</a> ( ) {}; |
159 | | <a name="l00257"></a>00257 |
160 | | <a name="l00258"></a>00258 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1KFcondR.html#6086f02541f8f3bc8351990abf5cd538" title="Substitute val for rvc.">condition</a> ( <span class="keyword">const</span> vec &<a class="code" href="classbdm_1_1Kalman.html#475b088287cdfbba4dc60a3d027728b7" title="Matrix R in square-root form.">R</a> ); |
161 | | <a name="l00259"></a>00259 }; |
162 | | <a name="l00260"></a>00260 |
163 | | <a name="l00262"></a>00262 |
164 | | <a name="l00263"></a>00263 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
165 | | <a name="l00264"></a><a class="code" href="classbdm_1_1Kalman.html#8b22c45cffa949d70b8e5ac92ed5ce25">00264</a> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman<sq_T>::Kalman</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman<sq_T></a> &K0 ) : <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> ( ),rvy ( K0.rvy ),rvu ( K0.rvu ), |
166 | | <a name="l00265"></a>00265 dimx ( K0.dimx ), dimy ( K0.dimy ),dimu ( K0.dimu ), |
167 | | <a name="l00266"></a>00266 A ( K0.A ), B ( K0.B ), C ( K0.C ), D ( K0.D ), |
168 | | <a name="l00267"></a>00267 Q(K0.Q), R(K0.R), |
169 | | <a name="l00268"></a>00268 est ( K0.est ), fy ( K0.fy ), _yp(fy._mu()),_Ry(fy._R()), _mu(est._mu()), _P(est._R()) { |
170 | | <a name="l00269"></a>00269 |
171 | | <a name="l00270"></a>00270 <span class="comment">// copy values in pointers</span> |
172 | | <a name="l00271"></a>00271 <span class="comment">// _mu = K0._mu;</span> |
173 | | <a name="l00272"></a>00272 <span class="comment">// _P = K0._P;</span> |
174 | | <a name="l00273"></a>00273 <span class="comment">// _yp = K0._yp;</span> |
175 | | <a name="l00274"></a>00274 <span class="comment">// _Ry = K0._Ry;</span> |
176 | | <a name="l00275"></a>00275 |
177 | | <a name="l00276"></a>00276 } |
178 | | <a name="l00277"></a>00277 |
179 | | <a name="l00278"></a>00278 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
180 | | <a name="l00279"></a><a class="code" href="classbdm_1_1Kalman.html#025a0196cbcc2e6adb13311f9d3d52b4">00279</a> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman<sq_T>::Kalman</a> ( ) : <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> (), est ( ), fy (), _yp(fy._mu()), _Ry(fy._R()), _mu(est._mu()), _P(est._R()) { |
181 | | <a name="l00280"></a>00280 }; |
| 135 | <a name="l00137"></a><a class="code" href="classbdm_1_1KalmanCh.html">00137</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1KalmanCh.html" title="Kalman filter in square root form.">KalmanCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><chmat>{ |
| 136 | <a name="l00138"></a>00138 <span class="keyword">protected</span>: |
| 137 | <a name="l00140"></a><a class="code" href="classbdm_1_1KalmanCh.html#48611c8582706cfa62e832be0972e75d">00140</a> mat <a class="code" href="classbdm_1_1KalmanCh.html#48611c8582706cfa62e832be0972e75d" title="pre array (triangular matrix)">preA</a>; |
| 138 | <a name="l00142"></a><a class="code" href="classbdm_1_1KalmanCh.html#bcbd68f51d4b57246e7784ca5900171f">00142</a> mat <a class="code" href="classbdm_1_1KalmanCh.html#bcbd68f51d4b57246e7784ca5900171f" title="post array (triangular matrix)">postA</a>; |
| 139 | <a name="l00143"></a>00143 |
| 140 | <a name="l00144"></a>00144 <span class="keyword">public</span>: |
| 141 | <a name="l00146"></a><a class="code" href="classbdm_1_1KalmanCh.html#830486554e1a2c7652541dbc9dcd3fb3">00146</a> <a class="code" href="classbdm_1_1KalmanCh.html#830486554e1a2c7652541dbc9dcd3fb3" title="Default constructor.">KalmanCh</a> ():<a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><<a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>>(),<a class="code" href="classbdm_1_1KalmanCh.html#48611c8582706cfa62e832be0972e75d" title="pre array (triangular matrix)">preA</a>(),<a class="code" href="classbdm_1_1KalmanCh.html#bcbd68f51d4b57246e7784ca5900171f" title="post array (triangular matrix)">postA</a>(){}; |
| 142 | <a name="l00148"></a>00148 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1KalmanCh.html#20a4d4c664e8ac8a3f1bb7b0d11c6d87" title="Set parameters with check of relevance.">set_parameters</a> ( <span class="keyword">const</span> mat &A0,<span class="keyword">const</span> mat &B0,<span class="keyword">const</span> mat &C0,<span class="keyword">const</span> mat &D0,<span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> &Q0,<span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> &R0 ); |
| 143 | <a name="l00149"></a>00149 <span class="keywordtype">void</span> set_statistics ( <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> &P0 ) { |
| 144 | <a name="l00150"></a>00150 <a class="code" href="classbdm_1_1Kalman.html#383f329ff18bbe219254c8b3b916f40d" title="posterior density on $x_t$">est</a>.<a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> ( mu0,P0 ); |
| 145 | <a name="l00151"></a>00151 }; |
| 146 | <a name="l00152"></a>00152 |
| 147 | <a name="l00153"></a>00153 |
| 148 | <a name="l00167"></a>00167 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1KalmanCh.html#b41fe5540548100b08e1684c3be767b6" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
| 149 | <a name="l00168"></a>00168 }; |
| 150 | <a name="l00169"></a>00169 |
| 151 | <a name="l00175"></a><a class="code" href="classbdm_1_1EKFfull.html">00175</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1EKFfull.html" title="Extended Kalman Filter in full matrices.">EKFfull</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1KalmanFull.html" title="Basic Kalman filter with full matrices (education purpose only)! Will be deleted...">KalmanFull</a>, <span class="keyword">public</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> { |
| 152 | <a name="l00176"></a>00176 |
| 153 | <a name="l00178"></a>00178 <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* pfxu; |
| 154 | <a name="l00180"></a>00180 <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* phxu; |
| 155 | <a name="l00181"></a>00181 |
| 156 | <a name="l00182"></a>00182 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<fsqmat></a> E; |
| 157 | <a name="l00183"></a>00183 <span class="keyword">public</span>: |
| 158 | <a name="l00185"></a>00185 <a class="code" href="classbdm_1_1EKFfull.html#6939c345389abb8b2481457b4cfe1165" title="Default constructor.">EKFfull</a> ( ); |
| 159 | <a name="l00187"></a>00187 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1EKFfull.html#78748da361ba61fef162b0d8956d1743" title="Set nonlinear functions for mean values and covariance matrices.">set_parameters</a> ( <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* pfxu, <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* phxu, <span class="keyword">const</span> mat Q0, <span class="keyword">const</span> mat R0 ); |
| 160 | <a name="l00189"></a>00189 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1EKFfull.html#f149ae8e9ce14d9931a7bb2850736699" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
| 161 | <a name="l00191"></a><a class="code" href="classbdm_1_1EKFfull.html#7562b3d3c17241dab3baf70258742eb2">00191</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1EKFfull.html#7562b3d3c17241dab3baf70258742eb2" title="set estimates">set_est</a> (vec mu0, mat P0){<a class="code" href="classbdm_1_1KalmanFull.html#2defb75e58892615c5f95fd844f3a666" title="Mean value of the posterior density.">mu</a>=mu0;<a class="code" href="classbdm_1_1KalmanFull.html#acacd228e100c3e937de575ad2d7cd9c" title="Variance of the posterior density.">P</a>=P0;}; |
| 162 | <a name="l00193"></a><a class="code" href="classbdm_1_1EKFfull.html#7e9a69f36a0a0615c9abb806772ef36d">00193</a> <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& <a class="code" href="classbdm_1_1EKFfull.html#7e9a69f36a0a0615c9abb806772ef36d" title="dummy!">posterior</a>()<span class="keyword">const</span>{<span class="keywordflow">return</span> E;}; |
| 163 | <a name="l00194"></a>00194 <span class="keyword">const</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<fsqmat></a>* _e()<span class="keyword">const</span>{<span class="keywordflow">return</span> &E;}; |
| 164 | <a name="l00195"></a>00195 <span class="keyword">const</span> mat _R(){<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1KalmanFull.html#acacd228e100c3e937de575ad2d7cd9c" title="Variance of the posterior density.">P</a>;} |
| 165 | <a name="l00196"></a>00196 }; |
| 166 | <a name="l00197"></a>00197 |
| 167 | <a name="l00203"></a>00203 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 168 | <a name="l00204"></a><a class="code" href="classbdm_1_1EKF.html">00204</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1EKF.html" title="Extended Kalman Filter.">EKF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><fsqmat> { |
| 169 | <a name="l00206"></a>00206 <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* pfxu; |
| 170 | <a name="l00208"></a>00208 <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* phxu; |
| 171 | <a name="l00209"></a>00209 <span class="keyword">public</span>: |
| 172 | <a name="l00211"></a>00211 <a class="code" href="classbdm_1_1EKF.html#d087a8bb408d26ac4f5c542746b81059" title="Default constructor.">EKF</a> ( <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvx, <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classbdm_1_1Kalman.html#3fe475a1e920b20b63bb342c0e1571f7" title="Indetifier of output rv.">rvy</a>, <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classbdm_1_1Kalman.html#149e27424fd1a7cc1c998ea088618a94" title="Indetifier of exogeneous rv.">rvu</a> ); |
| 173 | <a name="l00213"></a>00213 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1EKF.html#00fec1a0a6a467eb83fb36c65eba7bcb" title="Set nonlinear functions for mean values and covariance matrices.">set_parameters</a> ( <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* pfxu, <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* phxu, <span class="keyword">const</span> sq_T Q0, <span class="keyword">const</span> sq_T R0 ); |
| 174 | <a name="l00215"></a>00215 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1EKF.html#3fb182ecc29b10ca1163cecbf3bcccfa" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
| 175 | <a name="l00216"></a>00216 }; |
| 176 | <a name="l00217"></a>00217 |
| 177 | <a name="l00224"></a><a class="code" href="classbdm_1_1EKFCh.html">00224</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1EKFCh.html" title="Extended Kalman Filter in Square root.">EKFCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1KalmanCh.html" title="Kalman filter in square root form.">KalmanCh</a> { |
| 178 | <a name="l00225"></a>00225 <span class="keyword">protected</span>: |
| 179 | <a name="l00227"></a><a class="code" href="classbdm_1_1EKFCh.html#e1e895f994398a55bc425551fc275ba3">00227</a> <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* <a class="code" href="classbdm_1_1EKFCh.html#e1e895f994398a55bc425551fc275ba3" title="Internal Model f(x,u).">pfxu</a>; |
| 180 | <a name="l00229"></a><a class="code" href="classbdm_1_1EKFCh.html#6b34c69641826322467b704e8252f317">00229</a> <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* <a class="code" href="classbdm_1_1EKFCh.html#6b34c69641826322467b704e8252f317" title="Observation Model h(x,u).">phxu</a>; |
| 181 | <a name="l00230"></a>00230 <span class="keyword">public</span>: |
| 182 | <a name="l00232"></a>00232 <a class="code" href="classbdm_1_1EKFCh.html#8b3228a594532b6a0db0fdc065bc5b9f" title="Default constructor.">EKFCh</a> (); |
| 183 | <a name="l00234"></a>00234 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1EKFCh.html#50f9fbffad721f35e5ccb75d0f6b842a" title="Set nonlinear functions for mean values and covariance matrices.">set_parameters</a> ( <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* <a class="code" href="classbdm_1_1EKFCh.html#e1e895f994398a55bc425551fc275ba3" title="Internal Model f(x,u).">pfxu</a>, <a class="code" href="classbdm_1_1diffbifn.html" title="Class representing a differentiable function of two variables .">diffbifn</a>* <a class="code" href="classbdm_1_1EKFCh.html#6b34c69641826322467b704e8252f317" title="Observation Model h(x,u).">phxu</a>, <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> Q0, <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> R0 ); |
| 184 | <a name="l00236"></a>00236 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1EKFCh.html#4c8609c37290b158f88a31dae4047225" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
| 185 | <a name="l00237"></a>00237 }; |
| 186 | <a name="l00238"></a>00238 |
| 187 | <a name="l00243"></a><a class="code" href="classbdm_1_1KFcondQR.html">00243</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1KFcondQR.html" title="Kalman Filter with conditional diagonal matrices R and Q.">KFcondQR</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><ldmat>, <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMcond.html" title="Conditional Bayesian Filter.">BMcond</a> { |
| 188 | <a name="l00244"></a>00244 <span class="comment">//protected:</span> |
| 189 | <a name="l00245"></a>00245 <span class="keyword">public</span>: |
| 190 | <a name="l00247"></a><a class="code" href="classbdm_1_1KFcondQR.html#b586ac962751a6af76b2e0fd7e066194">00247</a> <a class="code" href="classbdm_1_1KFcondQR.html#b586ac962751a6af76b2e0fd7e066194" title="Default constructor.">KFcondQR</a> ( ) : <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><<a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>> ( ),<a class="code" href="classbdm_1_1BMcond.html" title="Conditional Bayesian Filter.">BMcond</a> ( ) {}; |
| 191 | <a name="l00248"></a>00248 |
| 192 | <a name="l00249"></a>00249 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1KFcondQR.html#0288d47032757774a525f196ac3da21d" title="Substitute val for rvc.">condition</a> ( <span class="keyword">const</span> vec &RQ ); |
| 193 | <a name="l00250"></a>00250 }; |
| 194 | <a name="l00251"></a>00251 |
| 195 | <a name="l00256"></a><a class="code" href="classbdm_1_1KFcondR.html">00256</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1KFcondR.html" title="Kalman Filter with conditional diagonal matrices R and Q.">KFcondR</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><ldmat>, <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMcond.html" title="Conditional Bayesian Filter.">BMcond</a> { |
| 196 | <a name="l00257"></a>00257 <span class="comment">//protected:</span> |
| 197 | <a name="l00258"></a>00258 <span class="keyword">public</span>: |
| 198 | <a name="l00260"></a><a class="code" href="classbdm_1_1KFcondR.html#f11639d79f10b1e7dad16a0d8233450d">00260</a> <a class="code" href="classbdm_1_1KFcondR.html#f11639d79f10b1e7dad16a0d8233450d" title="Default constructor.">KFcondR</a> ( ) : <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><<a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>> ( ),<a class="code" href="classbdm_1_1BMcond.html" title="Conditional Bayesian Filter.">BMcond</a> ( ) {}; |
| 199 | <a name="l00261"></a>00261 |
| 200 | <a name="l00262"></a>00262 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1KFcondR.html#6086f02541f8f3bc8351990abf5cd538" title="Substitute val for rvc.">condition</a> ( <span class="keyword">const</span> vec &<a class="code" href="classbdm_1_1Kalman.html#475b088287cdfbba4dc60a3d027728b7" title="Matrix R in square-root form.">R</a> ); |
| 201 | <a name="l00263"></a>00263 }; |
| 202 | <a name="l00264"></a>00264 |
| 203 | <a name="l00266"></a>00266 |
| 204 | <a name="l00267"></a>00267 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 205 | <a name="l00268"></a><a class="code" href="classbdm_1_1Kalman.html#8b22c45cffa949d70b8e5ac92ed5ce25">00268</a> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman<sq_T>::Kalman</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman<sq_T></a> &K0 ) : <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> ( ),rvy ( K0.rvy ),rvu ( K0.rvu ), |
| 206 | <a name="l00269"></a>00269 dimx ( K0.dimx ), dimy ( K0.dimy ),dimu ( K0.dimu ), |
| 207 | <a name="l00270"></a>00270 A ( K0.A ), B ( K0.B ), C ( K0.C ), D ( K0.D ), |
| 208 | <a name="l00271"></a>00271 Q(K0.Q), R(K0.R), |
| 209 | <a name="l00272"></a>00272 est ( K0.est ), fy ( K0.fy ), _yp(fy._mu()),_Ry(fy._R()), _mu(est._mu()), _P(est._R()) { |
| 210 | <a name="l00273"></a>00273 |
| 211 | <a name="l00274"></a>00274 <span class="comment">// copy values in pointers</span> |
| 212 | <a name="l00275"></a>00275 <span class="comment">// _mu = K0._mu;</span> |
| 213 | <a name="l00276"></a>00276 <span class="comment">// _P = K0._P;</span> |
| 214 | <a name="l00277"></a>00277 <span class="comment">// _yp = K0._yp;</span> |
| 215 | <a name="l00278"></a>00278 <span class="comment">// _Ry = K0._Ry;</span> |
| 216 | <a name="l00279"></a>00279 |
| 217 | <a name="l00280"></a>00280 } |
184 | | <a name="l00283"></a><a class="code" href="classbdm_1_1Kalman.html#94eb8cc31731210089db0ba4e1a08a6c">00283</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0,<span class="keyword">const</span> mat &B0, <span class="keyword">const</span> mat &C0, <span class="keyword">const</span> mat &D0, <span class="keyword">const</span> sq_T &R0, <span class="keyword">const</span> sq_T &Q0 ) { |
185 | | <a name="l00284"></a>00284 it_assert_debug ( A0.cols() ==<a class="code" href="classbdm_1_1Kalman.html#ba7699cdb3b1382a54d3e28b9b7517fa" title="cache of rv.count()">dimx</a>, <span class="stringliteral">"Kalman: A is not square"</span> ); |
186 | | <a name="l00285"></a>00285 it_assert_debug ( B0.rows() ==<a class="code" href="classbdm_1_1Kalman.html#ba7699cdb3b1382a54d3e28b9b7517fa" title="cache of rv.count()">dimx</a>, <span class="stringliteral">"Kalman: B is not compatible"</span> ); |
187 | | <a name="l00286"></a>00286 it_assert_debug ( C0.cols() ==<a class="code" href="classbdm_1_1Kalman.html#ba7699cdb3b1382a54d3e28b9b7517fa" title="cache of rv.count()">dimx</a>, <span class="stringliteral">"Kalman: C is not square"</span> ); |
188 | | <a name="l00287"></a>00287 it_assert_debug ( ( D0.rows() ==<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a> ) || ( D0.cols() ==<a class="code" href="classbdm_1_1Kalman.html#c5136ef617f6ac0e426bea222755d92b" title="cache of rvu.count()">dimu</a> ), <span class="stringliteral">"Kalman: D is not compatible"</span> ); |
189 | | <a name="l00288"></a>00288 it_assert_debug ( ( R0.cols() ==<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a> ) || ( R0.rows() ==<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a> ), <span class="stringliteral">"Kalman: R is not compatible"</span> ); |
190 | | <a name="l00289"></a>00289 it_assert_debug ( ( Q0.cols() ==<a class="code" href="classbdm_1_1Kalman.html#ba7699cdb3b1382a54d3e28b9b7517fa" title="cache of rv.count()">dimx</a> ) || ( Q0.rows() ==<a class="code" href="classbdm_1_1Kalman.html#ba7699cdb3b1382a54d3e28b9b7517fa" title="cache of rv.count()">dimx</a> ), <span class="stringliteral">"Kalman: Q is not compatible"</span> ); |
191 | | <a name="l00290"></a>00290 |
192 | | <a name="l00291"></a>00291 <a class="code" href="classbdm_1_1Kalman.html#0a2072e2090c10fac74ad30a023a4ace" title="Matrix A.">A</a> = A0; |
193 | | <a name="l00292"></a>00292 <a class="code" href="classbdm_1_1Kalman.html#5977b2c81857948a35105f0e7840203c" title="Matrix B.">B</a> = B0; |
194 | | <a name="l00293"></a>00293 <a class="code" href="classbdm_1_1Kalman.html#818eba63a23972786a4579ad30294177" title="Matrix C.">C</a> = C0; |
195 | | <a name="l00294"></a>00294 <a class="code" href="classbdm_1_1Kalman.html#7b56ac423d0654b5755e4f852a870456" title="Matrix D.">D</a> = D0; |
196 | | <a name="l00295"></a>00295 <a class="code" href="classbdm_1_1Kalman.html#475b088287cdfbba4dc60a3d027728b7" title="Matrix R in square-root form.">R</a> = R0; |
197 | | <a name="l00296"></a>00296 <a class="code" href="classbdm_1_1Kalman.html#70f8bf19e81b532c60fd3a7a152425ee" title="Matrix Q in square-root form.">Q</a> = Q0; |
198 | | <a name="l00297"></a>00297 } |
| 220 | <a name="l00283"></a><a class="code" href="classbdm_1_1Kalman.html#025a0196cbcc2e6adb13311f9d3d52b4">00283</a> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman<sq_T>::Kalman</a> ( ) : <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> (), est ( ), fy (), _yp(fy._mu()), _Ry(fy._R()), _mu(est._mu()), _P(est._R()) { |
| 221 | <a name="l00284"></a>00284 }; |
| 222 | <a name="l00285"></a>00285 |
| 223 | <a name="l00286"></a>00286 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 224 | <a name="l00287"></a><a class="code" href="classbdm_1_1Kalman.html#3c7fb87fb6b87d08deb6a5a7862da957">00287</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0,<span class="keyword">const</span> mat &B0, <span class="keyword">const</span> mat &C0, <span class="keyword">const</span> mat &D0, <span class="keyword">const</span> sq_T &Q0, <span class="keyword">const</span> sq_T &R0 ) { |
| 225 | <a name="l00288"></a>00288 <a class="code" href="classbdm_1_1Kalman.html#ba7699cdb3b1382a54d3e28b9b7517fa" title="cache of rv.count()">dimx</a> = A0.rows(); |
| 226 | <a name="l00289"></a>00289 <a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a> = C0.rows(); |
| 227 | <a name="l00290"></a>00290 <a class="code" href="classbdm_1_1Kalman.html#c5136ef617f6ac0e426bea222755d92b" title="cache of rvu.count()">dimu</a> = B0.cols(); |
| 228 | <a name="l00291"></a>00291 |
| 229 | <a name="l00292"></a>00292 it_assert_debug ( A0.cols() ==<a class="code" href="classbdm_1_1Kalman.html#ba7699cdb3b1382a54d3e28b9b7517fa" title="cache of rv.count()">dimx</a>, <span class="stringliteral">"Kalman: A is not square"</span> ); |
| 230 | <a name="l00293"></a>00293 it_assert_debug ( B0.rows() ==<a class="code" href="classbdm_1_1Kalman.html#ba7699cdb3b1382a54d3e28b9b7517fa" title="cache of rv.count()">dimx</a>, <span class="stringliteral">"Kalman: B is not compatible"</span> ); |
| 231 | <a name="l00294"></a>00294 it_assert_debug ( C0.cols() ==<a class="code" href="classbdm_1_1Kalman.html#ba7699cdb3b1382a54d3e28b9b7517fa" title="cache of rv.count()">dimx</a>, <span class="stringliteral">"Kalman: C is not square"</span> ); |
| 232 | <a name="l00295"></a>00295 it_assert_debug ( ( D0.rows() ==<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a> ) || ( D0.cols() ==<a class="code" href="classbdm_1_1Kalman.html#c5136ef617f6ac0e426bea222755d92b" title="cache of rvu.count()">dimu</a> ), <span class="stringliteral">"Kalman: D is not compatible"</span> ); |
| 233 | <a name="l00296"></a>00296 it_assert_debug ( ( R0.cols() ==<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a> ) || ( R0.rows() ==<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a> ), <span class="stringliteral">"Kalman: R is not compatible"</span> ); |
| 234 | <a name="l00297"></a>00297 it_assert_debug ( ( Q0.cols() ==<a class="code" href="classbdm_1_1Kalman.html#ba7699cdb3b1382a54d3e28b9b7517fa" title="cache of rv.count()">dimx</a> ) || ( Q0.rows() ==<a class="code" href="classbdm_1_1Kalman.html#ba7699cdb3b1382a54d3e28b9b7517fa" title="cache of rv.count()">dimx</a> ), <span class="stringliteral">"Kalman: Q is not compatible"</span> ); |
200 | | <a name="l00299"></a>00299 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
201 | | <a name="l00300"></a><a class="code" href="classbdm_1_1Kalman.html#4a39330c14eff8d13179e868a1d1aa8c">00300</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman<sq_T>::bayes</a> ( <span class="keyword">const</span> vec &dt ) { |
202 | | <a name="l00301"></a>00301 it_assert_debug ( dt.length() == ( <a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>+<a class="code" href="classbdm_1_1Kalman.html#c5136ef617f6ac0e426bea222755d92b" title="cache of rvu.count()">dimu</a> ),<span class="stringliteral">"KalmanFull::bayes wrong size of dt"</span> ); |
203 | | <a name="l00302"></a>00302 |
204 | | <a name="l00303"></a>00303 sq_T iRy(<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>); |
205 | | <a name="l00304"></a>00304 vec u = dt.get ( <a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>,<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>+<a class="code" href="classbdm_1_1Kalman.html#c5136ef617f6ac0e426bea222755d92b" title="cache of rvu.count()">dimu</a>-1 ); |
206 | | <a name="l00305"></a>00305 vec y = dt.get ( 0,<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>-1 ); |
207 | | <a name="l00306"></a>00306 <span class="comment">//Time update</span> |
208 | | <a name="l00307"></a>00307 <a class="code" href="classbdm_1_1Kalman.html#fa172078091e45561343fa513dd573b0" title="cache of est.mu">_mu</a> = <a class="code" href="classbdm_1_1Kalman.html#0a2072e2090c10fac74ad30a023a4ace" title="Matrix A.">A</a>* <a class="code" href="classbdm_1_1Kalman.html#fa172078091e45561343fa513dd573b0" title="cache of est.mu">_mu</a> + <a class="code" href="classbdm_1_1Kalman.html#5977b2c81857948a35105f0e7840203c" title="Matrix B.">B</a>*u; |
209 | | <a name="l00308"></a>00308 <span class="comment">//P = A*P*A.transpose() + Q; in sq_T</span> |
210 | | <a name="l00309"></a>00309 <a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a>.mult_sym ( <a class="code" href="classbdm_1_1Kalman.html#0a2072e2090c10fac74ad30a023a4ace" title="Matrix A.">A</a> ); |
211 | | <a name="l00310"></a>00310 <a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a> +=<a class="code" href="classbdm_1_1Kalman.html#70f8bf19e81b532c60fd3a7a152425ee" title="Matrix Q in square-root form.">Q</a>; |
212 | | <a name="l00311"></a>00311 |
213 | | <a name="l00312"></a>00312 <span class="comment">//Data update</span> |
214 | | <a name="l00313"></a>00313 <span class="comment">//_Ry = C*P*C.transpose() + R; in sq_T</span> |
215 | | <a name="l00314"></a>00314 <a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a>.mult_sym ( <a class="code" href="classbdm_1_1Kalman.html#818eba63a23972786a4579ad30294177" title="Matrix C.">C</a>, <a class="code" href="classbdm_1_1Kalman.html#2dd268f2d7fbe6382cb8825a1114192a" title="cache of fy.R">_Ry</a> ); |
216 | | <a name="l00315"></a>00315 <a class="code" href="classbdm_1_1Kalman.html#2dd268f2d7fbe6382cb8825a1114192a" title="cache of fy.R">_Ry</a> +=<a class="code" href="classbdm_1_1Kalman.html#475b088287cdfbba4dc60a3d027728b7" title="Matrix R in square-root form.">R</a>; |
217 | | <a name="l00316"></a>00316 |
218 | | <a name="l00317"></a>00317 mat Pfull = <a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a>.to_mat(); |
219 | | <a name="l00318"></a>00318 |
220 | | <a name="l00319"></a>00319 <a class="code" href="classbdm_1_1Kalman.html#2dd268f2d7fbe6382cb8825a1114192a" title="cache of fy.R">_Ry</a>.inv ( iRy ); <span class="comment">// result is in _iRy;</span> |
221 | | <a name="l00320"></a>00320 <a class="code" href="classbdm_1_1Kalman.html#bd69dfb802465f22dd84d73a180d5c92" title="placeholder for Kalman gain">_K</a> = Pfull*<a class="code" href="classbdm_1_1Kalman.html#818eba63a23972786a4579ad30294177" title="Matrix C.">C</a>.transpose() * ( iRy.to_mat() ); |
222 | | <a name="l00321"></a>00321 |
223 | | <a name="l00322"></a>00322 sq_T pom ( ( <span class="keywordtype">int</span> ) Pfull.rows() ); |
224 | | <a name="l00323"></a>00323 iRy.mult_sym_t ( <a class="code" href="classbdm_1_1Kalman.html#818eba63a23972786a4579ad30294177" title="Matrix C.">C</a>*Pfull,pom ); |
225 | | <a name="l00324"></a>00324 (<a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a> ) -= pom; <span class="comment">// P = P -PC'iRy*CP;</span> |
226 | | <a name="l00325"></a>00325 (<a class="code" href="classbdm_1_1Kalman.html#c249d45258c8578b13858ad3e7b729b1" title="cache of fy.mu">_yp</a> ) = <a class="code" href="classbdm_1_1Kalman.html#818eba63a23972786a4579ad30294177" title="Matrix C.">C</a>* <a class="code" href="classbdm_1_1Kalman.html#fa172078091e45561343fa513dd573b0" title="cache of est.mu">_mu</a> +<a class="code" href="classbdm_1_1Kalman.html#7b56ac423d0654b5755e4f852a870456" title="Matrix D.">D</a>*u; <span class="comment">//y prediction</span> |
227 | | <a name="l00326"></a>00326 (<a class="code" href="classbdm_1_1Kalman.html#fa172078091e45561343fa513dd573b0" title="cache of est.mu">_mu</a> ) += <a class="code" href="classbdm_1_1Kalman.html#bd69dfb802465f22dd84d73a180d5c92" title="placeholder for Kalman gain">_K</a>* ( y- <a class="code" href="classbdm_1_1Kalman.html#c249d45258c8578b13858ad3e7b729b1" title="cache of fy.mu">_yp</a> ); |
228 | | <a name="l00327"></a>00327 |
229 | | <a name="l00328"></a>00328 |
230 | | <a name="l00329"></a>00329 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>==<span class="keyword">true</span> ) { <span class="comment">//likelihood of observation y</span> |
231 | | <a name="l00330"></a>00330 <a class="code" href="classbdm_1_1BM.html#4064b6559d962633e4372b12f4cd204a" title="Logarithm of marginalized data likelihood.">ll</a>=<a class="code" href="classbdm_1_1Kalman.html#ba555c394c429f6831c9bbabfa2c944c" title="preditive density on $y_t$">fy</a>.evallog ( y ); |
232 | | <a name="l00331"></a>00331 } |
233 | | <a name="l00332"></a>00332 |
234 | | <a name="l00333"></a>00333 <span class="comment">//cout << "y: " << y-(*_yp) <<" R: " << _Ry->to_mat() << " iR: " << _iRy->to_mat() << " ll: " << ll <<endl;</span> |
235 | | <a name="l00334"></a>00334 |
236 | | <a name="l00335"></a>00335 }; |
237 | | <a name="l00336"></a>00336 |
238 | | <a name="l00337"></a>00337 |
239 | | <a name="l00338"></a>00338 |
240 | | <a name="l00339"></a>00339 <span class="comment">//TODO why not const pointer??</span> |
| 236 | <a name="l00299"></a>00299 <a class="code" href="classbdm_1_1Kalman.html#0a2072e2090c10fac74ad30a023a4ace" title="Matrix A.">A</a> = A0; |
| 237 | <a name="l00300"></a>00300 <a class="code" href="classbdm_1_1Kalman.html#5977b2c81857948a35105f0e7840203c" title="Matrix B.">B</a> = B0; |
| 238 | <a name="l00301"></a>00301 <a class="code" href="classbdm_1_1Kalman.html#818eba63a23972786a4579ad30294177" title="Matrix C.">C</a> = C0; |
| 239 | <a name="l00302"></a>00302 <a class="code" href="classbdm_1_1Kalman.html#7b56ac423d0654b5755e4f852a870456" title="Matrix D.">D</a> = D0; |
| 240 | <a name="l00303"></a>00303 <a class="code" href="classbdm_1_1Kalman.html#475b088287cdfbba4dc60a3d027728b7" title="Matrix R in square-root form.">R</a> = R0; |
| 241 | <a name="l00304"></a>00304 <a class="code" href="classbdm_1_1Kalman.html#70f8bf19e81b532c60fd3a7a152425ee" title="Matrix Q in square-root form.">Q</a> = Q0; |
| 242 | <a name="l00305"></a>00305 } |
| 243 | <a name="l00306"></a>00306 |
| 244 | <a name="l00307"></a>00307 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 245 | <a name="l00308"></a><a class="code" href="classbdm_1_1Kalman.html#4a39330c14eff8d13179e868a1d1aa8c">00308</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1Kalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman<sq_T>::bayes</a> ( <span class="keyword">const</span> vec &dt ) { |
| 246 | <a name="l00309"></a>00309 it_assert_debug ( dt.length() == ( <a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>+<a class="code" href="classbdm_1_1Kalman.html#c5136ef617f6ac0e426bea222755d92b" title="cache of rvu.count()">dimu</a> ),<span class="stringliteral">"KalmanFull::bayes wrong size of dt"</span> ); |
| 247 | <a name="l00310"></a>00310 |
| 248 | <a name="l00311"></a>00311 sq_T iRy(<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>); |
| 249 | <a name="l00312"></a>00312 vec u = dt.get ( <a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>,<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>+<a class="code" href="classbdm_1_1Kalman.html#c5136ef617f6ac0e426bea222755d92b" title="cache of rvu.count()">dimu</a>-1 ); |
| 250 | <a name="l00313"></a>00313 vec y = dt.get ( 0,<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>-1 ); |
| 251 | <a name="l00314"></a>00314 <span class="comment">//Time update</span> |
| 252 | <a name="l00315"></a>00315 <a class="code" href="classbdm_1_1Kalman.html#fa172078091e45561343fa513dd573b0" title="cache of est.mu">_mu</a> = <a class="code" href="classbdm_1_1Kalman.html#0a2072e2090c10fac74ad30a023a4ace" title="Matrix A.">A</a>* <a class="code" href="classbdm_1_1Kalman.html#fa172078091e45561343fa513dd573b0" title="cache of est.mu">_mu</a> + <a class="code" href="classbdm_1_1Kalman.html#5977b2c81857948a35105f0e7840203c" title="Matrix B.">B</a>*u; |
| 253 | <a name="l00316"></a>00316 <span class="comment">//P = A*P*A.transpose() + Q; in sq_T</span> |
| 254 | <a name="l00317"></a>00317 <a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a>.mult_sym ( <a class="code" href="classbdm_1_1Kalman.html#0a2072e2090c10fac74ad30a023a4ace" title="Matrix A.">A</a> ); |
| 255 | <a name="l00318"></a>00318 <a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a> +=<a class="code" href="classbdm_1_1Kalman.html#70f8bf19e81b532c60fd3a7a152425ee" title="Matrix Q in square-root form.">Q</a>; |
| 256 | <a name="l00319"></a>00319 |
| 257 | <a name="l00320"></a>00320 <span class="comment">//Data update</span> |
| 258 | <a name="l00321"></a>00321 <span class="comment">//_Ry = C*P*C.transpose() + R; in sq_T</span> |
| 259 | <a name="l00322"></a>00322 <a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a>.mult_sym ( <a class="code" href="classbdm_1_1Kalman.html#818eba63a23972786a4579ad30294177" title="Matrix C.">C</a>, <a class="code" href="classbdm_1_1Kalman.html#2dd268f2d7fbe6382cb8825a1114192a" title="cache of fy.R">_Ry</a> ); |
| 260 | <a name="l00323"></a>00323 <a class="code" href="classbdm_1_1Kalman.html#2dd268f2d7fbe6382cb8825a1114192a" title="cache of fy.R">_Ry</a> +=<a class="code" href="classbdm_1_1Kalman.html#475b088287cdfbba4dc60a3d027728b7" title="Matrix R in square-root form.">R</a>; |
| 261 | <a name="l00324"></a>00324 |
| 262 | <a name="l00325"></a>00325 mat Pfull = <a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a>.to_mat(); |
| 263 | <a name="l00326"></a>00326 |
| 264 | <a name="l00327"></a>00327 <a class="code" href="classbdm_1_1Kalman.html#2dd268f2d7fbe6382cb8825a1114192a" title="cache of fy.R">_Ry</a>.inv ( iRy ); <span class="comment">// result is in _iRy;</span> |
| 265 | <a name="l00328"></a>00328 <a class="code" href="classbdm_1_1Kalman.html#bd69dfb802465f22dd84d73a180d5c92" title="placeholder for Kalman gain">_K</a> = Pfull*<a class="code" href="classbdm_1_1Kalman.html#818eba63a23972786a4579ad30294177" title="Matrix C.">C</a>.transpose() * ( iRy.to_mat() ); |
| 266 | <a name="l00329"></a>00329 |
| 267 | <a name="l00330"></a>00330 sq_T pom ( ( <span class="keywordtype">int</span> ) Pfull.rows() ); |
| 268 | <a name="l00331"></a>00331 iRy.mult_sym_t ( <a class="code" href="classbdm_1_1Kalman.html#818eba63a23972786a4579ad30294177" title="Matrix C.">C</a>*Pfull,pom ); |
| 269 | <a name="l00332"></a>00332 (<a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a> ) -= pom; <span class="comment">// P = P -PC'iRy*CP;</span> |
| 270 | <a name="l00333"></a>00333 (<a class="code" href="classbdm_1_1Kalman.html#c249d45258c8578b13858ad3e7b729b1" title="cache of fy.mu">_yp</a> ) = <a class="code" href="classbdm_1_1Kalman.html#818eba63a23972786a4579ad30294177" title="Matrix C.">C</a>* <a class="code" href="classbdm_1_1Kalman.html#fa172078091e45561343fa513dd573b0" title="cache of est.mu">_mu</a> +<a class="code" href="classbdm_1_1Kalman.html#7b56ac423d0654b5755e4f852a870456" title="Matrix D.">D</a>*u; <span class="comment">//y prediction</span> |
| 271 | <a name="l00334"></a>00334 (<a class="code" href="classbdm_1_1Kalman.html#fa172078091e45561343fa513dd573b0" title="cache of est.mu">_mu</a> ) += <a class="code" href="classbdm_1_1Kalman.html#bd69dfb802465f22dd84d73a180d5c92" title="placeholder for Kalman gain">_K</a>* ( y- <a class="code" href="classbdm_1_1Kalman.html#c249d45258c8578b13858ad3e7b729b1" title="cache of fy.mu">_yp</a> ); |
| 272 | <a name="l00335"></a>00335 |
| 273 | <a name="l00336"></a>00336 |
| 274 | <a name="l00337"></a>00337 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>==<span class="keyword">true</span> ) { <span class="comment">//likelihood of observation y</span> |
| 275 | <a name="l00338"></a>00338 <a class="code" href="classbdm_1_1BM.html#4064b6559d962633e4372b12f4cd204a" title="Logarithm of marginalized data likelihood.">ll</a>=<a class="code" href="classbdm_1_1Kalman.html#ba555c394c429f6831c9bbabfa2c944c" title="preditive density on $y_t$">fy</a>.evallog ( y ); |
| 276 | <a name="l00339"></a>00339 } |
266 | | <a name="l00365"></a>00365 sq_T iRy(<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>,<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>); |
267 | | <a name="l00366"></a>00366 vec u = dt.get ( <a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>,<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>+<a class="code" href="classbdm_1_1Kalman.html#c5136ef617f6ac0e426bea222755d92b" title="cache of rvu.count()">dimu</a>-1 ); |
268 | | <a name="l00367"></a>00367 vec y = dt.get ( 0,<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>-1 ); |
269 | | <a name="l00368"></a>00368 <span class="comment">//Time update</span> |
270 | | <a name="l00369"></a>00369 <a class="code" href="classbdm_1_1Kalman.html#fa172078091e45561343fa513dd573b0" title="cache of est.mu">_mu</a> = pfxu-><a class="code" href="classbdm_1_1diffbifn.html#188f31066bd72e1bf0ddacd1eb0e6af3" title="Evaluates (VS: Do we really need common eval? ).">eval</a> ( <a class="code" href="classbdm_1_1Kalman.html#fa172078091e45561343fa513dd573b0" title="cache of est.mu">_mu</a>, u ); |
271 | | <a name="l00370"></a>00370 pfxu-><a class="code" href="classbdm_1_1diffbifn.html#651184f808a35f236dbfea21aca1b6ac" title="Evaluates and writes result into A .">dfdx_cond</a> ( <a class="code" href="classbdm_1_1Kalman.html#fa172078091e45561343fa513dd573b0" title="cache of est.mu">_mu</a>,u,<a class="code" href="classbdm_1_1Kalman.html#0a2072e2090c10fac74ad30a023a4ace" title="Matrix A.">A</a>,<span class="keyword">false</span> ); <span class="comment">//update A by a derivative of fx</span> |
272 | | <a name="l00371"></a>00371 |
273 | | <a name="l00372"></a>00372 <span class="comment">//P = A*P*A.transpose() + Q; in sq_T</span> |
274 | | <a name="l00373"></a>00373 <a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a>.<a class="code" href="classfsqmat.html#5530d2756b5d991de755e6121c9a452e" title="Inplace symmetric multiplication by a SQUARE matrix , i.e. .">mult_sym</a> ( <a class="code" href="classbdm_1_1Kalman.html#0a2072e2090c10fac74ad30a023a4ace" title="Matrix A.">A</a> ); |
275 | | <a name="l00374"></a>00374 <a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a> +=<a class="code" href="classbdm_1_1Kalman.html#70f8bf19e81b532c60fd3a7a152425ee" title="Matrix Q in square-root form.">Q</a>; |
276 | | <a name="l00375"></a>00375 |
277 | | <a name="l00376"></a>00376 <span class="comment">//Data update</span> |
278 | | <a name="l00377"></a>00377 phxu-><a class="code" href="classbdm_1_1diffbifn.html#651184f808a35f236dbfea21aca1b6ac" title="Evaluates and writes result into A .">dfdx_cond</a> ( <a class="code" href="classbdm_1_1Kalman.html#fa172078091e45561343fa513dd573b0" title="cache of est.mu">_mu</a>,u,<a class="code" href="classbdm_1_1Kalman.html#818eba63a23972786a4579ad30294177" title="Matrix C.">C</a>,<span class="keyword">false</span> ); <span class="comment">//update C by a derivative hx</span> |
279 | | <a name="l00378"></a>00378 <span class="comment">//_Ry = C*P*C.transpose() + R; in sq_T</span> |
280 | | <a name="l00379"></a>00379 <a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a>.<a class="code" href="classfsqmat.html#5530d2756b5d991de755e6121c9a452e" title="Inplace symmetric multiplication by a SQUARE matrix , i.e. .">mult_sym</a> ( <a class="code" href="classbdm_1_1Kalman.html#818eba63a23972786a4579ad30294177" title="Matrix C.">C</a>, <a class="code" href="classbdm_1_1Kalman.html#2dd268f2d7fbe6382cb8825a1114192a" title="cache of fy.R">_Ry</a> ); |
281 | | <a name="l00380"></a>00380 ( <a class="code" href="classbdm_1_1Kalman.html#2dd268f2d7fbe6382cb8825a1114192a" title="cache of fy.R">_Ry</a> ) +=<a class="code" href="classbdm_1_1Kalman.html#475b088287cdfbba4dc60a3d027728b7" title="Matrix R in square-root form.">R</a>; |
282 | | <a name="l00381"></a>00381 |
283 | | <a name="l00382"></a>00382 mat Pfull = <a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a>.<a class="code" href="classfsqmat.html#f54fc955e8e3b43d15afa92124bc24b3" title="Conversion to full matrix.">to_mat</a>(); |
| 302 | <a name="l00365"></a>00365 <a class="code" href="classbdm_1_1Kalman.html#475b088287cdfbba4dc60a3d027728b7" title="Matrix R in square-root form.">R</a> = R0; |
| 303 | <a name="l00366"></a>00366 <a class="code" href="classbdm_1_1Kalman.html#70f8bf19e81b532c60fd3a7a152425ee" title="Matrix Q in square-root form.">Q</a> = Q0; |
| 304 | <a name="l00367"></a>00367 } |
| 305 | <a name="l00368"></a>00368 |
| 306 | <a name="l00369"></a>00369 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 307 | <a name="l00370"></a><a class="code" href="classbdm_1_1EKF.html#3fb182ecc29b10ca1163cecbf3bcccfa">00370</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1EKF.html" title="Extended Kalman Filter.">EKF<sq_T>::bayes</a> ( <span class="keyword">const</span> vec &dt ) { |
| 308 | <a name="l00371"></a>00371 it_assert_debug ( dt.length() == ( <a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>+<a class="code" href="classbdm_1_1Kalman.html#c5136ef617f6ac0e426bea222755d92b" title="cache of rvu.count()">dimu</a> ),<span class="stringliteral">"KalmanFull::bayes wrong size of dt"</span> ); |
| 309 | <a name="l00372"></a>00372 |
| 310 | <a name="l00373"></a>00373 sq_T iRy(<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>,<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>); |
| 311 | <a name="l00374"></a>00374 vec u = dt.get ( <a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>,<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>+<a class="code" href="classbdm_1_1Kalman.html#c5136ef617f6ac0e426bea222755d92b" title="cache of rvu.count()">dimu</a>-1 ); |
| 312 | <a name="l00375"></a>00375 vec y = dt.get ( 0,<a class="code" href="classbdm_1_1Kalman.html#d2c36ba01760bf207b985bf321b7817f" title="cache of rvy.count()">dimy</a>-1 ); |
| 313 | <a name="l00376"></a>00376 <span class="comment">//Time update</span> |
| 314 | <a name="l00377"></a>00377 <a class="code" href="classbdm_1_1Kalman.html#fa172078091e45561343fa513dd573b0" title="cache of est.mu">_mu</a> = pfxu-><a class="code" href="classbdm_1_1diffbifn.html#188f31066bd72e1bf0ddacd1eb0e6af3" title="Evaluates (VS: Do we really need common eval? ).">eval</a> ( <a class="code" href="classbdm_1_1Kalman.html#fa172078091e45561343fa513dd573b0" title="cache of est.mu">_mu</a>, u ); |
| 315 | <a name="l00378"></a>00378 pfxu-><a class="code" href="classbdm_1_1diffbifn.html#651184f808a35f236dbfea21aca1b6ac" title="Evaluates and writes result into A .">dfdx_cond</a> ( <a class="code" href="classbdm_1_1Kalman.html#fa172078091e45561343fa513dd573b0" title="cache of est.mu">_mu</a>,u,<a class="code" href="classbdm_1_1Kalman.html#0a2072e2090c10fac74ad30a023a4ace" title="Matrix A.">A</a>,<span class="keyword">false</span> ); <span class="comment">//update A by a derivative of fx</span> |
| 316 | <a name="l00379"></a>00379 |
| 317 | <a name="l00380"></a>00380 <span class="comment">//P = A*P*A.transpose() + Q; in sq_T</span> |
| 318 | <a name="l00381"></a>00381 <a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a>.<a class="code" href="classfsqmat.html#5530d2756b5d991de755e6121c9a452e" title="Inplace symmetric multiplication by a SQUARE matrix , i.e. .">mult_sym</a> ( <a class="code" href="classbdm_1_1Kalman.html#0a2072e2090c10fac74ad30a023a4ace" title="Matrix A.">A</a> ); |
| 319 | <a name="l00382"></a>00382 <a class="code" href="classbdm_1_1Kalman.html#00c27b0bf324f0018497921ca23c71ed" title="cache of est.R">_P</a> +=<a class="code" href="classbdm_1_1Kalman.html#70f8bf19e81b532c60fd3a7a152425ee" title="Matrix Q in square-root form.">Q</a>; |