- Timestamp:
- 02/22/08 16:40:12 (17 years ago)
- Location:
- doc/latex
- Files:
-
- 10 modified
Legend:
- Unmodified
- Added
- Removed
-
doc/latex/classBM.tex
r22 r28 19 19 20 20 \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item 21 virtual void {\bf bayes} (const vec \&dt , bool evall=true)=021 virtual void {\bf bayes} (const vec \&dt)=0 22 22 \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item 23 23 void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} 24 24 25 \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\end{CompactItemize} 25 \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 26 {\bf epdf} $\ast$ {\bf \_\-epdf} ()\label{classBM_a5b8f6c8a872738cfaa30ab010e8c077} 27 28 \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\end{CompactItemize} 26 29 \subsection*{Public Attributes} 27 30 \begin{CompactItemize} … … 29 32 double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} 30 33 31 \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\end{CompactItemize} 34 \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item 35 bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} 36 37 \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize} 32 38 33 39 … … 38 44 \index{BM@{BM}!bayes@{bayes}} 39 45 \index{bayes@{bayes}!BM@{BM}} 40 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void BM::bayes (const vec \& {\em dt} , bool {\em evall} = {\tt true})\hspace{0.3cm}{\tt [pure virtual]}}\label{classBM_c52edf4ad6e1dff9bf64b9e1e0cfb1f0}46 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void BM::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [pure virtual]}}\label{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf} 41 47 42 48 … … 46 52 \item[Parameters:] 47 53 \begin{description} 48 \item[{\em dt}]vector of input data \ item[{\em evall}]If true, the filter will compute likelihood of the data record and store it in {\tt ll} \end{description}54 \item[{\em dt}]vector of input data \end{description} 49 55 \end{Desc} 50 56 51 52 Implemented in {\bf KalmanFull} \doxyref{}{p.}{classKalmanFull_048b13739b94c331cda08249b278552b}, {\bf Kalman$<$ sq\_\-T $>$} \doxyref{}{p.}{classKalman_e945d9205ca14acbd83ba80ea6f72b8e}, {\bf EKF$<$ sq\_\-T $>$} \doxyref{}{p.}{classEKF_fb0a08463f14e5584344ea2df99fe747}, {\bf PF} \doxyref{}{p.}{classPF_eb06bd7d4325f22f54233967295793b9}, {\bf TrivialPF} \doxyref{}{p.}{classTrivialPF_77a92bf054d763f806d27fc37a058389}, and {\bf Kalman$<$ fsqmat $>$} \doxyref{}{p.}{classKalman_e945d9205ca14acbd83ba80ea6f72b8e}.53 57 54 58 The documentation for this class was generated from the following file:\begin{CompactItemize} -
doc/latex/classKalman.tex
r22 r28 29 29 30 30 \begin{CompactList}\small\item\em Full constructor. \item\end{CompactList}\item 31 void {\bf bayes} (const vec \&dt, bool evalll=true)\label{classKalman_e945d9205ca14acbd83ba80ea6f72b8e}31 void {\bf bayes} (const vec \&dt, bool {\bf evalll}=true)\label{classKalman_e945d9205ca14acbd83ba80ea6f72b8e} 32 32 33 \begin{CompactList}\small\item\em Here dt = [yt;ut] of appropriate dimensions. \item\end{CompactList}\end{CompactItemize} 33 \begin{CompactList}\small\item\em Here dt = [yt;ut] of appropriate dimensions. \item\end{CompactList}\item 34 virtual void {\bf bayes} (const vec \&dt)=0 35 \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item 36 void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} 37 38 \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 39 {\bf epdf} $\ast$ {\bf \_\-epdf} ()\label{classBM_a5b8f6c8a872738cfaa30ab010e8c077} 40 41 \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\end{CompactItemize} 34 42 \subsection*{Public Attributes} 35 43 \begin{CompactItemize} … … 40 48 sq\_\-T {\bf P}\label{classKalman_188cd5ac1c9e496b1a371eb7c57c97d3} 41 49 42 \begin{CompactList}\small\item\em Mean value of the posterior density. \item\end{CompactList}\end{CompactItemize} 50 \begin{CompactList}\small\item\em Mean value of the posterior density. \item\end{CompactList}\item 51 double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} 52 53 \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item 54 bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} 55 56 \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize} 43 57 \subsection*{Protected Attributes} 44 58 \begin{CompactItemize} … … 96 110 \doxyref{Kalman}{p.}{classKalman} filter with covariance matrices in square root form. 97 111 112 \subsection{Member Function Documentation} 113 \index{Kalman@{Kalman}!bayes@{bayes}} 114 \index{bayes@{bayes}!Kalman@{Kalman}} 115 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void BM::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [pure virtual, inherited]}}\label{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf} 116 117 118 Incremental Bayes rule. 119 120 \begin{Desc} 121 \item[Parameters:] 122 \begin{description} 123 \item[{\em dt}]vector of input data \end{description} 124 \end{Desc} 125 126 98 127 The documentation for this class was generated from the following file:\begin{CompactItemize} 99 128 \item -
doc/latex/classKalmanFull.tex
r19 r28 26 26 27 27 \begin{CompactList}\small\item\em Full constructor. \item\end{CompactList}\item 28 void {\bf bayes} (const vec \&dt, bool evalll=true)\label{classKalmanFull_048b13739b94c331cda08249b278552b}28 void {\bf bayes} (const vec \&dt, bool {\bf evalll}=true)\label{classKalmanFull_048b13739b94c331cda08249b278552b} 29 29 30 \begin{CompactList}\small\item\em Here dt = [yt;ut] of appropriate dimensions. \item\end{CompactList}\end{CompactItemize} 30 \begin{CompactList}\small\item\em Here dt = [yt;ut] of appropriate dimensions. \item\end{CompactList}\item 31 virtual void {\bf bayes} (const vec \&dt)=0 32 \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item 33 void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} 34 35 \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 36 {\bf epdf} $\ast$ {\bf \_\-epdf} ()\label{classBM_a5b8f6c8a872738cfaa30ab010e8c077} 37 38 \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\end{CompactItemize} 31 39 \subsection*{Public Attributes} 32 40 \begin{CompactItemize} … … 37 45 mat {\bf P}\label{classKalmanFull_b75dc059e84fa8ffc076203b30f926cc} 38 46 39 \begin{CompactList}\small\item\em Variance of the posterior density. \item\end{CompactList}\end{CompactItemize} 47 \begin{CompactList}\small\item\em Variance of the posterior density. \item\end{CompactList}\item 48 double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} 49 50 \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item 51 bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} 52 53 \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize} 40 54 \subsection*{Friends} 41 55 \begin{CompactItemize} … … 49 63 Basic \doxyref{Kalman}{p.}{classKalman} filter with full matrices (education purpose only)! Will be deleted soon! 50 64 65 \subsection{Member Function Documentation} 66 \index{KalmanFull@{KalmanFull}!bayes@{bayes}} 67 \index{bayes@{bayes}!KalmanFull@{KalmanFull}} 68 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void BM::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [pure virtual, inherited]}}\label{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf} 69 70 71 Incremental Bayes rule. 72 73 \begin{Desc} 74 \item[Parameters:] 75 \begin{description} 76 \item[{\em dt}]vector of input data \end{description} 77 \end{Desc} 78 79 51 80 The documentation for this class was generated from the following files:\begin{CompactItemize} 52 81 \item -
doc/latex/classPF.tex
r19 r28 29 29 30 30 \item 31 void {\bf bayes} (const vec \&dt, bool evell) 32 \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\end{CompactItemize} 31 void \textbf{bayes} (const vec \&dt, bool evell)\label{classPF_eb06bd7d4325f22f54233967295793b9} 32 33 \item 34 virtual void {\bf bayes} (const vec \&dt)=0 35 \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item 36 void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} 37 38 \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 39 {\bf epdf} $\ast$ {\bf \_\-epdf} ()\label{classBM_a5b8f6c8a872738cfaa30ab010e8c077} 40 41 \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\end{CompactItemize} 42 \subsection*{Public Attributes} 43 \begin{CompactItemize} 44 \item 45 double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} 46 47 \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item 48 bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} 49 50 \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize} 33 51 \subsection*{Protected Attributes} 34 52 \begin{CompactItemize} … … 53 71 \index{PF@{PF}!bayes@{bayes}} 54 72 \index{bayes@{bayes}!PF@{PF}} 55 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}v oid PF::bayes (const vec \& {\em dt}, bool {\em evall})\hspace{0.3cm}{\tt [inline, virtual]}}\label{classPF_eb06bd7d4325f22f54233967295793b9}73 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void BM::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [pure virtual, inherited]}}\label{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf} 56 74 57 75 … … 61 79 \item[Parameters:] 62 80 \begin{description} 63 \item[{\em dt}]vector of input data \ item[{\em evall}]If true, the filter will compute likelihood of the data record and store it in {\tt ll} \end{description}81 \item[{\em dt}]vector of input data \end{description} 64 82 \end{Desc} 65 83 66 67 Implements {\bf BM} \doxyref{}{p.}{classBM_c52edf4ad6e1dff9bf64b9e1e0cfb1f0}.68 69 Reimplemented in {\bf TrivialPF} \doxyref{}{p.}{classTrivialPF_77a92bf054d763f806d27fc37a058389}.70 84 71 85 The documentation for this class was generated from the following files:\begin{CompactItemize} -
doc/latex/classTrivialPF.tex
r19 r28 17 17 \begin{center} 18 18 \leavevmode 19 \includegraphics[width= 67pt]{classTrivialPF__coll__graph}19 \includegraphics[width=85pt]{classTrivialPF__coll__graph} 20 20 \end{center} 21 21 \end{figure} … … 23 23 \begin{CompactItemize} 24 24 \item 25 \textbf{TrivialPF} ({\bf mpdf} \&par, {\bf mpdf} \&obs, {\bf mpdf} \&prop, int n0)\label{classTrivialPF_e6d9e3506da221a10a517bd5712b5a84}25 \textbf{TrivialPF} ({\bf mpdf} \&par, {\bf mpdf} \&obs, {\bf BM} \&prop, int n0)\label{classTrivialPF_c5a420747532e24b25cb0d835288795b} 26 26 27 27 \item … … 29 29 30 30 \item 31 void {\bf bayes} (const vec \&dt, bool evalll) 32 \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\end{CompactItemize} 31 void \textbf{bayes} (const vec \&dt, bool {\bf evalll})\label{classTrivialPF_77a92bf054d763f806d27fc37a058389} 32 33 \item 34 ivec {\bf resample} (RESAMPLING\_\-METHOD method=SYSTEMATIC)\label{classPF_a0e26b2f6a5884aca49122f3e4f0cf19} 35 36 \begin{CompactList}\small\item\em Returns indexes of particles that should be resampled. The ordering MUST guarantee inplace replacement. (Important for MPF.). \item\end{CompactList}\item 37 virtual void {\bf bayes} (const vec \&dt)=0 38 \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item 39 void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} 40 41 \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 42 {\bf epdf} $\ast$ {\bf \_\-epdf} ()\label{classBM_a5b8f6c8a872738cfaa30ab010e8c077} 43 44 \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\end{CompactItemize} 45 \subsection*{Public Attributes} 46 \begin{CompactItemize} 47 \item 48 double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} 49 50 \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item 51 bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} 52 53 \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize} 54 \subsection*{Protected Attributes} 55 \begin{CompactItemize} 56 \item 57 int \textbf{n}\label{classPF_2c2f44ed7a4eaa42e07bdb58d503f280} 58 59 \item 60 vec \textbf{w}\label{classPF_f6bc92f7979af4513b06b161497ba868} 61 62 \item 63 Uniform\_\-RNG \textbf{URNG}\label{classPF_3568ca7c3b3175d98b548f496b4c34dd} 64 65 \end{CompactItemize} 33 66 34 67 … … 39 72 \index{TrivialPF@{TrivialPF}!bayes@{bayes}} 40 73 \index{bayes@{bayes}!TrivialPF@{TrivialPF}} 41 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}v oid TrivialPF::bayes (const vec \& {\em dt}, bool {\em evall})\hspace{0.3cm}{\tt [virtual]}}\label{classTrivialPF_77a92bf054d763f806d27fc37a058389}74 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void BM::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [pure virtual, inherited]}}\label{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf} 42 75 43 76 … … 47 80 \item[Parameters:] 48 81 \begin{description} 49 \item[{\em dt}]vector of input data \ item[{\em evall}]If true, the filter will compute likelihood of the data record and store it in {\tt ll} \end{description}82 \item[{\em dt}]vector of input data \end{description} 50 83 \end{Desc} 51 84 52 53 Reimplemented from {\bf PF} \doxyref{}{p.}{classPF_eb06bd7d4325f22f54233967295793b9}.54 85 55 86 The documentation for this class was generated from the following files:\begin{CompactItemize} -
doc/latex/classeEF.tex
r19 r28 28 28 virtual void \textbf{dupdate} (mat \&v, double nu=1.0)\label{classeEF_5863718c3b2fb1496dece10c5b745d5c} 29 29 30 \end{CompactItemize} 30 \item 31 virtual vec {\bf sample} ()=0 32 \begin{CompactList}\small\item\em Returns the required moment of the \doxyref{epdf}{p.}{classepdf}. \item\end{CompactList}\item 33 virtual double {\bf eval} (const vec \&val)\label{classepdf_f333ceeb88ebc37d81fcd4cea4526bfc} 34 35 \begin{CompactList}\small\item\em Compute probability of argument {\tt val}. \item\end{CompactList}\end{CompactItemize} 31 36 32 37 … … 36 41 More?... 37 42 43 \subsection{Member Function Documentation} 44 \index{eEF@{eEF}!sample@{sample}} 45 \index{sample@{sample}!eEF@{eEF}} 46 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual vec epdf::sample ()\hspace{0.3cm}{\tt [pure virtual, inherited]}}\label{classepdf_7f74d871d50b9ff360f1b3879092a9fa} 47 48 49 Returns the required moment of the \doxyref{epdf}{p.}{classepdf}. 50 51 Returns a sample from the density, $x \sim epdf(rv)$ 52 53 Implemented in {\bf enorm$<$ sq\_\-T $>$} \doxyref{}{p.}{classenorm_6020bcd89db2c9584bd8871001bd2023}. 54 38 55 The documentation for this class was generated from the following file:\begin{CompactItemize} 39 56 \item -
doc/latex/classfnc.tex
r22 r28 22 22 23 23 \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} 24 \subsection*{Protected Attributes} 25 \begin{CompactItemize} 26 \item 27 int \textbf{dimy}\label{classfnc_22d51d10a7901331167f64f80d1af8e9} 28 29 \end{CompactItemize} 24 30 25 31 -
doc/latex/classfsqmat.tex
r22 r28 33 33 34 34 \item 35 void \textbf{inv} ({\bf fsqmat} \&Inv)\label{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1}36 37 \item38 35 void {\bf clear} ()\label{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4} 39 36 … … 42 39 43 40 \begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 44 virtual void {\bf inv} ({\bf fsqmat} $\ast$Inv)41 virtual void {\bf inv} ({\bf fsqmat} \&Inv) 45 42 \begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item 46 43 double {\bf logdet} ()\label{classfsqmat_bf212272ec195ad2706e2bf4d8e7c9b3} … … 60 57 {\bf fsqmat} \& \textbf{operator $\ast$=} (double x)\label{classfsqmat_8f7ce97628a50e06641281096b2af9b7} 61 58 62 \end{CompactItemize} 59 \item 60 int {\bf cols} () const \label{classsqmat_ecc2e2540f95a04f4449842588170f5b} 61 62 \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\item 63 int {\bf rows} () const \label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646} 64 65 \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\end{CompactItemize} 63 66 \subsection*{Protected Attributes} 64 67 \begin{CompactItemize} 65 68 \item 66 69 mat \textbf{M}\label{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453} 70 71 \item 72 int \textbf{dim}\label{classsqmat_0abed904bdc0882373ba9adba919689d} 67 73 68 74 \end{CompactItemize} … … 103 109 Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_faa3bc90be142adde9cf74f573c70157}.\index{fsqmat@{fsqmat}!inv@{inv}} 104 110 \index{inv@{inv}!fsqmat@{fsqmat}} 105 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}v irtual void fsqmat::inv ({\bf fsqmat} $\ast$ {\em Inv})\hspace{0.3cm}{\tt [virtual]}}\label{classfsqmat_788423cc2679620dd6da8d2fca2e3e4d}111 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::inv ({\bf fsqmat} \& {\em Inv})\hspace{0.3cm}{\tt [virtual]}}\label{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1} 106 112 107 113 … … 124 130 Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_b5236c8a050199e1a9d338b0da1a08d2}. 125 131 126 The documentation for this class was generated from the following file :\begin{CompactItemize}132 The documentation for this class was generated from the following files:\begin{CompactItemize} 127 133 \item 128 work/mixpp/bdm/math/{\bf libDC.h}\end{CompactItemize} 134 work/mixpp/bdm/math/{\bf libDC.h}\item 135 work/mixpp/bdm/math/libDC.cpp\item 136 work/mixpp/bdm/math/libDC\_\-.cpp\end{CompactItemize} -
doc/latex/doxygen.sty
r22 r28 11 11 \rhead[\fancyplain{}{\bfseries\leftmark}] 12 12 {\fancyplain{}{\bfseries\thepage}} 13 \rfoot[\fancyplain{}{\bfseries\scriptsize Generated on Sun Feb 17 16:14:142008 for mixpp by Doxygen }]{}14 \lfoot[]{\fancyplain{}{\bfseries\scriptsize Generated on Sun Feb 17 16:14:142008 for mixpp by Doxygen }}13 \rfoot[\fancyplain{}{\bfseries\scriptsize Generated on Mon Feb 18 21:48:39 2008 for mixpp by Doxygen }]{} 14 \lfoot[]{\fancyplain{}{\bfseries\scriptsize Generated on Mon Feb 18 21:48:39 2008 for mixpp by Doxygen }} 15 15 \cfoot{} 16 16 \newenvironment{Code} -
doc/latex/refman.tex
r22 r28 21 21 {\large Generated by Doxygen 1.5.3}\\ 22 22 \vspace*{0.5cm} 23 {\small Sun Feb 17 16:14:142008}\\23 {\small Mon Feb 18 21:48:39 2008}\\ 24 24 \end{center} 25 25 \end{titlepage} … … 35 35 \chapter{mixpp File Index} 36 36 \input{files} 37 \chapter{mixpp Page Index} 38 \input{pages} 37 39 \chapter{mixpp Class Documentation} 38 40 \input{classbilinfn} … … 63 65 \include{libDS_8h} 64 66 \include{libEF_8h} 67 \chapter{mixpp Page Documentation} 68 \input{codingrules} 65 69 \printindex 66 70 \end{document}