1 | | \form#0:$A=\frac{df}{dx}|_{x0,u0}$ |
2 | | \form#1:$A=\frac{d}{dx}f(x,u)|_{x0,u0}$ |
3 | | \form#2:$A=\frac{d}{du}f(x,u)|_{x0,u0}$ |
4 | | \form#3:$x \sim epdf(rv)$ |
5 | | \form#4:\[ f(x|a,b) = \prod f(x_i|a_i,b_i) \] |
6 | | \form#5:\[M = L'DL\] |
7 | | \form#6:\[ x_t = A x_{t-1} + B u_t + Q^{1/2} e_t \] |
8 | | \form#7:\[ y_t = C x_{t-1} + C u_t + Q^{1/2} w_t. \] |
9 | | \form#8:\[ f(x|\alpha,\beta) = \prod f(x_i|\alpha_i,\beta_i) \] |
10 | | \form#9:$x^{(i)}, i=1..n$ |
11 | | \form#10:$x \sim epdf(rv|cond)$ |
12 | | \form#11:$\alpha=k$ |
13 | | \form#12:$\beta=k/\mu$ |
14 | | \form#13:$\mu/\sqrt(k)$ |
15 | | \form#14:$\mu$ |
16 | | \form#15:$\alpha$ |
17 | | \form#16:$\beta$ |
18 | | \form#17:\[ \left[\begin{array}{cc} R^{0.5}\\ P_{t|t-1}^{0.5}C' & P_{t|t-1}^{0.5}CA'\\ & Q^{0.5}\end{array}\right]<\mathrm{orth.oper.}>=\left[\begin{array}{cc} R_{y}^{0.5} & KA'\\ & P_{t+1|t}^{0.5}\\ \\\end{array}\right]\] |
19 | | \form#18:\[ \mu = \mu_{t-1} ^{l} p^{1-l}\] |
20 | | \form#19:$A=Ch' Ch$ |
21 | | \form#20:$Ch$ |
| 1 | \form#0:\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] |
| 2 | \form#1:$[\theta r]$ |
| 3 | \form#2:$\psi=\psi(y_{1:t},u_{1:t})$ |
| 4 | \form#3:$u_t$ |
| 5 | \form#4:$e_t$ |
| 6 | \form#5:\[ e_t \sim \mathcal{N}(0,1). \] |
| 7 | \form#6:$ y_t $ |
| 8 | \form#7:$\theta,r$ |
| 9 | \form#8:$ dt = [y_t psi_t] $ |
| 10 | \form#9:\[ x_t = A x_{t-1} + B u_t + Q^{1/2} e_t \] |
| 11 | \form#10:\[ y_t = C x_{t-1} + C u_t + Q^{1/2} w_t. \] |
| 12 | \form#11:\[ \left[\begin{array}{cc} R^{0.5}\\ P_{t|t-1}^{0.5}C' & P_{t|t-1}^{0.5}CA'\\ & Q^{0.5}\end{array}\right]<\mathrm{orth.oper.}>=\left[\begin{array}{cc} R_{y}^{0.5} & KA'\\ & P_{t+1|t}^{0.5}\\ \\\end{array}\right]\] |
| 13 | \form#12:\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \] |
| 14 | \form#13:$\psi$ |
| 15 | \form#14:$w=[w_1,\ldots,w_n]$ |
| 16 | \form#15:$\theta_i$ |
| 17 | \form#16:$\Theta$ |
| 18 | \form#17:$\Theta = [\theta_1,\ldots,\theta_n,w]$ |
| 19 | \form#18:$A=Ch' Ch$ |
| 20 | \form#19:$Ch$ |
| 21 | \form#20:\[M = L'DL\] |
36 | | \form#35:$f(x)$ |
37 | | \form#36:$f(rv|rvc,data)$ |
38 | | \form#37:$x=$ |
39 | | \form#38:$t$ |
40 | | \form#39:$t+1$ |
41 | | \form#40:$mu=A*rvc$ |
42 | | \form#41:$k$ |
43 | | \form#42:$p$ |
44 | | \form#43:$l$ |
45 | | \form#44:$w$ |
46 | | \form#45:$f(x) = a$ |
47 | | \form#46:$f(x) = Ax+B$ |
48 | | \form#47:$f(x,u)$ |
49 | | \form#48:$f(x,u) = Ax+Bu$ |
50 | | \form#49:$f(x0,u0)$ |
51 | | \form#50:$u$ |
52 | | \form#51:$[\theta r]$ |
53 | | \form#52:$\psi=\psi(y_{1:t},u_{1:t})$ |
54 | | \form#53:$u_t$ |
55 | | \form#54:$e_t$ |
56 | | \form#55:$\theta_t,r_t$ |
57 | | \form#56:$\in <0,1>$ |
58 | | \form#57:$\theta,r$ |
59 | | \form#58:$dt = [y_t psi_t] $ |
60 | | \form#59:$epdf(rv)$ |
61 | | \form#60:$\mathcal{I}$ |
62 | | \form#61:\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] |
63 | | \form#62:\[ e_t \sim \mathcal{N}(0,1). \] |
64 | | \form#63:\[ f(x) = \sum_{i=1}^{n} w_{i} f_i(x), \quad \sum_{i=1}^n w_i = 1. \] |
65 | | \form#64:$f_i(x)$ |
66 | | \form#65:$\omega$ |
67 | | \form#66:\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \] |
68 | | \form#67:$\psi$ |
69 | | \form#68:$w=[w_1,\ldots,w_n]$ |
70 | | \form#69:$\theta_i$ |
71 | | \form#70:$\Theta$ |
72 | | \form#71:$\Theta = [\theta_1,\ldots,\theta_n,w]$ |
73 | | \form#72:$p\times$ |
74 | | \form#73:$n$ |
75 | | \form#74:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^(\beta_i-1) \] |
76 | | \form#75:$\gamma=\sum_i beta_i$ |
77 | | \form#76:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \] |
78 | | \form#77:$\gamma=\sum_i \beta_i$ |
79 | | \form#78:$mu=A*rvc+mu_0$ |
80 | | \form#79:\[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] |
81 | | \form#80:$ f(rvc) = \int f(rv,rvc) d\ rv $ |
82 | | \form#81:\[ f(\theta|D) =\frac{f(D|\theta)f(\theta)}{f(D)}\] |
83 | | \form#82:$ \theta $ |
84 | | \form#83:$ D $ |
85 | | \form#84:$ f(D|\theta) $ |
86 | | \form#85:$ f(\theta) $ |
87 | | \form#86:$ f(D) $ |
88 | | \form#87:$\alpha=\mu/k+2$ |
89 | | \form#88:$\beta=\mu(\alpha-1)$ |
90 | | \form#89:\[ f(a,b,c) = f(a|b,c) f(b) f(c) \] |
91 | | \form#90:$ f(a|b,c) $ |
92 | | \form#91:$ f(b) $ |
93 | | \form#92:$ f(c) $ |
94 | | \form#93:\[ x\sim iG(a,b) => 1/x\sim G(a,1/b) \] |
95 | | \form#94:$y_t$ |
96 | | \form#95:$[\theta,\rho]$ |
97 | | \form#96:$\phi_t$ |
98 | | \form#97:$\mathcal{N}(0,1)$ |
99 | | \form#98:$\phi$ |
100 | | \form#99:\[ y_t = \theta' \phi_t + \rho e_t \] |
101 | | \form#100:$[u_t, y_{t-1 }, u_{t-1}, \ldots]$ |
102 | | \form#101:\[ y_t = \theta' \psi_t + \rho e_t \] |
| 36 | \form#35:\[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] |
| 37 | \form#36:$ f(rvc) = \int f(rv,rvc) d\ rv $ |
| 38 | \form#37:\[ f(x) = \sum_{i=1}^{n} w_{i} f_i(x), \quad \sum_{i=1}^n w_i = 1. \] |
| 39 | \form#38:$f_i(x)$ |
| 40 | \form#39:$f(x)$ |
| 41 | \form#40:$f(rv|rvc,data)$ |
| 42 | \form#41:$x=$ |
| 43 | \form#42:$ x $ |
| 44 | \form#43:$ f_x()$ |
| 45 | \form#44:$ [x_1 , x_2 , \ldots \ $ |
| 46 | \form#45:$ f_x(rv)$ |
| 47 | \form#46:$x \sim epdf(rv|cond)$ |
| 48 | \form#47:$ t $ |
| 49 | \form#48:$ t+1 $ |
| 50 | \form#49:$ f(d_{t+1} |d_{t}, \ldots d_{0}) $ |
| 51 | \form#50:$t$ |
| 52 | \form#51:$[y_t, u_t, y_{t-1 }, u_{t-1}, \ldots]$ |
| 53 | \form#52:$ f(x_t|x_{t-1}) $ |
| 54 | \form#53:$ f(d_t|x_t) $ |
| 55 | \form#54:$p$ |
| 56 | \form#55:$p\times$ |
| 57 | \form#56:$n$ |
| 58 | \form#57:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \] |
| 59 | \form#58:$\gamma=\sum_i \beta_i$ |
| 60 | \form#59:\[ f(x|\alpha,\beta) = \prod f(x_i|\alpha_i,\beta_i) \] |
| 61 | \form#60:\[ x\sim iG(a,b) => 1/x\sim G(a,1/b) \] |
| 62 | \form#61:$mu=A*rvc+mu_0$ |
| 63 | \form#62:$\mu$ |
| 64 | \form#63:$k$ |
| 65 | \form#64:$\alpha=k$ |
| 66 | \form#65:$\beta=k/\mu$ |
| 67 | \form#66:$\mu/\sqrt(k)$ |
| 68 | \form#67:$ \mu $ |
| 69 | \form#68:$ k $ |
| 70 | \form#69:$ \alpha=\mu/k^2+2 $ |
| 71 | \form#70:$ \beta=\mu(\alpha-1)$ |
| 72 | \form#71:$ \mu/\sqrt(k)$ |
| 73 | \form#72:$l$ |
| 74 | \form#73:\[ \mu = \mu_{t-1} ^{l} p^{1-l}\] |
| 75 | \form#74:$\mathcal{I}$ |
| 76 | \form#75:$\alpha$ |
| 77 | \form#76:$\beta$ |
| 78 | \form#77:$w$ |
| 79 | \form#78:$x^{(i)}, i=1..n$ |
| 80 | \form#79:$f(x) = a$ |
| 81 | \form#80:$f(x) = Ax+B$ |
| 82 | \form#81:$f(x,u)$ |
| 83 | \form#82:$f(x,u) = Ax+Bu$ |
| 84 | \form#83:$f(x0,u0)$ |
| 85 | \form#84:$A=\frac{d}{dx}f(x,u)|_{x0,u0}$ |
| 86 | \form#85:$u$ |
| 87 | \form#86:$A=\frac{d}{du}f(x,u)|_{x0,u0}$ |
| 88 | \form#87:$ f(D) $ |
| 89 | \form#88:\[ f(a,b,c) = f(a|b,c) f(b) f(c) \] |
| 90 | \form#89:$ f(a|b,c) $ |
| 91 | \form#90:$ f(b) $ |
| 92 | \form#91:$ f(c) $ |
| 93 | \form#92:\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray} |
| 94 | \form#93:$ x_t $ |
| 95 | \form#94:$ A, B, C, D$ |
| 96 | \form#95:$v_t, w_t$ |
| 97 | \form#96:$Q, R$ |
| 98 | \form#97:\begin{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \end{eqnarray} |
| 99 | \form#98:$ g(), h() $ |
| 100 | \form#99:\[ y_t = \theta' \psi_t + \rho e_t \] |
| 101 | \form#100:$y_t$ |
| 102 | \form#101:$[\theta,\rho]$ |
104 | | \form#103:$[y_t, u_t, y_{t-1 }, u_{t-1}, \ldots]$ |
105 | | \form#104:$ f(x_t|x_{t-1}) $ |
106 | | \form#105:$ f(d_t|x_t) $ |
107 | | \form#106:$ x $ |
108 | | \form#107:$ f_x()$ |
109 | | \form#108:$ [x_1 , x_2 , \ldots \ $ |
110 | | \form#109:$ f_x(rv)$ |
111 | | \form#110:$ t $ |
112 | | \form#111:$ t+1 $ |
113 | | \form#112:$ f(d_{t+1} |d_{t}, \ldots d_{0}) $ |
114 | | \form#113:$ \mu $ |
115 | | \form#114:$ k $ |
116 | | \form#115:$ \alpha=\mu/k^2+2 $ |
117 | | \form#116:$ \beta=\mu(\alpha-1)$ |
118 | | \form#117:$ \mu/\sqrt(k)$ |
119 | | \form#118:$ y_t $ |
120 | | \form#119:$ dt = [y_t psi_t] $ |
121 | | \form#120:$ [d_1, d_2, \ldots d_t] $ |
122 | | \form#121:\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray} |
123 | | \form#122:$ x_t $ |
124 | | \form#123:$ A, B, C, D$ |
125 | | \form#124:$v_t, w_t$ |
126 | | \form#125:$Q, R\$, respectively. Both prior and posterior densities on the state are Gaussian, i.e. of the class enorm. There is a range of classes that implements this functionality, namely: - KalmanFull which implements the estimation algorithm on full matrices, - KalmanCh which implements the estimation algorithm using choleski decompositions and QR algorithm. \section ekf Extended Kalman Filtering Extended Kalman filtering arise by linearization of non-linear state space model: \f{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \f} where $ |
127 | | \form#126:$Q, R$ |
128 | | \form#127:\begin{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \end{eqnarray} |
129 | | \form#128:$ g(), h() $ |
130 | | \form#129:\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \] |
131 | | \form#130:\[ \nu_t = \sum_{i=0}^{n} 1 \] |
132 | | \form#131:$ \theta_t , r_t $ |
133 | | \form#132:\[ V_t = V_{t-1} + \phi \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \] |
134 | | \form#133:\[ \nu_t = \nu_{t-1} + \phi + (1-\phi) \nu_0 \] |
135 | | \form#134:$ \phi $ |
136 | | \form#135:$ \phi \in [0,1]$ |
137 | | \form#136:\[ \mathrm{win_length} = \frac{1}{1-\phi}\] |
138 | | \form#137:$ \phi=0.9 $ |
139 | | \form#138:$ V_0 , \nu_0 $ |
140 | | \form#139:$ V_t , \nu_t $ |
141 | | \form#140:$ \phi<1 $ |
| 104 | \form#103:$\mathcal{N}(0,1)$ |
| 105 | \form#104:\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \] |
| 106 | \form#105:\[ \nu_t = \sum_{i=0}^{n} 1 \] |
| 107 | \form#106:$ \theta_t , r_t $ |
| 108 | \form#107:\[ V_t = V_{t-1} + \phi \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \] |
| 109 | \form#108:\[ \nu_t = \nu_{t-1} + \phi + (1-\phi) \nu_0 \] |
| 110 | \form#109:$ \phi $ |
| 111 | \form#110:$ \phi \in [0,1]$ |
| 112 | \form#111:\[ \mathrm{win_length} = \frac{1}{1-\phi}\] |
| 113 | \form#112:$ \phi=0.9 $ |
| 114 | \form#113:$ V_0 , \nu_0 $ |
| 115 | \form#114:$ V_t , \nu_t $ |
| 116 | \form#115:$ \phi<1 $ |
| 117 | \form#116:$ [d_1, d_2, \ldots d_t] $ |