| 87 |  | // #define log std::log | 
                        | 88 |  | // #define exp std::exp | 
                        | 89 |  | // #define sqrt std::sqrt | 
                        | 90 |  | // #define R_FINITE std::isfinite | 
                        | 91 |  | // | 
                        | 92 |  | // double  Gamma_RNG::sample() { | 
                        | 93 |  | // //A copy of rgamma code from the R package!! | 
                        | 94 |  | // // | 
                        | 95 |  | // | 
                        | 96 |  | // /* Constants : */ | 
                        | 97 |  | // const static double sqrt32 = 5.656854; | 
                        | 98 |  | // const static double exp_m1 = 0.36787944117144232159;/* exp(-1) = 1/e */ | 
                        | 99 |  | // | 
                        | 100 |  | // /* Coefficients q[k] - for q0 = sum(q[k]*a^(-k)) | 
                        | 101 |  | // * Coefficients a[k] - for q = q0+(t*t/2)*sum(a[k]*v^k) | 
                        | 102 |  | // * Coefficients e[k] - for exp(q)-1 = sum(e[k]*q^k) | 
                        | 103 |  | // */ | 
                        | 104 |  | // const static double q1 = 0.04166669; | 
                        | 105 |  | // const static double q2 = 0.02083148; | 
                        | 106 |  | // const static double q3 = 0.00801191; | 
                        | 107 |  | // const static double q4 = 0.00144121; | 
                        | 108 |  | // const static double q5 = -7.388e-5; | 
                        | 109 |  | // const static double q6 = 2.4511e-4; | 
                        | 110 |  | // const static double q7 = 2.424e-4; | 
                        | 111 |  | // | 
                        | 112 |  | // const static double a1 = 0.3333333; | 
                        | 113 |  | // const static double a2 = -0.250003; | 
                        | 114 |  | // const static double a3 = 0.2000062; | 
                        | 115 |  | // const static double a4 = -0.1662921; | 
                        | 116 |  | // const static double a5 = 0.1423657; | 
                        | 117 |  | // const static double a6 = -0.1367177; | 
                        | 118 |  | // const static double a7 = 0.1233795; | 
                        | 119 |  | // | 
                        | 120 |  | // /* State variables [FIXME for threading!] :*/ | 
                        | 121 |  | // static double aa = 0.; | 
                        | 122 |  | // static double aaa = 0.; | 
                        | 123 |  | // static double s, s2, d;    /* no. 1 (step 1) */ | 
                        | 124 |  | // static double q0, b, si, c;/* no. 2 (step 4) */ | 
                        | 125 |  | // | 
                        | 126 |  | // double e, p, q, r, t, u, v, w, x, ret_val; | 
                        | 127 |  | // double a=alpha; | 
                        | 128 |  | // double scale=1.0/beta; | 
                        | 129 |  | // | 
                        | 130 |  | // if ( !R_FINITE ( a ) || !R_FINITE ( scale ) || a < 0.0 || scale <= 0.0 ) | 
                        | 131 |  | // {it_error ( "Gamma_RNG wrong parameters" );} | 
                        | 132 |  | // | 
                        | 133 |  | // if ( a < 1. ) { /* GS algorithm for parameters a < 1 */ | 
                        | 134 |  | // if ( a == 0 ) | 
                        | 135 |  | // return 0.; | 
                        | 136 |  | // e = 1.0 + exp_m1 * a; | 
                        | 137 |  | // for ( ;; ) {  //VS repeat | 
                        | 138 |  | // p = e * unif_rand(); | 
                        | 139 |  | // if ( p >= 1.0 ) { | 
                        | 140 |  | // x = -log ( ( e - p ) / a ); | 
                        | 141 |  | // if ( exp_rand() >= ( 1.0 - a ) * log ( x ) ) | 
                        | 142 |  | // break; | 
                        | 143 |  | // } | 
                        | 144 |  | // else { | 
                        | 145 |  | // x = exp ( log ( p ) / a ); | 
                        | 146 |  | // if ( exp_rand() >= x ) | 
                        | 147 |  | // break; | 
                        | 148 |  | // } | 
                        | 149 |  | // } | 
                        | 150 |  | // return scale * x; | 
                        | 151 |  | // } | 
                        | 152 |  | // | 
                        | 153 |  | // /* --- a >= 1 : GD algorithm --- */ | 
                        | 154 |  | // | 
                        | 155 |  | // /* Step 1: Recalculations of s2, s, d if a has changed */ | 
                        | 156 |  | // if ( a != aa ) { | 
                        | 157 |  | // aa = a; | 
                        | 158 |  | // s2 = a - 0.5; | 
                        | 159 |  | // s = sqrt ( s2 ); | 
                        | 160 |  | // d = sqrt32 - s * 12.0; | 
                        | 161 |  | // } | 
                        | 162 |  | // /* Step 2: t = standard normal deviate, | 
                        | 163 |  | // x = (s,1/2) -normal deviate. */ | 
                        | 164 |  | // | 
                        | 165 |  | // /* immediate acceptance (i) */ | 
                        | 166 |  | // t = norm_rand(); | 
                        | 167 |  | // x = s + 0.5 * t; | 
                        | 168 |  | // ret_val = x * x; | 
                        | 169 |  | // if ( t >= 0.0 ) | 
                        | 170 |  | // return scale * ret_val; | 
                        | 171 |  | // | 
                        | 172 |  | // /* Step 3: u = 0,1 - uniform sample. squeeze acceptance (s) */ | 
                        | 173 |  | // u = unif_rand(); | 
                        | 174 |  | // if ( ( d * u ) <= ( t * t * t ) ) | 
                        | 175 |  | // return scale * ret_val; | 
                        | 176 |  | // | 
                        | 177 |  | // /* Step 4: recalculations of q0, b, si, c if necessary */ | 
                        | 178 |  | // | 
                        | 179 |  | // if ( a != aaa ) { | 
                        | 180 |  | // aaa = a; | 
                        | 181 |  | // r = 1.0 / a; | 
                        | 182 |  | // q0 = ( ( ( ( ( ( q7 * r + q6 ) * r + q5 ) * r + q4 ) * r + q3 ) * r | 
                        | 183 |  | // + q2 ) * r + q1 ) * r; | 
                        | 184 |  | // | 
                        | 185 |  | // /* Approximation depending on size of parameter a */ | 
                        | 186 |  | // /* The constants in the expressions for b, si and c */ | 
                        | 187 |  | // /* were established by numerical experiments */ | 
                        | 188 |  | // | 
                        | 189 |  | // if ( a <= 3.686 ) { | 
                        | 190 |  | // b = 0.463 + s + 0.178 * s2; | 
                        | 191 |  | // si = 1.235; | 
                        | 192 |  | // c = 0.195 / s - 0.079 + 0.16 * s; | 
                        | 193 |  | // } | 
                        | 194 |  | // else if ( a <= 13.022 ) { | 
                        | 195 |  | // b = 1.654 + 0.0076 * s2; | 
                        | 196 |  | // si = 1.68 / s + 0.275; | 
                        | 197 |  | // c = 0.062 / s + 0.024; | 
                        | 198 |  | // } | 
                        | 199 |  | // else { | 
                        | 200 |  | // b = 1.77; | 
                        | 201 |  | // si = 0.75; | 
                        | 202 |  | // c = 0.1515 / s; | 
                        | 203 |  | // } | 
                        | 204 |  | // } | 
                        | 205 |  | // /* Step 5: no quotient test if x not positive */ | 
                        | 206 |  | // | 
                        | 207 |  | // if ( x > 0.0 ) { | 
                        | 208 |  | // /* Step 6: calculation of v and quotient q */ | 
                        | 209 |  | // v = t / ( s + s ); | 
                        | 210 |  | // if ( fabs ( v ) <= 0.25 ) | 
                        | 211 |  | // q = q0 + 0.5 * t * t * ( ( ( ( ( ( a7 * v + a6 ) * v + a5 ) * v + a4 ) * v | 
                        | 212 |  | // + a3 ) * v + a2 ) * v + a1 ) * v; | 
                        | 213 |  | // else | 
                        | 214 |  | // q = q0 - s * t + 0.25 * t * t + ( s2 + s2 ) * log ( 1.0 + v ); | 
                        | 215 |  | // | 
                        | 216 |  | // | 
                        | 217 |  | // /* Step 7: quotient acceptance (q) */ | 
                        | 218 |  | // if ( log ( 1.0 - u ) <= q ) | 
                        | 219 |  | // return scale * ret_val; | 
                        | 220 |  | // } | 
                        | 221 |  | // | 
                        | 222 |  | // for ( ;; ) { //VS repeat | 
                        | 223 |  | // /* Step 8: e = standard exponential deviate | 
                        | 224 |  | // *      u =  0,1 -uniform deviate | 
                        | 225 |  | // *      t = (b,si)-double exponential (laplace) sample */ | 
                        | 226 |  | // e = exp_rand(); | 
                        | 227 |  | // u = unif_rand(); | 
                        | 228 |  | // u = u + u - 1.0; | 
                        | 229 |  | // if ( u < 0.0 ) | 
                        | 230 |  | // t = b - si * e; | 
                        | 231 |  | // else | 
                        | 232 |  | // t = b + si * e; | 
                        | 233 |  | // /* Step  9:  rejection if t < tau(1) = -0.71874483771719 */ | 
                        | 234 |  | // if ( t >= -0.71874483771719 ) { | 
                        | 235 |  | // /* Step 10:      calculation of v and quotient q */ | 
                        | 236 |  | // v = t / ( s + s ); | 
                        | 237 |  | // if ( fabs ( v ) <= 0.25 ) | 
                        | 238 |  | // q = q0 + 0.5 * t * t * | 
                        | 239 |  | // ( ( ( ( ( ( a7 * v + a6 ) * v + a5 ) * v + a4 ) * v + a3 ) * v | 
                        | 240 |  | // + a2 ) * v + a1 ) * v; | 
                        | 241 |  | // else | 
                        | 242 |  | // q = q0 - s * t + 0.25 * t * t + ( s2 + s2 ) * log ( 1.0 + v ); | 
                        | 243 |  | // /* Step 11:      hat acceptance (h) */ | 
                        | 244 |  | // /* (if q not positive go to step 8) */ | 
                        | 245 |  | // if ( q > 0.0 ) { | 
                        | 246 |  | // // TODO: w = expm1(q); | 
                        | 247 |  | // w = exp ( q )-1; | 
                        | 248 |  | // /*  ^^^^^ original code had approximation with rel.err < 2e-7 */ | 
                        | 249 |  | // /* if t is rejected sample again at step 8 */ | 
                        | 250 |  | // if ( ( c * fabs ( u ) ) <= ( w * exp ( e - 0.5 * t * t ) ) ) | 
                        | 251 |  | // break; | 
                        | 252 |  | // } | 
                        | 253 |  | // } | 
                        | 254 |  | // } /* repeat .. until  `t' is accepted */ | 
                        | 255 |  | // x = s + 0.5 * t; | 
                        | 256 |  | // return scale * x * x; | 
                        | 257 |  | // } | 
                      
                        |  | 87 | #define log std::log | 
                        |  | 88 | #define exp std::exp | 
                        |  | 89 | #define sqrt std::sqrt | 
                        |  | 90 | #define R_FINITE std::isfinite | 
                        |  | 91 |  | 
                        |  | 92 | double  Gamma_RNG::sample() { | 
                        |  | 93 | //A copy of rgamma code from the R package!! | 
                        |  | 94 | // | 
                        |  | 95 |  | 
                        |  | 96 | /* Constants : */ | 
                        |  | 97 | const static double sqrt32 = 5.656854; | 
                        |  | 98 | const static double exp_m1 = 0.36787944117144232159;/* exp(-1) = 1/e */ | 
                        |  | 99 |  | 
                        |  | 100 | /* Coefficients q[k] - for q0 = sum(q[k]*a^(-k)) | 
                        |  | 101 | * Coefficients a[k] - for q = q0+(t*t/2)*sum(a[k]*v^k) | 
                        |  | 102 | * Coefficients e[k] - for exp(q)-1 = sum(e[k]*q^k) | 
                        |  | 103 | */ | 
                        |  | 104 | const static double q1 = 0.04166669; | 
                        |  | 105 | const static double q2 = 0.02083148; | 
                        |  | 106 | const static double q3 = 0.00801191; | 
                        |  | 107 | const static double q4 = 0.00144121; | 
                        |  | 108 | const static double q5 = -7.388e-5; | 
                        |  | 109 | const static double q6 = 2.4511e-4; | 
                        |  | 110 | const static double q7 = 2.424e-4; | 
                        |  | 111 |  | 
                        |  | 112 | const static double a1 = 0.3333333; | 
                        |  | 113 | const static double a2 = -0.250003; | 
                        |  | 114 | const static double a3 = 0.2000062; | 
                        |  | 115 | const static double a4 = -0.1662921; | 
                        |  | 116 | const static double a5 = 0.1423657; | 
                        |  | 117 | const static double a6 = -0.1367177; | 
                        |  | 118 | const static double a7 = 0.1233795; | 
                        |  | 119 |  | 
                        |  | 120 | /* State variables [FIXME for threading!] :*/ | 
                        |  | 121 | static double aa = 0.; | 
                        |  | 122 | static double aaa = 0.; | 
                        |  | 123 | static double s, s2, d;    /* no. 1 (step 1) */ | 
                        |  | 124 | static double q0, b, si, c;/* no. 2 (step 4) */ | 
                        |  | 125 |  | 
                        |  | 126 | double e, p, q, r, t, u, v, w, x, ret_val; | 
                        |  | 127 | double a=alpha; | 
                        |  | 128 | double scale=1.0/beta; | 
                        |  | 129 |  | 
                        |  | 130 | if ( !R_FINITE ( a ) || !R_FINITE ( scale ) || a < 0.0 || scale <= 0.0 ) | 
                        |  | 131 | {it_error ( "Gamma_RNG wrong parameters" );} | 
                        |  | 132 |  | 
                        |  | 133 | if ( a < 1. ) { /* GS algorithm for parameters a < 1 */ | 
                        |  | 134 | if ( a == 0 ) | 
                        |  | 135 | return 0.; | 
                        |  | 136 | e = 1.0 + exp_m1 * a; | 
                        |  | 137 | for ( ;; ) {  //VS repeat | 
                        |  | 138 | p = e * unif_rand(); | 
                        |  | 139 | if ( p >= 1.0 ) { | 
                        |  | 140 | x = -log ( ( e - p ) / a ); | 
                        |  | 141 | if ( exp_rand() >= ( 1.0 - a ) * log ( x ) ) | 
                        |  | 142 | break; | 
                        |  | 143 | } | 
                        |  | 144 | else { | 
                        |  | 145 | x = exp ( log ( p ) / a ); | 
                        |  | 146 | if ( exp_rand() >= x ) | 
                        |  | 147 | break; | 
                        |  | 148 | } | 
                        |  | 149 | } | 
                        |  | 150 | return scale * x; | 
                        |  | 151 | } | 
                        |  | 152 |  | 
                        |  | 153 | /* --- a >= 1 : GD algorithm --- */ | 
                        |  | 154 |  | 
                        |  | 155 | /* Step 1: Recalculations of s2, s, d if a has changed */ | 
                        |  | 156 | if ( a != aa ) { | 
                        |  | 157 | aa = a; | 
                        |  | 158 | s2 = a - 0.5; | 
                        |  | 159 | s = sqrt ( s2 ); | 
                        |  | 160 | d = sqrt32 - s * 12.0; | 
                        |  | 161 | } | 
                        |  | 162 | /* Step 2: t = standard normal deviate, | 
                        |  | 163 | x = (s,1/2) -normal deviate. */ | 
                        |  | 164 |  | 
                        |  | 165 | /* immediate acceptance (i) */ | 
                        |  | 166 | t = norm_rand(); | 
                        |  | 167 | x = s + 0.5 * t; | 
                        |  | 168 | ret_val = x * x; | 
                        |  | 169 | if ( t >= 0.0 ) | 
                        |  | 170 | return scale * ret_val; | 
                        |  | 171 |  | 
                        |  | 172 | /* Step 3: u = 0,1 - uniform sample. squeeze acceptance (s) */ | 
                        |  | 173 | u = unif_rand(); | 
                        |  | 174 | if ( ( d * u ) <= ( t * t * t ) ) | 
                        |  | 175 | return scale * ret_val; | 
                        |  | 176 |  | 
                        |  | 177 | /* Step 4: recalculations of q0, b, si, c if necessary */ | 
                        |  | 178 |  | 
                        |  | 179 | if ( a != aaa ) { | 
                        |  | 180 | aaa = a; | 
                        |  | 181 | r = 1.0 / a; | 
                        |  | 182 | q0 = ( ( ( ( ( ( q7 * r + q6 ) * r + q5 ) * r + q4 ) * r + q3 ) * r | 
                        |  | 183 | + q2 ) * r + q1 ) * r; | 
                        |  | 184 |  | 
                        |  | 185 | /* Approximation depending on size of parameter a */ | 
                        |  | 186 | /* The constants in the expressions for b, si and c */ | 
                        |  | 187 | /* were established by numerical experiments */ | 
                        |  | 188 |  | 
                        |  | 189 | if ( a <= 3.686 ) { | 
                        |  | 190 | b = 0.463 + s + 0.178 * s2; | 
                        |  | 191 | si = 1.235; | 
                        |  | 192 | c = 0.195 / s - 0.079 + 0.16 * s; | 
                        |  | 193 | } | 
                        |  | 194 | else if ( a <= 13.022 ) { | 
                        |  | 195 | b = 1.654 + 0.0076 * s2; | 
                        |  | 196 | si = 1.68 / s + 0.275; | 
                        |  | 197 | c = 0.062 / s + 0.024; | 
                        |  | 198 | } | 
                        |  | 199 | else { | 
                        |  | 200 | b = 1.77; | 
                        |  | 201 | si = 0.75; | 
                        |  | 202 | c = 0.1515 / s; | 
                        |  | 203 | } | 
                        |  | 204 | } | 
                        |  | 205 | /* Step 5: no quotient test if x not positive */ | 
                        |  | 206 |  | 
                        |  | 207 | if ( x > 0.0 ) { | 
                        |  | 208 | /* Step 6: calculation of v and quotient q */ | 
                        |  | 209 | v = t / ( s + s ); | 
                        |  | 210 | if ( fabs ( v ) <= 0.25 ) | 
                        |  | 211 | q = q0 + 0.5 * t * t * ( ( ( ( ( ( a7 * v + a6 ) * v + a5 ) * v + a4 ) * v | 
                        |  | 212 | + a3 ) * v + a2 ) * v + a1 ) * v; | 
                        |  | 213 | else | 
                        |  | 214 | q = q0 - s * t + 0.25 * t * t + ( s2 + s2 ) * log ( 1.0 + v ); | 
                        |  | 215 |  | 
                        |  | 216 |  | 
                        |  | 217 | /* Step 7: quotient acceptance (q) */ | 
                        |  | 218 | if ( log ( 1.0 - u ) <= q ) | 
                        |  | 219 | return scale * ret_val; | 
                        |  | 220 | } | 
                        |  | 221 |  | 
                        |  | 222 | for ( ;; ) { //VS repeat | 
                        |  | 223 | /* Step 8: e = standard exponential deviate | 
                        |  | 224 | *      u =  0,1 -uniform deviate | 
                        |  | 225 | *      t = (b,si)-double exponential (laplace) sample */ | 
                        |  | 226 | e = exp_rand(); | 
                        |  | 227 | u = unif_rand(); | 
                        |  | 228 | u = u + u - 1.0; | 
                        |  | 229 | if ( u < 0.0 ) | 
                        |  | 230 | t = b - si * e; | 
                        |  | 231 | else | 
                        |  | 232 | t = b + si * e; | 
                        |  | 233 | /* Step  9:  rejection if t < tau(1) = -0.71874483771719 */ | 
                        |  | 234 | if ( t >= -0.71874483771719 ) { | 
                        |  | 235 | /* Step 10:      calculation of v and quotient q */ | 
                        |  | 236 | v = t / ( s + s ); | 
                        |  | 237 | if ( fabs ( v ) <= 0.25 ) | 
                        |  | 238 | q = q0 + 0.5 * t * t * | 
                        |  | 239 | ( ( ( ( ( ( a7 * v + a6 ) * v + a5 ) * v + a4 ) * v + a3 ) * v | 
                        |  | 240 | + a2 ) * v + a1 ) * v; | 
                        |  | 241 | else | 
                        |  | 242 | q = q0 - s * t + 0.25 * t * t + ( s2 + s2 ) * log ( 1.0 + v ); | 
                        |  | 243 | /* Step 11:      hat acceptance (h) */ | 
                        |  | 244 | /* (if q not positive go to step 8) */ | 
                        |  | 245 | if ( q > 0.0 ) { | 
                        |  | 246 | // TODO: w = expm1(q); | 
                        |  | 247 | w = exp ( q )-1; | 
                        |  | 248 | /*  ^^^^^ original code had approximation with rel.err < 2e-7 */ | 
                        |  | 249 | /* if t is rejected sample again at step 8 */ | 
                        |  | 250 | if ( ( c * fabs ( u ) ) <= ( w * exp ( e - 0.5 * t * t ) ) ) | 
                        |  | 251 | break; | 
                        |  | 252 | } | 
                        |  | 253 | } | 
                        |  | 254 | } /* repeat .. until  `t' is accepted */ | 
                        |  | 255 | x = s + 0.5 * t; | 
                        |  | 256 | return scale * x * x; | 
                        |  | 257 | } |