116 | | <a name="l00138"></a>00138 } |
117 | | <a name="l00139"></a>00139 |
118 | | <a name="l00140"></a>00140 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
119 | | <a name="l00141"></a><a class="code" href="classKalman.html#e945d9205ca14acbd83ba80ea6f72b8e">00141</a> <span class="keywordtype">void</span> <a class="code" href="classKalman.html#e945d9205ca14acbd83ba80ea6f72b8e" title="Here dt = [yt;ut] of appropriate dimensions.">Kalman<sq_T>::bayes</a>( <span class="keyword">const</span> vec &dt , <span class="keywordtype">bool</span> evalll) { |
120 | | <a name="l00142"></a>00142 it_assert_debug( dt.length()==( dimy+dimu ),<span class="stringliteral">"KalmanFull::bayes wrong size of dt"</span> ); |
121 | | <a name="l00143"></a>00143 |
122 | | <a name="l00144"></a>00144 vec u = dt.get( dimy,dimy+dimu-1 ); |
123 | | <a name="l00145"></a>00145 vec y = dt.get( 0,dimy-1 ); |
124 | | <a name="l00146"></a>00146 <span class="comment">//Time update</span> |
125 | | <a name="l00147"></a>00147 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> = A*<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> + B*u; |
126 | | <a name="l00148"></a>00148 <span class="comment">//P = A*P*A.transpose() + Q; in sq_T</span> |
127 | | <a name="l00149"></a>00149 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.mult_sym( A ); |
128 | | <a name="l00150"></a>00150 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>+=Q; |
129 | | <a name="l00151"></a>00151 |
130 | | <a name="l00152"></a>00152 <span class="comment">//Data update</span> |
131 | | <a name="l00153"></a>00153 <span class="comment">//_Ry = C*P*C.transpose() + R; in sq_T</span> |
132 | | <a name="l00154"></a>00154 _Ry.mult_sym( C, <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>); |
133 | | <a name="l00155"></a>00155 _Ry+=R; |
134 | | <a name="l00156"></a>00156 |
135 | | <a name="l00157"></a>00157 mat Pfull = <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.to_mat(); |
136 | | <a name="l00158"></a>00158 |
137 | | <a name="l00159"></a>00159 _Ry.inv( _iRy ); <span class="comment">// result is in _iRy;</span> |
138 | | <a name="l00160"></a>00160 _K = Pfull*C.transpose()*(_iRy.to_mat()); |
139 | | <a name="l00161"></a>00161 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a> -= _K*C*Pfull; <span class="comment">// P = P -KCP;</span> |
140 | | <a name="l00162"></a>00162 _yp = y-C*<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>-D*u; <span class="comment">//y prediction</span> |
141 | | <a name="l00163"></a>00163 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> += _K*( _yp ); |
142 | | <a name="l00164"></a>00164 |
143 | | <a name="l00165"></a>00165 <span class="keywordflow">if</span> (evalll==<span class="keyword">true</span>) { |
144 | | <a name="l00166"></a>00166 <a class="code" href="classBM.html#5623fef6572a08c2b53b8c87b82dc979" title="Logarithm of marginalized data likelihood.">ll</a>+= -0.5*(_Ry.cols()*0.79817986835811504957 \ |
145 | | <a name="l00167"></a>00167 +_Ry.logdet() +_iRy.qform(_yp)); |
146 | | <a name="l00168"></a>00168 } |
147 | | <a name="l00169"></a>00169 }; |
148 | | <a name="l00170"></a>00170 |
| 117 | <a name="l00138"></a>00138 _Ry = eye(dimy); <span class="comment">// needed in inv(_iRy)</span> |
| 118 | <a name="l00139"></a>00139 } |
| 119 | <a name="l00140"></a>00140 |
| 120 | <a name="l00141"></a>00141 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 121 | <a name="l00142"></a><a class="code" href="classKalman.html#e945d9205ca14acbd83ba80ea6f72b8e">00142</a> <span class="keywordtype">void</span> <a class="code" href="classKalman.html#e945d9205ca14acbd83ba80ea6f72b8e" title="Here dt = [yt;ut] of appropriate dimensions.">Kalman<sq_T>::bayes</a>( <span class="keyword">const</span> vec &dt , <span class="keywordtype">bool</span> <a class="code" href="classBM.html#bf6fb59b30141074f8ee1e2f43d03129" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) { |
| 122 | <a name="l00143"></a>00143 it_assert_debug( dt.length()==( dimy+dimu ),<span class="stringliteral">"KalmanFull::bayes wrong size of dt"</span> ); |
| 123 | <a name="l00144"></a>00144 |
| 124 | <a name="l00145"></a>00145 vec u = dt.get( dimy,dimy+dimu-1 ); |
| 125 | <a name="l00146"></a>00146 vec y = dt.get( 0,dimy-1 ); |
| 126 | <a name="l00147"></a>00147 <span class="comment">//Time update</span> |
| 127 | <a name="l00148"></a>00148 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> = A*<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> + B*u; |
| 128 | <a name="l00149"></a>00149 <span class="comment">//P = A*P*A.transpose() + Q; in sq_T</span> |
| 129 | <a name="l00150"></a>00150 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.mult_sym( A ); |
| 130 | <a name="l00151"></a>00151 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>+=Q; |
| 131 | <a name="l00152"></a>00152 |
| 132 | <a name="l00153"></a>00153 <span class="comment">//Data update</span> |
| 133 | <a name="l00154"></a>00154 <span class="comment">//_Ry = C*P*C.transpose() + R; in sq_T</span> |
| 134 | <a name="l00155"></a>00155 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.mult_sym( C, _Ry); |
| 135 | <a name="l00156"></a>00156 _Ry+=R; |
| 136 | <a name="l00157"></a>00157 |
| 137 | <a name="l00158"></a>00158 mat Pfull = <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.to_mat(); |
| 138 | <a name="l00159"></a>00159 |
| 139 | <a name="l00160"></a>00160 _Ry.inv( _iRy ); <span class="comment">// result is in _iRy;</span> |
| 140 | <a name="l00161"></a>00161 _K = Pfull*C.transpose()*(_iRy.to_mat()); |
| 141 | <a name="l00162"></a>00162 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a> -= _K*C*Pfull; <span class="comment">// P = P -KCP;</span> |
| 142 | <a name="l00163"></a>00163 _yp = y-C*<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>-D*u; <span class="comment">//y prediction</span> |
| 143 | <a name="l00164"></a>00164 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> += _K*( _yp ); |
| 144 | <a name="l00165"></a>00165 |
| 145 | <a name="l00166"></a>00166 <span class="keywordflow">if</span> (evalll==<span class="keyword">true</span>) { |
| 146 | <a name="l00167"></a>00167 <a class="code" href="classBM.html#5623fef6572a08c2b53b8c87b82dc979" title="Logarithm of marginalized data likelihood.">ll</a>+= -0.5*(_Ry.cols()*0.79817986835811504957 \ |
| 147 | <a name="l00168"></a>00168 +_Ry.logdet() +_iRy.qform(_yp)); |
| 148 | <a name="l00169"></a>00169 } |
| 149 | <a name="l00170"></a>00170 }; |
150 | | <a name="l00172"></a>00172 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
151 | | <a name="l00173"></a><a class="code" href="classEKF.html#ec441d41529eeae4a1309426386b4a10">00173</a> <a class="code" href="classEKF.html#ec441d41529eeae4a1309426386b4a10" title="Default constructor.">EKF<sq_T>::EKF</a>(<span class="keyword">const</span> <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a> fxu0, <span class="keyword">const</span> <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a> hxu0): fxu(fxu0), hxu(hxu0),<a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><<a class="code" href="classfsqmat.html" title="Fake sqmat. This class maps sqmat operations to operations on full matrix.">fsqmat</a>>(fxu0._dimx(),fxu0._dimu(),hxu0._dimy()) { |
152 | | <a name="l00174"></a>00174 |
153 | | <a name="l00175"></a>00175 <span class="comment">//initialize matrices A C, later, these will be only updated!</span> |
154 | | <a name="l00176"></a>00176 fxu.<a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,zeros(dimu),A,<span class="keyword">true</span>); |
155 | | <a name="l00177"></a>00177 hxu.<a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,zeros(dimu),C,<span class="keyword">true</span>); |
156 | | <a name="l00178"></a>00178 } |
157 | | <a name="l00179"></a>00179 |
158 | | <a name="l00180"></a>00180 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
159 | | <a name="l00181"></a><a class="code" href="classEKF.html#fb0a08463f14e5584344ea2df99fe747">00181</a> <span class="keywordtype">void</span> <a class="code" href="classEKF.html#fb0a08463f14e5584344ea2df99fe747" title="Here dt = [yt;ut] of appropriate dimensions.">EKF<sq_T>::bayes</a>( <span class="keyword">const</span> vec &dt , <span class="keywordtype">bool</span> evalll) { |
160 | | <a name="l00182"></a>00182 it_assert_debug( dt.length()==( dimy+dimu ),<span class="stringliteral">"KalmanFull::bayes wrong size of dt"</span> ); |
| 151 | <a name="l00172"></a>00172 <span class="comment">//TODO why not const pointer??</span> |
| 152 | <a name="l00173"></a>00173 |
| 153 | <a name="l00174"></a>00174 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 154 | <a name="l00175"></a><a class="code" href="classEKF.html#003687c6cf2a01be90a00e2c99e3863e">00175</a> <a class="code" href="classEKF.html#003687c6cf2a01be90a00e2c99e3863e" title="Default constructor.">EKF<sq_T>::EKF</a>( <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* pfxu0, <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* phxu0, sq_T Q0, sq_T R0, vec mu0, mat P0): pfxu(pfxu0), phxu(phxu0), <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><<a class="code" href="classfsqmat.html" title="Fake sqmat. This class maps sqmat operations to operations on full matrix.">fsqmat</a>>(pfxu0->_dimx(),pfxu0->_dimu(),phxu0->_dimy()) { |
| 155 | <a name="l00176"></a>00176 |
| 156 | <a name="l00177"></a>00177 <span class="comment">//initialize matrices A C, later, these will be only updated!</span> |
| 157 | <a name="l00178"></a>00178 pfxu-><a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,zeros(dimu),A,<span class="keyword">true</span>); |
| 158 | <a name="l00179"></a>00179 pfxu-><a class="code" href="classdiffbifn.html#1978bafd7909d15c139a08c495c24aa0" title="Evaluates and writes result into A .">dfdu_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,zeros(dimu),B,<span class="keyword">true</span>); |
| 159 | <a name="l00180"></a>00180 phxu-><a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,zeros(dimu),C,<span class="keyword">true</span>); |
| 160 | <a name="l00181"></a>00181 phxu-><a class="code" href="classdiffbifn.html#1978bafd7909d15c139a08c495c24aa0" title="Evaluates and writes result into A .">dfdu_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,zeros(dimu),D,<span class="keyword">true</span>); |
| 161 | <a name="l00182"></a>00182 |
162 | | <a name="l00184"></a>00184 vec u = dt.get( dimy,dimy+dimu-1 ); |
163 | | <a name="l00185"></a>00185 vec y = dt.get( 0,dimy-1 ); |
164 | | <a name="l00186"></a>00186 <span class="comment">//Time update</span> |
165 | | <a name="l00187"></a>00187 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> = fxu.<a class="code" href="classdiffbifn.html#ad7673e16aa1a046b131b24c731c4632" title="Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ).">eval</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>, u); |
166 | | <a name="l00188"></a>00188 fxu.<a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,u,A,<span class="keyword">false</span>); <span class="comment">//update A by a derivative of fx</span> |
167 | | <a name="l00189"></a>00189 |
168 | | <a name="l00190"></a>00190 <span class="comment">//P = A*P*A.transpose() + Q; in sq_T</span> |
169 | | <a name="l00191"></a>00191 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.<a class="code" href="classfsqmat.html#acc5d2d0a243f1de6d0106065f01f518" title="Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C&#39;$.">mult_sym</a>( A ); |
170 | | <a name="l00192"></a>00192 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>+=Q; |
171 | | <a name="l00193"></a>00193 |
172 | | <a name="l00194"></a>00194 <span class="comment">//Data update</span> |
173 | | <a name="l00195"></a>00195 hxu.<a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,u,C,<span class="keyword">false</span>); <span class="comment">//update C by a derivative hx</span> |
174 | | <a name="l00196"></a>00196 <span class="comment">//_Ry = C*P*C.transpose() + R; in sq_T</span> |
175 | | <a name="l00197"></a>00197 _Ry.<a class="code" href="classfsqmat.html#acc5d2d0a243f1de6d0106065f01f518" title="Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C&#39;$.">mult_sym</a>( C, <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>); |
176 | | <a name="l00198"></a>00198 _Ry+=R; |
177 | | <a name="l00199"></a>00199 |
178 | | <a name="l00200"></a>00200 mat Pfull = <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.<a class="code" href="classfsqmat.html#cedf4f048309056f4262c930914dfda8" title="Conversion to full matrix.">to_mat</a>(); |
179 | | <a name="l00201"></a>00201 |
180 | | <a name="l00202"></a>00202 _Ry.<a class="code" href="classfsqmat.html#9fa853e1ca28f2a1a1c43377e798ecb1">inv</a>( _iRy ); <span class="comment">// result is in _iRy;</span> |
181 | | <a name="l00203"></a>00203 _K = Pfull*C.transpose()*(_iRy.<a class="code" href="classfsqmat.html#cedf4f048309056f4262c930914dfda8" title="Conversion to full matrix.">to_mat</a>()); |
182 | | <a name="l00204"></a>00204 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a> -= _K*C*Pfull; <span class="comment">// P = P -KCP;</span> |
183 | | <a name="l00205"></a>00205 _yp = y-hxu.<a class="code" href="classdiffbifn.html#ad7673e16aa1a046b131b24c731c4632" title="Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ).">eval</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,u); <span class="comment">//y prediction</span> |
184 | | <a name="l00206"></a>00206 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> += _K*( _yp ); |
185 | | <a name="l00207"></a>00207 |
186 | | <a name="l00208"></a>00208 <span class="keywordflow">if</span> (evalll==<span class="keyword">true</span>) { |
187 | | <a name="l00209"></a>00209 <a class="code" href="classBM.html#5623fef6572a08c2b53b8c87b82dc979" title="Logarithm of marginalized data likelihood.">ll</a>+= -0.5*(_Ry.<a class="code" href="classsqmat.html#ecc2e2540f95a04f4449842588170f5b" title="Reimplementing common functions of mat: cols().">cols</a>()*0.79817986835811504957 \ |
188 | | <a name="l00210"></a>00210 +_Ry.<a class="code" href="classfsqmat.html#bf212272ec195ad2706e2bf4d8e7c9b3" title="Logarithm of a determinant.">logdet</a>() +_iRy.<a class="code" href="classfsqmat.html#6d047b9f7a27dfc093303a13cc9b1fba" title="Evaluates quadratic form $x= v&#39;*V*v$;.">qform</a>(_yp)); |
189 | | <a name="l00211"></a>00211 } |
190 | | <a name="l00212"></a>00212 }; |
191 | | <a name="l00213"></a>00213 |
192 | | <a name="l00214"></a>00214 |
193 | | <a name="l00215"></a>00215 <span class="preprocessor">#endif // KF_H</span> |
194 | | <a name="l00216"></a>00216 <span class="preprocessor"></span> |
195 | | <a name="l00217"></a>00217 |
196 | | </pre></div><hr size="1"><address style="text-align: right;"><small>Generated on Sun Feb 17 16:14:14 2008 for mixpp by |
| 163 | <a name="l00184"></a>00184 R = R0; |
| 164 | <a name="l00185"></a>00185 Q = Q0; |
| 165 | <a name="l00186"></a>00186 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> = mu0; |
| 166 | <a name="l00187"></a>00187 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a> = P0; |
| 167 | <a name="l00188"></a>00188 |
| 168 | <a name="l00189"></a>00189 <span class="keyword">using</span> std::cout; |
| 169 | <a name="l00190"></a>00190 cout<<A<<std::endl; |
| 170 | <a name="l00191"></a>00191 cout<<B<<std::endl; |
| 171 | <a name="l00192"></a>00192 cout<<C<<std::endl; |
| 172 | <a name="l00193"></a>00193 cout<<D<<std::endl; |
| 173 | <a name="l00194"></a>00194 |
| 174 | <a name="l00195"></a>00195 } |
| 175 | <a name="l00196"></a>00196 |
| 176 | <a name="l00197"></a>00197 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 177 | <a name="l00198"></a><a class="code" href="classEKF.html#fb0a08463f14e5584344ea2df99fe747">00198</a> <span class="keywordtype">void</span> <a class="code" href="classEKF.html#fb0a08463f14e5584344ea2df99fe747" title="Here dt = [yt;ut] of appropriate dimensions.">EKF<sq_T>::bayes</a>( <span class="keyword">const</span> vec &dt , <span class="keywordtype">bool</span> <a class="code" href="classBM.html#bf6fb59b30141074f8ee1e2f43d03129" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) { |
| 178 | <a name="l00199"></a>00199 it_assert_debug( dt.length()==( dimy+dimu ),<span class="stringliteral">"KalmanFull::bayes wrong size of dt"</span> ); |
| 179 | <a name="l00200"></a>00200 |
| 180 | <a name="l00201"></a>00201 vec u = dt.get( dimy,dimy+dimu-1 ); |
| 181 | <a name="l00202"></a>00202 vec y = dt.get( 0,dimy-1 ); |
| 182 | <a name="l00203"></a>00203 <span class="comment">//Time update</span> |
| 183 | <a name="l00204"></a>00204 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> = pfxu-><a class="code" href="classdiffbifn.html#ad7673e16aa1a046b131b24c731c4632" title="Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ).">eval</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>, u); |
| 184 | <a name="l00205"></a>00205 pfxu-><a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,u,A,<span class="keyword">false</span>); <span class="comment">//update A by a derivative of fx</span> |
| 185 | <a name="l00206"></a>00206 |
| 186 | <a name="l00207"></a>00207 <span class="comment">//P = A*P*A.transpose() + Q; in sq_T</span> |
| 187 | <a name="l00208"></a>00208 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.<a class="code" href="classfsqmat.html#acc5d2d0a243f1de6d0106065f01f518" title="Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C&#39;$.">mult_sym</a>( A ); |
| 188 | <a name="l00209"></a>00209 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>+=Q; |
| 189 | <a name="l00210"></a>00210 |
| 190 | <a name="l00211"></a>00211 <span class="comment">//Data update</span> |
| 191 | <a name="l00212"></a>00212 phxu-><a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,u,C,<span class="keyword">false</span>); <span class="comment">//update C by a derivative hx</span> |
| 192 | <a name="l00213"></a>00213 <span class="comment">//_Ry = C*P*C.transpose() + R; in sq_T</span> |
| 193 | <a name="l00214"></a>00214 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.<a class="code" href="classfsqmat.html#acc5d2d0a243f1de6d0106065f01f518" title="Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C&#39;$.">mult_sym</a>( C, _Ry); |
| 194 | <a name="l00215"></a>00215 _Ry+=R; |
| 195 | <a name="l00216"></a>00216 |
| 196 | <a name="l00217"></a>00217 mat Pfull = <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.<a class="code" href="classfsqmat.html#cedf4f048309056f4262c930914dfda8" title="Conversion to full matrix.">to_mat</a>(); |
| 197 | <a name="l00218"></a>00218 |
| 198 | <a name="l00219"></a>00219 _Ry.<a class="code" href="classfsqmat.html#9fa853e1ca28f2a1a1c43377e798ecb1" title="Matrix inversion preserving the chosen form.">inv</a>( _iRy ); <span class="comment">// result is in _iRy;</span> |
| 199 | <a name="l00220"></a>00220 _K = Pfull*C.transpose()*(_iRy.<a class="code" href="classfsqmat.html#cedf4f048309056f4262c930914dfda8" title="Conversion to full matrix.">to_mat</a>()); |
| 200 | <a name="l00221"></a>00221 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a> -= _K*C*Pfull; <span class="comment">// P = P -KCP;</span> |
| 201 | <a name="l00222"></a>00222 _yp = y-phxu-><a class="code" href="classdiffbifn.html#ad7673e16aa1a046b131b24c731c4632" title="Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ).">eval</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,u); <span class="comment">//y prediction</span> |
| 202 | <a name="l00223"></a>00223 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> += _K*( _yp ); |
| 203 | <a name="l00224"></a>00224 |
| 204 | <a name="l00225"></a>00225 <span class="keywordflow">if</span> (evalll==<span class="keyword">true</span>) { |
| 205 | <a name="l00226"></a>00226 <a class="code" href="classBM.html#5623fef6572a08c2b53b8c87b82dc979" title="Logarithm of marginalized data likelihood.">ll</a>+= -0.5*(_Ry.<a class="code" href="classsqmat.html#ecc2e2540f95a04f4449842588170f5b" title="Reimplementing common functions of mat: cols().">cols</a>()*0.79817986835811504957 \ |
| 206 | <a name="l00227"></a>00227 +_Ry.<a class="code" href="classfsqmat.html#bf212272ec195ad2706e2bf4d8e7c9b3" title="Logarithm of a determinant.">logdet</a>() +_iRy.<a class="code" href="classfsqmat.html#6d047b9f7a27dfc093303a13cc9b1fba" title="Evaluates quadratic form $x= v&#39;*V*v$;.">qform</a>(_yp)); |
| 207 | <a name="l00228"></a>00228 } |
| 208 | <a name="l00229"></a>00229 }; |
| 209 | <a name="l00230"></a>00230 |
| 210 | <a name="l00231"></a>00231 |
| 211 | <a name="l00232"></a>00232 <span class="preprocessor">#endif // KF_H</span> |
| 212 | <a name="l00233"></a>00233 <span class="preprocessor"></span> |
| 213 | <a name="l00234"></a>00234 |
| 214 | </pre></div><hr size="1"><address style="text-align: right;"><small>Generated on Mon Feb 18 21:48:39 2008 for mixpp by |