136 | | <a name="l00115"></a>00115 <span class="comment">//</span> |
137 | | <a name="l00116"></a>00116 <span class="comment">//TODO test if rv and BMcond.rv are compatible.</span> |
138 | | <a name="l00117"></a>00117 <span class="comment">// rv.add ( rvlin );</span> |
139 | | <a name="l00118"></a>00118 <span class="comment">//</span> |
140 | | <a name="l00119"></a>00119 |
141 | | <a name="l00120"></a>00120 <span class="keywordflow">if</span> ( n>10000 ) {it_error ( <span class="stringliteral">"increase 10000 here!"</span> );} |
142 | | <a name="l00121"></a>00121 |
143 | | <a name="l00122"></a>00122 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<n;i++ ) { |
144 | | <a name="l00123"></a>00123 Bms[i] = <span class="keyword">new</span> BM_T ( BMcond0 ); <span class="comment">//copy constructor</span> |
145 | | <a name="l00124"></a>00124 <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& pom=Bms[i]->posterior(); |
146 | | <a name="l00125"></a>00125 jest.set_elements ( i,1.0/n,&pom ); |
147 | | <a name="l00126"></a>00126 } |
148 | | <a name="l00127"></a>00127 }; |
149 | | <a name="l00128"></a>00128 |
150 | | <a name="l00129"></a>00129 ~<a class="code" href="classbdm_1_1MPF.html" title="Marginalized Particle filter.">MPF</a>() { |
151 | | <a name="l00130"></a>00130 } |
152 | | <a name="l00131"></a>00131 |
153 | | <a name="l00132"></a>00132 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1MPF.html#286d040770d08bd7ff416cea617b1b14" title="Incremental Bayes rule.">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
154 | | <a name="l00133"></a>00133 <span class="keyword">const</span> epdf& posterior()<span class="keyword"> const </span>{<span class="keywordflow">return</span> jest;} |
155 | | <a name="l00134"></a>00134 <span class="keyword">const</span> epdf* _e()<span class="keyword"> const </span>{<span class="keywordflow">return</span> &jest;} <span class="comment">//Fixme: is it useful?</span> |
156 | | <a name="l00136"></a><a class="code" href="classbdm_1_1MPF.html#dcecdaf2acbbee51acf3018a70989a7e">00136</a> <span class="comment"></span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1MPF.html#dcecdaf2acbbee51acf3018a70989a7e" title="Set postrior of rvc to samples from epdf0. Statistics of Bms are not re-computed!...">set_est</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& epdf0 ) { |
157 | | <a name="l00137"></a>00137 <a class="code" href="classbdm_1_1PF.html#6f1988db4c3f602d187a6c15ec89cb1e">PF::set_est</a> ( epdf0 ); <span class="comment">// sample params in condition</span> |
158 | | <a name="l00138"></a>00138 <span class="comment">// copy conditions to BMs</span> |
159 | | <a name="l00139"></a>00139 |
160 | | <a name="l00140"></a>00140 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1PF.html#eeafaf9b8ad75fe62ee9fd6369e3f7fe" title="number of particles;">n</a>;i++ ) {Bms[i]->condition ( <a class="code" href="classbdm_1_1PF.html#914bd66025692c4018dbd482cb3c47c1" title="pointer into eEmp ">_samples</a> ( i ) );} |
161 | | <a name="l00141"></a>00141 } |
162 | | <a name="l00142"></a>00142 |
163 | | <a name="l00144"></a><a class="code" href="classbdm_1_1MPF.html#82b5a34d9ed0e78452f98d2ecbf1e93c">00144</a> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a>* <a class="code" href="classbdm_1_1MPF.html#82b5a34d9ed0e78452f98d2ecbf1e93c" title="Access function.">_BM</a> ( <span class="keywordtype">int</span> i ) {<span class="keywordflow">return</span> Bms[i];} |
164 | | <a name="l00145"></a>00145 }; |
165 | | <a name="l00146"></a>00146 |
166 | | <a name="l00147"></a>00147 <span class="keyword">template</span><<span class="keyword">class</span> BM_T> |
167 | | <a name="l00148"></a><a class="code" href="classbdm_1_1MPF.html#286d040770d08bd7ff416cea617b1b14">00148</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1MPF.html" title="Marginalized Particle filter.">MPF<BM_T>::bayes</a> ( <span class="keyword">const</span> vec &dt ) { |
168 | | <a name="l00149"></a>00149 <span class="keywordtype">int</span> i; |
169 | | <a name="l00150"></a>00150 vec lls ( <a class="code" href="classbdm_1_1PF.html#eeafaf9b8ad75fe62ee9fd6369e3f7fe" title="number of particles;">n</a> ); |
170 | | <a name="l00151"></a>00151 vec llsP ( <a class="code" href="classbdm_1_1PF.html#eeafaf9b8ad75fe62ee9fd6369e3f7fe" title="number of particles;">n</a> ); |
171 | | <a name="l00152"></a>00152 ivec ind; |
172 | | <a name="l00153"></a>00153 <span class="keywordtype">double</span> mlls=-std::numeric_limits<double>::infinity(); |
173 | | <a name="l00154"></a>00154 |
174 | | <a name="l00155"></a>00155 <span class="preprocessor">#pragma omp parallel for</span> |
175 | | <a name="l00156"></a>00156 <span class="preprocessor"></span> <span class="keywordflow">for</span> ( i=0;i<<a class="code" href="classbdm_1_1PF.html#eeafaf9b8ad75fe62ee9fd6369e3f7fe" title="number of particles;">n</a>;i++ ) { |
176 | | <a name="l00157"></a>00157 <span class="comment">//generate new samples from paramater evolution model;</span> |
177 | | <a name="l00158"></a>00158 <a class="code" href="classbdm_1_1PF.html#914bd66025692c4018dbd482cb3c47c1" title="pointer into eEmp ">_samples</a> ( i ) = <a class="code" href="classbdm_1_1PF.html#521e9621d3b5e1274275f323691afdaf" title="Parameter evolution model.">par</a>-><a class="code" href="classbdm_1_1mpdf.html#f0c1db6fcbb3aae2dd6123884457a367" title="Returns a sample from the density conditioned on cond, .">samplecond</a> ( <a class="code" href="classbdm_1_1PF.html#914bd66025692c4018dbd482cb3c47c1" title="pointer into eEmp ">_samples</a> ( i ) ); |
178 | | <a name="l00159"></a>00159 llsP ( i ) = <a class="code" href="classbdm_1_1PF.html#521e9621d3b5e1274275f323691afdaf" title="Parameter evolution model.">par</a>-><a class="code" href="classbdm_1_1mpdf.html#05e843fd11c410a99dad2b88c55aca80">_e</a>()-><a class="code" href="classbdm_1_1epdf.html#deab266d63c236c277538867d5c3f249" title="Compute log-probability of argument val.">evallog</a> ( <a class="code" href="classbdm_1_1PF.html#914bd66025692c4018dbd482cb3c47c1" title="pointer into eEmp ">_samples</a> ( i ) ); |
179 | | <a name="l00160"></a>00160 Bms[i]->condition ( <a class="code" href="classbdm_1_1PF.html#914bd66025692c4018dbd482cb3c47c1" title="pointer into eEmp ">_samples</a> ( i ) ); |
180 | | <a name="l00161"></a>00161 Bms[i]->bayes ( dt ); |
181 | | <a name="l00162"></a>00162 lls ( i ) = Bms[i]->_ll(); <span class="comment">// lls above is also in proposal her must be lls(i) =, not +=!!</span> |
182 | | <a name="l00163"></a>00163 <span class="keywordflow">if</span> ( lls ( i ) >mlls ) mlls=lls ( i ); <span class="comment">//find maximum likelihood (for numerical stability)</span> |
183 | | <a name="l00164"></a>00164 } |
184 | | <a name="l00165"></a>00165 |
185 | | <a name="l00166"></a>00166 <span class="keywordtype">double</span> sum_w=0.0; |
186 | | <a name="l00167"></a>00167 <span class="comment">// compute weights</span> |
187 | | <a name="l00168"></a>00168 <span class="preprocessor">#pragma omp parallel for</span> |
188 | | <a name="l00169"></a>00169 <span class="preprocessor"></span> <span class="keywordflow">for</span> ( i=0;i<n;i++ ) { |
189 | | <a name="l00170"></a>00170 <a class="code" href="classbdm_1_1PF.html#f5149d5522d1095d39240c4c607f61a3" title="pointer into eEmp ">_w</a> ( i ) *= exp ( lls ( i ) - mlls ); <span class="comment">// multiply w by likelihood</span> |
190 | | <a name="l00171"></a>00171 sum_w+=<a class="code" href="classbdm_1_1PF.html#f5149d5522d1095d39240c4c607f61a3" title="pointer into eEmp ">_w</a> ( i ); |
191 | | <a name="l00172"></a>00172 } |
192 | | <a name="l00173"></a>00173 |
193 | | <a name="l00174"></a>00174 <span class="keywordflow">if</span> ( sum_w >0.0 ) { |
194 | | <a name="l00175"></a>00175 <a class="code" href="classbdm_1_1PF.html#f5149d5522d1095d39240c4c607f61a3" title="pointer into eEmp ">_w</a> /=sum_w; <span class="comment">//?</span> |
195 | | <a name="l00176"></a>00176 } |
196 | | <a name="l00177"></a>00177 <span class="keywordflow">else</span> { |
197 | | <a name="l00178"></a>00178 cout<<<span class="stringliteral">"sum(w)==0"</span><<endl; |
198 | | <a name="l00179"></a>00179 } |
199 | | <a name="l00180"></a>00180 |
| 136 | <a name="l00115"></a>00115 jest.set_n(n); |
| 137 | <a name="l00116"></a>00116 <span class="comment">//</span> |
| 138 | <a name="l00117"></a>00117 <span class="comment">//TODO test if rv and BMcond.rv are compatible.</span> |
| 139 | <a name="l00118"></a>00118 <span class="comment">// rv.add ( rvlin );</span> |
| 140 | <a name="l00119"></a>00119 <span class="comment">//</span> |
| 141 | <a name="l00120"></a>00120 |
| 142 | <a name="l00121"></a>00121 <span class="keywordflow">if</span> ( n>10000 ) {it_error ( <span class="stringliteral">"increase 10000 here!"</span> );} |
| 143 | <a name="l00122"></a>00122 |
| 144 | <a name="l00123"></a>00123 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<n;i++ ) { |
| 145 | <a name="l00124"></a>00124 Bms[i] = <span class="keyword">new</span> BM_T ( BMcond0 ); <span class="comment">//copy constructor</span> |
| 146 | <a name="l00125"></a>00125 <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& pom=Bms[i]->posterior(); |
| 147 | <a name="l00126"></a>00126 jest.set_elements ( i,1.0/n,&pom ); |
| 148 | <a name="l00127"></a>00127 } |
| 149 | <a name="l00128"></a>00128 }; |
| 150 | <a name="l00129"></a>00129 |
| 151 | <a name="l00130"></a>00130 ~<a class="code" href="classbdm_1_1MPF.html" title="Marginalized Particle filter.">MPF</a>() { |
| 152 | <a name="l00131"></a>00131 } |
| 153 | <a name="l00132"></a>00132 |
| 154 | <a name="l00133"></a>00133 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1MPF.html#286d040770d08bd7ff416cea617b1b14" title="Incremental Bayes rule.">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
| 155 | <a name="l00134"></a>00134 <span class="keyword">const</span> epdf& posterior()<span class="keyword"> const </span>{<span class="keywordflow">return</span> jest;} |
| 156 | <a name="l00135"></a>00135 <span class="keyword">const</span> epdf* _e()<span class="keyword"> const </span>{<span class="keywordflow">return</span> &jest;} <span class="comment">//Fixme: is it useful?</span> |
| 157 | <a name="l00137"></a><a class="code" href="classbdm_1_1MPF.html#dcecdaf2acbbee51acf3018a70989a7e">00137</a> <span class="comment"></span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1MPF.html#dcecdaf2acbbee51acf3018a70989a7e" title="Set postrior of rvc to samples from epdf0. Statistics of Bms are not re-computed!...">set_est</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& epdf0 ) { |
| 158 | <a name="l00138"></a>00138 <a class="code" href="classbdm_1_1PF.html#6f1988db4c3f602d187a6c15ec89cb1e">PF::set_est</a> ( epdf0 ); <span class="comment">// sample params in condition</span> |
| 159 | <a name="l00139"></a>00139 <span class="comment">// copy conditions to BMs</span> |
| 160 | <a name="l00140"></a>00140 |
| 161 | <a name="l00141"></a>00141 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1PF.html#eeafaf9b8ad75fe62ee9fd6369e3f7fe" title="number of particles;">n</a>;i++ ) {Bms[i]->condition ( <a class="code" href="classbdm_1_1PF.html#914bd66025692c4018dbd482cb3c47c1" title="pointer into eEmp ">_samples</a> ( i ) );} |
| 162 | <a name="l00142"></a>00142 } |
| 163 | <a name="l00143"></a>00143 |
| 164 | <a name="l00145"></a><a class="code" href="classbdm_1_1MPF.html#82b5a34d9ed0e78452f98d2ecbf1e93c">00145</a> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a>* <a class="code" href="classbdm_1_1MPF.html#82b5a34d9ed0e78452f98d2ecbf1e93c" title="Access function.">_BM</a> ( <span class="keywordtype">int</span> i ) {<span class="keywordflow">return</span> Bms[i];} |
| 165 | <a name="l00146"></a>00146 }; |
| 166 | <a name="l00147"></a>00147 |
| 167 | <a name="l00148"></a>00148 <span class="keyword">template</span><<span class="keyword">class</span> BM_T> |
| 168 | <a name="l00149"></a><a class="code" href="classbdm_1_1MPF.html#286d040770d08bd7ff416cea617b1b14">00149</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1MPF.html" title="Marginalized Particle filter.">MPF<BM_T>::bayes</a> ( <span class="keyword">const</span> vec &dt ) { |
| 169 | <a name="l00150"></a>00150 <span class="keywordtype">int</span> i; |
| 170 | <a name="l00151"></a>00151 vec lls ( <a class="code" href="classbdm_1_1PF.html#eeafaf9b8ad75fe62ee9fd6369e3f7fe" title="number of particles;">n</a> ); |
| 171 | <a name="l00152"></a>00152 vec llsP ( <a class="code" href="classbdm_1_1PF.html#eeafaf9b8ad75fe62ee9fd6369e3f7fe" title="number of particles;">n</a> ); |
| 172 | <a name="l00153"></a>00153 ivec ind; |
| 173 | <a name="l00154"></a>00154 <span class="keywordtype">double</span> mlls=-std::numeric_limits<double>::infinity(); |
| 174 | <a name="l00155"></a>00155 |
| 175 | <a name="l00156"></a>00156 <span class="preprocessor">#pragma omp parallel for</span> |
| 176 | <a name="l00157"></a>00157 <span class="preprocessor"></span> <span class="keywordflow">for</span> ( i=0;i<<a class="code" href="classbdm_1_1PF.html#eeafaf9b8ad75fe62ee9fd6369e3f7fe" title="number of particles;">n</a>;i++ ) { |
| 177 | <a name="l00158"></a>00158 <span class="comment">//generate new samples from paramater evolution model;</span> |
| 178 | <a name="l00159"></a>00159 <a class="code" href="classbdm_1_1PF.html#914bd66025692c4018dbd482cb3c47c1" title="pointer into eEmp ">_samples</a> ( i ) = <a class="code" href="classbdm_1_1PF.html#521e9621d3b5e1274275f323691afdaf" title="Parameter evolution model.">par</a>-><a class="code" href="classbdm_1_1mpdf.html#f0c1db6fcbb3aae2dd6123884457a367" title="Returns a sample from the density conditioned on cond, .">samplecond</a> ( <a class="code" href="classbdm_1_1PF.html#914bd66025692c4018dbd482cb3c47c1" title="pointer into eEmp ">_samples</a> ( i ) ); |
| 179 | <a name="l00160"></a>00160 llsP ( i ) = <a class="code" href="classbdm_1_1PF.html#521e9621d3b5e1274275f323691afdaf" title="Parameter evolution model.">par</a>-><a class="code" href="classbdm_1_1mpdf.html#05e843fd11c410a99dad2b88c55aca80">_e</a>()-><a class="code" href="classbdm_1_1epdf.html#deab266d63c236c277538867d5c3f249" title="Compute log-probability of argument val.">evallog</a> ( <a class="code" href="classbdm_1_1PF.html#914bd66025692c4018dbd482cb3c47c1" title="pointer into eEmp ">_samples</a> ( i ) ); |
| 180 | <a name="l00161"></a>00161 Bms[i]->condition ( <a class="code" href="classbdm_1_1PF.html#914bd66025692c4018dbd482cb3c47c1" title="pointer into eEmp ">_samples</a> ( i ) ); |
| 181 | <a name="l00162"></a>00162 Bms[i]->bayes ( dt ); |
| 182 | <a name="l00163"></a>00163 lls ( i ) = Bms[i]->_ll(); <span class="comment">// lls above is also in proposal her must be lls(i) =, not +=!!</span> |
| 183 | <a name="l00164"></a>00164 <span class="keywordflow">if</span> ( lls ( i ) >mlls ) mlls=lls ( i ); <span class="comment">//find maximum likelihood (for numerical stability)</span> |
| 184 | <a name="l00165"></a>00165 } |
| 185 | <a name="l00166"></a>00166 |
| 186 | <a name="l00167"></a>00167 <span class="keywordtype">double</span> sum_w=0.0; |
| 187 | <a name="l00168"></a>00168 <span class="comment">// compute weights</span> |
| 188 | <a name="l00169"></a>00169 <span class="preprocessor">#pragma omp parallel for</span> |
| 189 | <a name="l00170"></a>00170 <span class="preprocessor"></span> <span class="keywordflow">for</span> ( i=0;i<n;i++ ) { |
| 190 | <a name="l00171"></a>00171 <a class="code" href="classbdm_1_1PF.html#f5149d5522d1095d39240c4c607f61a3" title="pointer into eEmp ">_w</a> ( i ) *= exp ( lls ( i ) - mlls ); <span class="comment">// multiply w by likelihood</span> |
| 191 | <a name="l00172"></a>00172 sum_w+=<a class="code" href="classbdm_1_1PF.html#f5149d5522d1095d39240c4c607f61a3" title="pointer into eEmp ">_w</a> ( i ); |
| 192 | <a name="l00173"></a>00173 } |
| 193 | <a name="l00174"></a>00174 |
| 194 | <a name="l00175"></a>00175 <span class="keywordflow">if</span> ( sum_w >0.0 ) { |
| 195 | <a name="l00176"></a>00176 <a class="code" href="classbdm_1_1PF.html#f5149d5522d1095d39240c4c607f61a3" title="pointer into eEmp ">_w</a> /=sum_w; <span class="comment">//?</span> |
| 196 | <a name="l00177"></a>00177 } |
| 197 | <a name="l00178"></a>00178 <span class="keywordflow">else</span> { |
| 198 | <a name="l00179"></a>00179 cout<<<span class="stringliteral">"sum(w)==0"</span><<endl; |
| 199 | <a name="l00180"></a>00180 } |
201 | | <a name="l00182"></a>00182 <span class="keywordtype">double</span> eff = 1.0/ ( <a class="code" href="classbdm_1_1PF.html#f5149d5522d1095d39240c4c607f61a3" title="pointer into eEmp ">_w</a>*<a class="code" href="classbdm_1_1PF.html#f5149d5522d1095d39240c4c607f61a3" title="pointer into eEmp ">_w</a> ); |
202 | | <a name="l00183"></a>00183 <span class="keywordflow">if</span> ( eff < ( 0.3*n ) ) { |
203 | | <a name="l00184"></a>00184 ind = <a class="code" href="classbdm_1_1PF.html#dc049265b9086cad7071f98d00a2b9af" title="posterior density">est</a>.<a class="code" href="classbdm_1_1eEmp.html#f06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a>(); |
204 | | <a name="l00185"></a>00185 <span class="comment">// Resample Bms!</span> |
205 | | <a name="l00186"></a>00186 |
206 | | <a name="l00187"></a>00187 <span class="preprocessor">#pragma omp parallel for</span> |
207 | | <a name="l00188"></a>00188 <span class="preprocessor"></span> <span class="keywordflow">for</span> ( i=0;i<n;i++ ) { |
208 | | <a name="l00189"></a>00189 <span class="keywordflow">if</span> ( ind ( i ) !=i ) {<span class="comment">//replace the current Bm by a new one</span> |
209 | | <a name="l00190"></a>00190 <span class="comment">//fixme this would require new assignment operator</span> |
210 | | <a name="l00191"></a>00191 <span class="comment">// *Bms[i] = *Bms[ind ( i ) ];</span> |
211 | | <a name="l00192"></a>00192 |
212 | | <a name="l00193"></a>00193 <span class="comment">// poor-man's solution: replicate constructor here</span> |
213 | | <a name="l00194"></a>00194 <span class="comment">// copied from MPF::MPF</span> |
214 | | <a name="l00195"></a>00195 <span class="keyword">delete</span> Bms[i]; |
215 | | <a name="l00196"></a>00196 Bms[i] = <span class="keyword">new</span> BM_T ( *Bms[ind ( i ) ] ); <span class="comment">//copy constructor</span> |
216 | | <a name="l00197"></a>00197 <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& pom=Bms[i]->posterior(); |
217 | | <a name="l00198"></a>00198 jest.set_elements ( i,1.0/n,&pom ); |
218 | | <a name="l00199"></a>00199 } |
219 | | <a name="l00200"></a>00200 }; |
220 | | <a name="l00201"></a>00201 cout << <span class="charliteral">'.'</span>; |
221 | | <a name="l00202"></a>00202 } |
222 | | <a name="l00203"></a>00203 } |
223 | | <a name="l00204"></a>00204 |
224 | | <a name="l00205"></a>00205 } |
225 | | <a name="l00206"></a>00206 <span class="preprocessor">#endif // KF_H</span> |
226 | | <a name="l00207"></a>00207 <span class="preprocessor"></span> |
227 | | <a name="l00208"></a>00208 |
| 201 | <a name="l00182"></a>00182 |
| 202 | <a name="l00183"></a>00183 <span class="keywordtype">double</span> eff = 1.0/ ( <a class="code" href="classbdm_1_1PF.html#f5149d5522d1095d39240c4c607f61a3" title="pointer into eEmp ">_w</a>*<a class="code" href="classbdm_1_1PF.html#f5149d5522d1095d39240c4c607f61a3" title="pointer into eEmp ">_w</a> ); |
| 203 | <a name="l00184"></a>00184 <span class="keywordflow">if</span> ( eff < ( 0.3*n ) ) { |
| 204 | <a name="l00185"></a>00185 ind = <a class="code" href="classbdm_1_1PF.html#dc049265b9086cad7071f98d00a2b9af" title="posterior density">est</a>.<a class="code" href="classbdm_1_1eEmp.html#f06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a>(); |
| 205 | <a name="l00186"></a>00186 <span class="comment">// Resample Bms!</span> |
| 206 | <a name="l00187"></a>00187 |
| 207 | <a name="l00188"></a>00188 <span class="preprocessor">#pragma omp parallel for</span> |
| 208 | <a name="l00189"></a>00189 <span class="preprocessor"></span> <span class="keywordflow">for</span> ( i=0;i<n;i++ ) { |
| 209 | <a name="l00190"></a>00190 <span class="keywordflow">if</span> ( ind ( i ) !=i ) {<span class="comment">//replace the current Bm by a new one</span> |
| 210 | <a name="l00191"></a>00191 <span class="comment">//fixme this would require new assignment operator</span> |
| 211 | <a name="l00192"></a>00192 <span class="comment">// *Bms[i] = *Bms[ind ( i ) ];</span> |
| 212 | <a name="l00193"></a>00193 |
| 213 | <a name="l00194"></a>00194 <span class="comment">// poor-man's solution: replicate constructor here</span> |
| 214 | <a name="l00195"></a>00195 <span class="comment">// copied from MPF::MPF</span> |
| 215 | <a name="l00196"></a>00196 <span class="keyword">delete</span> Bms[i]; |
| 216 | <a name="l00197"></a>00197 Bms[i] = <span class="keyword">new</span> BM_T ( *Bms[ind ( i ) ] ); <span class="comment">//copy constructor</span> |
| 217 | <a name="l00198"></a>00198 <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& pom=Bms[i]->posterior(); |
| 218 | <a name="l00199"></a>00199 jest.set_elements ( i,1.0/n,&pom ); |
| 219 | <a name="l00200"></a>00200 } |
| 220 | <a name="l00201"></a>00201 }; |
| 221 | <a name="l00202"></a>00202 cout << <span class="charliteral">'.'</span>; |
| 222 | <a name="l00203"></a>00203 } |
| 223 | <a name="l00204"></a>00204 } |
| 224 | <a name="l00205"></a>00205 |
| 225 | <a name="l00206"></a>00206 } |
| 226 | <a name="l00207"></a>00207 <span class="preprocessor">#endif // KF_H</span> |
| 227 | <a name="l00208"></a>00208 <span class="preprocessor"></span> |
| 228 | <a name="l00209"></a>00209 |