77 | | <a name="l00025"></a>00025 <span class="keyword">extern</span> Uniform_RNG UniRNG; |
78 | | <a name="l00027"></a>00027 <span class="keyword">extern</span> Normal_RNG NorRNG; |
79 | | <a name="l00029"></a>00029 <span class="keyword">extern</span> <a class="code" href="classitpp_1_1Gamma__RNG.html" title="Gamma distribution.">Gamma_RNG</a> GamRNG; |
80 | | <a name="l00030"></a>00030 |
81 | | <a name="l00037"></a><a class="code" href="classbdm_1_1eEF.html">00037</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
82 | | <a name="l00038"></a>00038 <span class="keyword">public</span>: |
83 | | <a name="l00039"></a>00039 <span class="comment">// eEF() :epdf() {};</span> |
84 | | <a name="l00041"></a><a class="code" href="classbdm_1_1eEF.html#d5459d472d0feca7cf1fb5f65c4b9ef4">00041</a> <span class="comment"></span> <a class="code" href="classbdm_1_1eEF.html#d5459d472d0feca7cf1fb5f65c4b9ef4" title="default constructor">eEF</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ) {}; |
85 | | <a name="l00043"></a>00043 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>() <span class="keyword">const</span> =0; |
86 | | <a name="l00045"></a><a class="code" href="classbdm_1_1eEF.html#deef7d6273ba4d5a5cf0bbd91ec7277a">00045</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#deef7d6273ba4d5a5cf0bbd91ec7277a" title="TODO decide if it is really needed.">dupdate</a> ( mat &v ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
87 | | <a name="l00047"></a><a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6">00047</a> <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const</span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;}; |
88 | | <a name="l00049"></a><a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692">00049</a> <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordtype">double</span> tmp;tmp= <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( val )-<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>();it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> ); <span class="keywordflow">return</span> tmp;} |
89 | | <a name="l00051"></a><a class="code" href="classbdm_1_1eEF.html#79a7c8ea8c02e45d410bd1d7ffd72b41">00051</a> <span class="keyword">virtual</span> vec <a class="code" href="classbdm_1_1eEF.html#79a7c8ea8c02e45d410bd1d7ffd72b41" title="Evaluate normalized log-probability for many samples.">evallog</a> ( <span class="keyword">const</span> mat &Val )<span class="keyword"> const </span>{ |
90 | | <a name="l00052"></a>00052 vec x ( Val.cols() ); |
91 | | <a name="l00053"></a>00053 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<Val.cols();i++ ) {x ( i ) =<a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( Val.get_col ( i ) ) ;} |
92 | | <a name="l00054"></a>00054 <span class="keywordflow">return</span> x-<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>(); |
93 | | <a name="l00055"></a>00055 } |
94 | | <a name="l00057"></a><a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053">00057</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
95 | | <a name="l00058"></a>00058 }; |
96 | | <a name="l00059"></a>00059 |
97 | | <a name="l00066"></a><a class="code" href="classbdm_1_1mEF.html">00066</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> { |
98 | | <a name="l00067"></a>00067 |
99 | | <a name="l00068"></a>00068 <span class="keyword">public</span>: |
100 | | <a name="l00070"></a><a class="code" href="classbdm_1_1mEF.html#dd7caad7026b778af66e34480eec6f9e">00070</a> <a class="code" href="classbdm_1_1mEF.html#dd7caad7026b778af66e34480eec6f9e" title="Default constructor.">mEF</a> ( ) :<a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> ( ) {}; |
101 | | <a name="l00071"></a>00071 }; |
102 | | <a name="l00072"></a>00072 |
103 | | <a name="l00074"></a><a class="code" href="classbdm_1_1BMEF.html">00074</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> { |
104 | | <a name="l00075"></a>00075 <span class="keyword">protected</span>: |
105 | | <a name="l00077"></a><a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64">00077</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>; |
106 | | <a name="l00079"></a><a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865">00079</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>; |
107 | | <a name="l00080"></a>00080 <span class="keyword">public</span>: |
108 | | <a name="l00082"></a><a class="code" href="classbdm_1_1BMEF.html#2def512872ed8a4fc3b702371ec0be55">00082</a> <a class="code" href="classbdm_1_1BMEF.html#2def512872ed8a4fc3b702371ec0be55" title="Default constructor (=empty constructor).">BMEF</a> ( <span class="keywordtype">double</span> frg0=1.0 ) :<a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> ( ), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ( frg0 ) {} |
109 | | <a name="l00084"></a><a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62">00084</a> <a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62" title="Copy constructor.">BMEF</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> &B ) :<a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> ( B ), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ( B.<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ), <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ( B.<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ) {} |
110 | | <a name="l00086"></a><a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051">00086</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051" title="get statistics from another model">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* BM0 ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
111 | | <a name="l00088"></a><a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6">00088</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &data, <span class="keyword">const</span> <span class="keywordtype">double</span> w ) {}; |
112 | | <a name="l00089"></a>00089 <span class="comment">//original Bayes</span> |
113 | | <a name="l00090"></a>00090 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
114 | | <a name="l00092"></a><a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749">00092</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> * B ) {it_error ( <span class="stringliteral">"Not implemented"</span> );} |
115 | | <a name="l00094"></a>00094 <span class="comment">// virtual void flatten ( double nu0 ) {it_error ( "Not implemented" );}</span> |
116 | | <a name="l00095"></a>00095 |
117 | | <a name="l00096"></a><a class="code" href="classbdm_1_1BMEF.html#62d2e4691bed41a1efa6b9c2e35e5c67">00096</a> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* <a class="code" href="classbdm_1_1BMEF.html#62d2e4691bed41a1efa6b9c2e35e5c67" title="Flatten the posterior as if to keep nu0 data.">_copy_</a> ()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"function _copy_ not implemented for this BM"</span> ); <span class="keywordflow">return</span> NULL;}; |
118 | | <a name="l00097"></a>00097 }; |
119 | | <a name="l00098"></a>00098 |
120 | | <a name="l00099"></a>00099 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
121 | | <a name="l00100"></a>00100 <span class="keyword">class </span>mlnorm; |
122 | | <a name="l00101"></a>00101 |
123 | | <a name="l00107"></a>00107 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
124 | | <a name="l00108"></a><a class="code" href="classbdm_1_1enorm.html">00108</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
125 | | <a name="l00109"></a>00109 <span class="keyword">protected</span>: |
126 | | <a name="l00111"></a><a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7">00111</a> vec <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
127 | | <a name="l00113"></a><a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2">00113</a> sq_T <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>; |
128 | | <a name="l00114"></a>00114 <span class="keyword">public</span>: |
129 | | <a name="l00117"></a>00117 |
130 | | <a name="l00118"></a>00118 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> ( ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ), <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( ),<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ( ) {}; |
131 | | <a name="l00119"></a>00119 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> ( <span class="keyword">const</span> vec &<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ) {set_parameters ( mu,R );} |
132 | | <a name="l00120"></a>00120 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ); |
133 | | <a name="l00122"></a>00122 |
134 | | <a name="l00125"></a>00125 |
135 | | <a name="l00127"></a>00127 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">dupdate</a> ( mat &v,<span class="keywordtype">double</span> nu=1.0 ); |
| 77 | <a name="l00024"></a>00024 |
| 78 | <a name="l00026"></a>00026 <span class="keyword">extern</span> Uniform_RNG UniRNG; |
| 79 | <a name="l00028"></a>00028 <span class="keyword">extern</span> Normal_RNG NorRNG; |
| 80 | <a name="l00030"></a>00030 <span class="keyword">extern</span> <a class="code" href="classitpp_1_1Gamma__RNG.html" title="Gamma distribution.">Gamma_RNG</a> GamRNG; |
| 81 | <a name="l00031"></a>00031 |
| 82 | <a name="l00038"></a><a class="code" href="classbdm_1_1eEF.html">00038</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
| 83 | <a name="l00039"></a>00039 { |
| 84 | <a name="l00040"></a>00040 <span class="keyword">public</span>: |
| 85 | <a name="l00041"></a>00041 <span class="comment">// eEF() :epdf() {};</span> |
| 86 | <a name="l00043"></a><a class="code" href="classbdm_1_1eEF.html#d5459d472d0feca7cf1fb5f65c4b9ef4">00043</a> <span class="comment"></span> <a class="code" href="classbdm_1_1eEF.html#d5459d472d0feca7cf1fb5f65c4b9ef4" title="default constructor">eEF</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ) {}; |
| 87 | <a name="l00045"></a>00045 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>() <span class="keyword">const</span> =0; |
| 88 | <a name="l00047"></a><a class="code" href="classbdm_1_1eEF.html#deef7d6273ba4d5a5cf0bbd91ec7277a">00047</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#deef7d6273ba4d5a5cf0bbd91ec7277a" title="TODO decide if it is really needed.">dupdate</a> ( mat &v ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
| 89 | <a name="l00049"></a><a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6">00049</a> <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const</span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;}; |
| 90 | <a name="l00051"></a><a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692">00051</a> <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordtype">double</span> tmp;tmp= <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( val )-<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>();it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> ); <span class="keywordflow">return</span> tmp;} |
| 91 | <a name="l00053"></a><a class="code" href="classbdm_1_1eEF.html#79a7c8ea8c02e45d410bd1d7ffd72b41">00053</a> <span class="keyword">virtual</span> vec <a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> ( <span class="keyword">const</span> mat &Val )<span class="keyword"> const</span> |
| 92 | <a name="l00054"></a>00054 <span class="keyword"> </span>{ |
| 93 | <a name="l00055"></a>00055 vec x ( Val.cols() ); |
| 94 | <a name="l00056"></a>00056 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<Val.cols();i++ ) {x ( i ) =<a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( Val.get_col ( i ) ) ;} |
| 95 | <a name="l00057"></a>00057 <span class="keywordflow">return</span> x-<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>(); |
| 96 | <a name="l00058"></a>00058 } |
| 97 | <a name="l00060"></a><a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053">00060</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
| 98 | <a name="l00061"></a>00061 }; |
| 99 | <a name="l00062"></a>00062 |
| 100 | <a name="l00069"></a><a class="code" href="classbdm_1_1mEF.html">00069</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> |
| 101 | <a name="l00070"></a>00070 { |
| 102 | <a name="l00071"></a>00071 |
| 103 | <a name="l00072"></a>00072 <span class="keyword">public</span>: |
| 104 | <a name="l00074"></a><a class="code" href="classbdm_1_1mEF.html#dd7caad7026b778af66e34480eec6f9e">00074</a> <a class="code" href="classbdm_1_1mEF.html#dd7caad7026b778af66e34480eec6f9e" title="Default constructor.">mEF</a> ( ) :<a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> ( ) {}; |
| 105 | <a name="l00075"></a>00075 }; |
| 106 | <a name="l00076"></a>00076 |
| 107 | <a name="l00078"></a><a class="code" href="classbdm_1_1BMEF.html">00078</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> |
| 108 | <a name="l00079"></a>00079 { |
| 109 | <a name="l00080"></a>00080 <span class="keyword">protected</span>: |
| 110 | <a name="l00082"></a><a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64">00082</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>; |
| 111 | <a name="l00084"></a><a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865">00084</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>; |
| 112 | <a name="l00085"></a>00085 <span class="keyword">public</span>: |
| 113 | <a name="l00087"></a><a class="code" href="classbdm_1_1BMEF.html#2def512872ed8a4fc3b702371ec0be55">00087</a> <a class="code" href="classbdm_1_1BMEF.html#2def512872ed8a4fc3b702371ec0be55" title="Default constructor (=empty constructor).">BMEF</a> ( <span class="keywordtype">double</span> frg0=1.0 ) :<a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> ( ), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ( frg0 ) {} |
| 114 | <a name="l00089"></a><a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62">00089</a> <a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62" title="Copy constructor.">BMEF</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> &B ) :<a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> ( B ), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ( B.<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ), <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ( B.<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ) {} |
| 115 | <a name="l00091"></a><a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051">00091</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051" title="get statistics from another model">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* BM0 ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
| 116 | <a name="l00093"></a><a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6">00093</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &data, <span class="keyword">const</span> <span class="keywordtype">double</span> w ) {}; |
| 117 | <a name="l00094"></a>00094 <span class="comment">//original Bayes</span> |
| 118 | <a name="l00095"></a>00095 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
| 119 | <a name="l00097"></a><a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749">00097</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> * B ) {it_error ( <span class="stringliteral">"Not implemented"</span> );} |
| 120 | <a name="l00099"></a>00099 <span class="comment">// virtual void flatten ( double nu0 ) {it_error ( "Not implemented" );}</span> |
| 121 | <a name="l00100"></a>00100 |
| 122 | <a name="l00101"></a><a class="code" href="classbdm_1_1BMEF.html#62d2e4691bed41a1efa6b9c2e35e5c67">00101</a> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* <a class="code" href="classbdm_1_1BMEF.html#62d2e4691bed41a1efa6b9c2e35e5c67" title="Flatten the posterior as if to keep nu0 data.">_copy_</a> ()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"function _copy_ not implemented for this BM"</span> ); <span class="keywordflow">return</span> NULL;}; |
| 123 | <a name="l00102"></a>00102 }; |
| 124 | <a name="l00103"></a>00103 |
| 125 | <a name="l00104"></a>00104 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 126 | <a name="l00105"></a>00105 <span class="keyword">class </span>mlnorm; |
| 127 | <a name="l00106"></a>00106 |
| 128 | <a name="l00112"></a>00112 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 129 | <a name="l00113"></a><a class="code" href="classbdm_1_1enorm.html">00113</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> |
| 130 | <a name="l00114"></a>00114 { |
| 131 | <a name="l00115"></a>00115 <span class="keyword">protected</span>: |
| 132 | <a name="l00117"></a><a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7">00117</a> vec <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
| 133 | <a name="l00119"></a><a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2">00119</a> sq_T <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>; |
| 134 | <a name="l00120"></a>00120 <span class="keyword">public</span>: |
| 135 | <a name="l00123"></a>00123 |
| 136 | <a name="l00124"></a>00124 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> ( ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ), <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( ),<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ( ) {}; |
| 137 | <a name="l00125"></a>00125 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> ( <span class="keyword">const</span> vec &<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ) {set_parameters ( mu,R );} |
| 138 | <a name="l00126"></a>00126 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ); |
154 | | <a name="l00150"></a>00150 }; |
155 | | <a name="l00151"></a>00151 |
156 | | <a name="l00158"></a><a class="code" href="classbdm_1_1egiw.html">00158</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
157 | | <a name="l00159"></a>00159 <span class="keyword">protected</span>: |
158 | | <a name="l00161"></a><a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52">00161</a> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>; |
159 | | <a name="l00163"></a><a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4">00163</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>; |
160 | | <a name="l00165"></a><a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a">00165</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>; |
161 | | <a name="l00167"></a><a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd">00167</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a>; |
162 | | <a name="l00168"></a>00168 <span class="keyword">public</span>: |
163 | | <a name="l00171"></a>00171 <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a>() :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {}; |
164 | | <a name="l00172"></a>00172 <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> ( <span class="keywordtype">int</span> dimx0, <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0=-1.0 ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {set_parameters ( dimx0,V0, nu0 );}; |
165 | | <a name="l00173"></a>00173 |
166 | | <a name="l00174"></a>00174 <span class="keywordtype">void</span> set_parameters ( <span class="keywordtype">int</span> dimx0, <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0=-1.0 ) { |
167 | | <a name="l00175"></a>00175 <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>=dimx0; |
168 | | <a name="l00176"></a>00176 <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> = V0.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>()-<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>; |
169 | | <a name="l00177"></a>00177 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>* ( <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>+<a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> ); <span class="comment">// size(R) + size(Theta)</span> |
170 | | <a name="l00178"></a>00178 |
171 | | <a name="l00179"></a>00179 <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>=V0; |
172 | | <a name="l00180"></a>00180 <span class="keywordflow">if</span> ( nu0<0 ) { |
173 | | <a name="l00181"></a>00181 <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> = 0.1 +<a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> +2*<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> +2; <span class="comment">// +2 assures finite expected value of R</span> |
174 | | <a name="l00182"></a>00182 <span class="comment">// terms before that are sufficient for finite normalization</span> |
175 | | <a name="l00183"></a>00183 } |
176 | | <a name="l00184"></a>00184 <span class="keywordflow">else</span> { |
177 | | <a name="l00185"></a>00185 <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>=nu0; |
178 | | <a name="l00186"></a>00186 } |
179 | | <a name="l00187"></a>00187 } |
180 | | <a name="l00189"></a>00189 |
181 | | <a name="l00190"></a>00190 vec <a class="code" href="classbdm_1_1egiw.html#920f21548b7a3723923dd108fe514c61" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
182 | | <a name="l00191"></a>00191 vec <a class="code" href="classbdm_1_1egiw.html#df70c05f918c3a6f86d60f10c1fd6ba2" title="return expected value">mean</a>() <span class="keyword">const</span>; |
183 | | <a name="l00192"></a>00192 vec <a class="code" href="classbdm_1_1egiw.html#c1ecc406613cc2341225dc10c3d3b46a" title="return expected variance (not covariance!)">variance</a>() <span class="keyword">const</span>; |
184 | | <a name="l00193"></a>00193 <span class="keywordtype">void</span> mean_mat ( mat &M, mat&R ) <span class="keyword">const</span>; |
185 | | <a name="l00195"></a>00195 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#bfb8e7c619b34ad804a73bff71742b5e" title="In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise...">evallog_nn</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
186 | | <a name="l00196"></a>00196 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#41d72ba7b2abc8a9a4209ffa98ed5633" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
187 | | <a name="l00197"></a><a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be">00197</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ) {V*=p;<a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>*=p;}; |
188 | | <a name="l00198"></a>00198 |
189 | | <a name="l00201"></a>00201 |
190 | | <a name="l00202"></a>00202 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& _V() {<span class="keywordflow">return</span> V;} |
191 | | <a name="l00203"></a>00203 <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& _V()<span class="keyword"> const </span>{<span class="keywordflow">return</span> V;} |
192 | | <a name="l00204"></a>00204 <span class="keywordtype">double</span>& _nu() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} |
193 | | <a name="l00205"></a>00205 <span class="keyword">const</span> <span class="keywordtype">double</span>& _nu()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} |
194 | | <a name="l00207"></a>00207 }; |
| 155 | <a name="l00150"></a>00150 vec& _mu() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;} |
| 156 | <a name="l00151"></a>00151 <span class="keywordtype">void</span> set_mu ( <span class="keyword">const</span> vec mu0 ) { <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>=mu0;} |
| 157 | <a name="l00152"></a>00152 sq_T& _R() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;} |
| 158 | <a name="l00153"></a>00153 <span class="keyword">const</span> sq_T& _R()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;} |
| 159 | <a name="l00155"></a>00155 |
| 160 | <a name="l00156"></a>00156 }; |
| 161 | <a name="l00157"></a>00157 |
| 162 | <a name="l00164"></a><a class="code" href="classbdm_1_1egiw.html">00164</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> |
| 163 | <a name="l00165"></a>00165 { |
| 164 | <a name="l00166"></a>00166 <span class="keyword">protected</span>: |
| 165 | <a name="l00168"></a><a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52">00168</a> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>; |
| 166 | <a name="l00170"></a><a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4">00170</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>; |
| 167 | <a name="l00172"></a><a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a">00172</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>; |
| 168 | <a name="l00174"></a><a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd">00174</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a>; |
| 169 | <a name="l00175"></a>00175 <span class="keyword">public</span>: |
| 170 | <a name="l00178"></a>00178 <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a>() :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {}; |
| 171 | <a name="l00179"></a>00179 <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> ( <span class="keywordtype">int</span> dimx0, <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0=-1.0 ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {set_parameters ( dimx0,V0, nu0 );}; |
| 172 | <a name="l00180"></a>00180 |
| 173 | <a name="l00181"></a>00181 <span class="keywordtype">void</span> set_parameters ( <span class="keywordtype">int</span> dimx0, <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0=-1.0 ) |
| 174 | <a name="l00182"></a>00182 { |
| 175 | <a name="l00183"></a>00183 <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>=dimx0; |
| 176 | <a name="l00184"></a>00184 <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> = V0.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>()-<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>; |
| 177 | <a name="l00185"></a>00185 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>* ( <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>+<a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> ); <span class="comment">// size(R) + size(Theta)</span> |
| 178 | <a name="l00186"></a>00186 |
| 179 | <a name="l00187"></a>00187 <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>=V0; |
| 180 | <a name="l00188"></a>00188 <span class="keywordflow">if</span> ( nu0<0 ) |
| 181 | <a name="l00189"></a>00189 { |
| 182 | <a name="l00190"></a>00190 <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> = 0.1 +<a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> +2*<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> +2; <span class="comment">// +2 assures finite expected value of R</span> |
| 183 | <a name="l00191"></a>00191 <span class="comment">// terms before that are sufficient for finite normalization</span> |
| 184 | <a name="l00192"></a>00192 } |
| 185 | <a name="l00193"></a>00193 <span class="keywordflow">else</span> |
| 186 | <a name="l00194"></a>00194 { |
| 187 | <a name="l00195"></a>00195 <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>=nu0; |
| 188 | <a name="l00196"></a>00196 } |
| 189 | <a name="l00197"></a>00197 } |
| 190 | <a name="l00199"></a>00199 |
| 191 | <a name="l00200"></a>00200 vec <a class="code" href="classbdm_1_1egiw.html#920f21548b7a3723923dd108fe514c61" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
| 192 | <a name="l00201"></a>00201 vec <a class="code" href="classbdm_1_1egiw.html#df70c05f918c3a6f86d60f10c1fd6ba2" title="return expected value">mean</a>() <span class="keyword">const</span>; |
| 193 | <a name="l00202"></a>00202 vec <a class="code" href="classbdm_1_1egiw.html#c1ecc406613cc2341225dc10c3d3b46a" title="return expected variance (not covariance!)">variance</a>() <span class="keyword">const</span>; |
| 194 | <a name="l00203"></a>00203 <span class="keywordtype">void</span> mean_mat ( mat &M, mat&R ) <span class="keyword">const</span>; |
| 195 | <a name="l00205"></a>00205 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#bfb8e7c619b34ad804a73bff71742b5e" title="In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise...">evallog_nn</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
| 196 | <a name="l00206"></a>00206 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#41d72ba7b2abc8a9a4209ffa98ed5633" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
| 197 | <a name="l00207"></a><a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be">00207</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ) {V*=p;<a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>*=p;}; |
196 | | <a name="l00217"></a><a class="code" href="classbdm_1_1eDirich.html">00217</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
197 | | <a name="l00218"></a>00218 <span class="keyword">protected</span>: |
198 | | <a name="l00220"></a><a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2">00220</a> vec <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>; |
199 | | <a name="l00222"></a><a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4">00222</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>; |
200 | | <a name="l00223"></a>00223 <span class="keyword">public</span>: |
201 | | <a name="l00226"></a>00226 |
202 | | <a name="l00227"></a>00227 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ) {}; |
203 | | <a name="l00228"></a>00228 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> &D0 ) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> () {set_parameters ( D0.<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> );}; |
204 | | <a name="l00229"></a>00229 eDirich ( <span class="keyword">const</span> vec &beta0 ) {set_parameters ( beta0 );}; |
205 | | <a name="l00230"></a>00230 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &beta0 ) { |
206 | | <a name="l00231"></a>00231 <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>= beta0; |
207 | | <a name="l00232"></a>00232 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length(); |
208 | | <a name="l00233"></a>00233 <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a> = sum ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ); |
209 | | <a name="l00234"></a>00234 } |
210 | | <a name="l00236"></a>00236 |
211 | | <a name="l00237"></a><a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc">00237</a> vec <a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> vec_1 ( 0.0 );}; |
212 | | <a name="l00238"></a><a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6">00238</a> vec <a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>/<a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>;}; |
213 | | <a name="l00239"></a><a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc">00239</a> vec <a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_mult ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>, ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>+1 ) ) / ( <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>* ( <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>+1 ) );} |
214 | | <a name="l00241"></a><a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318">00241</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318" title="In this instance, val is ...">evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
215 | | <a name="l00242"></a>00242 <span class="keywordtype">double</span> tmp; tmp= ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>-1 ) *log ( val ); it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> ); |
216 | | <a name="l00243"></a>00243 <span class="keywordflow">return</span> tmp; |
217 | | <a name="l00244"></a>00244 }; |
218 | | <a name="l00245"></a><a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2">00245</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a> ()<span class="keyword"> const </span>{ |
219 | | <a name="l00246"></a>00246 <span class="keywordtype">double</span> tmp; |
220 | | <a name="l00247"></a>00247 <span class="keywordtype">double</span> gam=sum ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ); |
221 | | <a name="l00248"></a>00248 <span class="keywordtype">double</span> lgb=0.0; |
222 | | <a name="l00249"></a>00249 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length();i++ ) {lgb+=lgamma ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ( i ) );} |
223 | | <a name="l00250"></a>00250 tmp= lgb-lgamma ( gam ); |
224 | | <a name="l00251"></a>00251 it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> ); |
225 | | <a name="l00252"></a>00252 <span class="keywordflow">return</span> tmp; |
226 | | <a name="l00253"></a>00253 }; |
227 | | <a name="l00255"></a><a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324">00255</a> vec& <a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>;} |
228 | | <a name="l00257"></a>00257 }; |
229 | | <a name="l00258"></a>00258 |
230 | | <a name="l00260"></a><a class="code" href="classbdm_1_1multiBM.html">00260</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> { |
231 | | <a name="l00261"></a>00261 <span class="keyword">protected</span>: |
232 | | <a name="l00263"></a><a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a">00263</a> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>; |
233 | | <a name="l00265"></a><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25">00265</a> vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>; |
234 | | <a name="l00266"></a>00266 <span class="keyword">public</span>: |
235 | | <a name="l00268"></a><a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf">00268</a> <a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf" title="Default constructor.">multiBM</a> ( ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) {<span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>.length() >0 ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();}<span class="keywordflow">else</span>{<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=0.0;}} |
236 | | <a name="l00270"></a><a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31">00270</a> <a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31" title="Copy constructor.">multiBM</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> &B ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( B ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( B.<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) {} |
237 | | <a name="l00272"></a><a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52">00272</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52" title="Sets sufficient statistics to match that of givefrom mB0.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a>* mB0 ) {<span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* mB=<span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> ( mB0 ); <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>=mB-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;} |
238 | | <a name="l00273"></a><a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95">00273</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95" title="Incremental Bayes rule.">bayes</a> ( <span class="keyword">const</span> vec &dt ) { |
239 | | <a name="l00274"></a>00274 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a><1.0 ) {<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
240 | | <a name="l00275"></a>00275 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>+=dt; |
241 | | <a name="l00276"></a>00276 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BM.html#4064b6559d962633e4372b12f4cd204a" title="Logarithm of marginalized data likelihood.">ll</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
242 | | <a name="l00277"></a>00277 } |
243 | | <a name="l00278"></a><a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">00278</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">logpred</a> ( <span class="keyword">const</span> vec &dt )<span class="keyword"> const </span>{ |
244 | | <a name="l00279"></a>00279 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> pred ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ); |
245 | | <a name="l00280"></a>00280 vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> = pred.<a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>(); |
246 | | <a name="l00281"></a>00281 |
247 | | <a name="l00282"></a>00282 <span class="keywordtype">double</span> lll; |
248 | | <a name="l00283"></a>00283 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a><1.0 ) |
249 | | <a name="l00284"></a>00284 {beta*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
250 | | <a name="l00285"></a>00285 <span class="keywordflow">else</span> |
251 | | <a name="l00286"></a>00286 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {lll=<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
252 | | <a name="l00287"></a>00287 <span class="keywordflow">else</span>{lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
253 | | <a name="l00288"></a>00288 |
254 | | <a name="l00289"></a>00289 beta+=dt; |
255 | | <a name="l00290"></a>00290 <span class="keywordflow">return</span> pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-lll; |
256 | | <a name="l00291"></a>00291 } |
257 | | <a name="l00292"></a><a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732">00292</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* B ) { |
258 | | <a name="l00293"></a>00293 <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* E=<span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> ( B ); |
259 | | <a name="l00294"></a>00294 <span class="comment">// sum(beta) should be equal to sum(B.beta)</span> |
260 | | <a name="l00295"></a>00295 <span class="keyword">const</span> vec &Eb=E-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;<span class="comment">//const_cast<multiBM*> ( E )->_beta();</span> |
261 | | <a name="l00296"></a>00296 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*= ( sum ( Eb ) /sum ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ) ); |
262 | | <a name="l00297"></a>00297 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
263 | | <a name="l00298"></a>00298 } |
264 | | <a name="l00299"></a>00299 <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& posterior()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; |
265 | | <a name="l00300"></a>00300 <span class="keyword">const</span> eDirich* _e()<span class="keyword"> const </span>{<span class="keywordflow">return</span> &<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; |
266 | | <a name="l00301"></a>00301 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &beta0 ) { |
267 | | <a name="l00302"></a>00302 <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.set_parameters ( beta0 ); |
268 | | <a name="l00303"></a>00303 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.lognc();} |
269 | | <a name="l00304"></a>00304 } |
270 | | <a name="l00305"></a>00305 }; |
271 | | <a name="l00306"></a>00306 |
272 | | <a name="l00316"></a><a class="code" href="classbdm_1_1egamma.html">00316</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> { |
273 | | <a name="l00317"></a>00317 <span class="keyword">protected</span>: |
274 | | <a name="l00319"></a><a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa">00319</a> vec <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>; |
275 | | <a name="l00321"></a><a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1">00321</a> vec <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>; |
276 | | <a name="l00322"></a>00322 <span class="keyword">public</span> : |
277 | | <a name="l00325"></a>00325 <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> ( ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ), <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>(0), <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>(0) {}; |
278 | | <a name="l00326"></a>00326 <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {set_parameters ( a, b );}; |
279 | | <a name="l00327"></a>00327 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>=a,<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>=b;<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length();}; |
| 199 | <a name="l00211"></a>00211 |
| 200 | <a name="l00212"></a>00212 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& _V() {<span class="keywordflow">return</span> V;} |
| 201 | <a name="l00213"></a>00213 <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& _V()<span class="keyword"> const </span>{<span class="keywordflow">return</span> V;} |
| 202 | <a name="l00214"></a>00214 <span class="keywordtype">double</span>& _nu() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} |
| 203 | <a name="l00215"></a>00215 <span class="keyword">const</span> <span class="keywordtype">double</span>& _nu()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} |
| 204 | <a name="l00217"></a>00217 }; |
| 205 | <a name="l00218"></a>00218 |
| 206 | <a name="l00227"></a><a class="code" href="classbdm_1_1eDirich.html">00227</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> |
| 207 | <a name="l00228"></a>00228 { |
| 208 | <a name="l00229"></a>00229 <span class="keyword">protected</span>: |
| 209 | <a name="l00231"></a><a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2">00231</a> vec <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>; |
| 210 | <a name="l00233"></a><a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4">00233</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>; |
| 211 | <a name="l00234"></a>00234 <span class="keyword">public</span>: |
| 212 | <a name="l00237"></a>00237 |
| 213 | <a name="l00238"></a>00238 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ) {}; |
| 214 | <a name="l00239"></a>00239 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> &D0 ) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> () {set_parameters ( D0.<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> );}; |
| 215 | <a name="l00240"></a>00240 eDirich ( <span class="keyword">const</span> vec &beta0 ) {set_parameters ( beta0 );}; |
| 216 | <a name="l00241"></a>00241 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &beta0 ) |
| 217 | <a name="l00242"></a>00242 { |
| 218 | <a name="l00243"></a>00243 <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>= beta0; |
| 219 | <a name="l00244"></a>00244 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length(); |
| 220 | <a name="l00245"></a>00245 <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a> = sum ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ); |
| 221 | <a name="l00246"></a>00246 } |
| 222 | <a name="l00248"></a>00248 |
| 223 | <a name="l00249"></a><a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc">00249</a> vec <a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> vec_1 ( 0.0 );}; |
| 224 | <a name="l00250"></a><a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6">00250</a> vec <a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>/<a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>;}; |
| 225 | <a name="l00251"></a><a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc">00251</a> vec <a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_mult ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>, ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>+1 ) ) / ( <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>* ( <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>+1 ) );} |
| 226 | <a name="l00253"></a><a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318">00253</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318" title="In this instance, val is ...">evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const</span> |
| 227 | <a name="l00254"></a>00254 <span class="keyword"> </span>{ |
| 228 | <a name="l00255"></a>00255 <span class="keywordtype">double</span> tmp; tmp= ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>-1 ) *log ( val ); it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> ); |
| 229 | <a name="l00256"></a>00256 <span class="keywordflow">return</span> tmp; |
| 230 | <a name="l00257"></a>00257 }; |
| 231 | <a name="l00258"></a><a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2">00258</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a> ()<span class="keyword"> const</span> |
| 232 | <a name="l00259"></a>00259 <span class="keyword"> </span>{ |
| 233 | <a name="l00260"></a>00260 <span class="keywordtype">double</span> tmp; |
| 234 | <a name="l00261"></a>00261 <span class="keywordtype">double</span> gam=sum ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ); |
| 235 | <a name="l00262"></a>00262 <span class="keywordtype">double</span> lgb=0.0; |
| 236 | <a name="l00263"></a>00263 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length();i++ ) {lgb+=lgamma ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ( i ) );} |
| 237 | <a name="l00264"></a>00264 tmp= lgb-lgamma ( gam ); |
| 238 | <a name="l00265"></a>00265 it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> ); |
| 239 | <a name="l00266"></a>00266 <span class="keywordflow">return</span> tmp; |
| 240 | <a name="l00267"></a>00267 }; |
| 241 | <a name="l00269"></a><a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324">00269</a> vec& <a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>;} |
| 242 | <a name="l00271"></a>00271 }; |
| 243 | <a name="l00272"></a>00272 |
| 244 | <a name="l00274"></a><a class="code" href="classbdm_1_1multiBM.html">00274</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> |
| 245 | <a name="l00275"></a>00275 { |
| 246 | <a name="l00276"></a>00276 <span class="keyword">protected</span>: |
| 247 | <a name="l00278"></a><a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a">00278</a> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>; |
| 248 | <a name="l00280"></a><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25">00280</a> vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>; |
| 249 | <a name="l00281"></a>00281 <span class="keyword">public</span>: |
| 250 | <a name="l00283"></a><a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf">00283</a> <a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf" title="Default constructor.">multiBM</a> ( ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) |
| 251 | <a name="l00284"></a>00284 { |
| 252 | <a name="l00285"></a>00285 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>.length() >0 ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 253 | <a name="l00286"></a>00286 <span class="keywordflow">else</span>{<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=0.0;} |
| 254 | <a name="l00287"></a>00287 } |
| 255 | <a name="l00289"></a><a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31">00289</a> <a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31" title="Copy constructor.">multiBM</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> &B ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( B ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( B.<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) {} |
| 256 | <a name="l00291"></a><a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52">00291</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52" title="Sets sufficient statistics to match that of givefrom mB0.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a>* mB0 ) {<span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* mB=<span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> ( mB0 ); <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>=mB-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;} |
| 257 | <a name="l00292"></a><a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95">00292</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95" title="Incremental Bayes rule.">bayes</a> ( <span class="keyword">const</span> vec &dt ) |
| 258 | <a name="l00293"></a>00293 { |
| 259 | <a name="l00294"></a>00294 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a><1.0 ) {<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 260 | <a name="l00295"></a>00295 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>+=dt; |
| 261 | <a name="l00296"></a>00296 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BM.html#4064b6559d962633e4372b12f4cd204a" title="Logarithm of marginalized data likelihood.">ll</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
| 262 | <a name="l00297"></a>00297 } |
| 263 | <a name="l00298"></a><a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">00298</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">logpred</a> ( <span class="keyword">const</span> vec &dt )<span class="keyword"> const</span> |
| 264 | <a name="l00299"></a>00299 <span class="keyword"> </span>{ |
| 265 | <a name="l00300"></a>00300 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> pred ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ); |
| 266 | <a name="l00301"></a>00301 vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> = pred.<a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>(); |
| 267 | <a name="l00302"></a>00302 |
| 268 | <a name="l00303"></a>00303 <span class="keywordtype">double</span> lll; |
| 269 | <a name="l00304"></a>00304 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a><1.0 ) |
| 270 | <a name="l00305"></a>00305 {beta*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 271 | <a name="l00306"></a>00306 <span class="keywordflow">else</span> |
| 272 | <a name="l00307"></a>00307 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {lll=<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
| 273 | <a name="l00308"></a>00308 <span class="keywordflow">else</span>{lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 274 | <a name="l00309"></a>00309 |
| 275 | <a name="l00310"></a>00310 beta+=dt; |
| 276 | <a name="l00311"></a>00311 <span class="keywordflow">return</span> pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-lll; |
| 277 | <a name="l00312"></a>00312 } |
| 278 | <a name="l00313"></a><a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732">00313</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* B ) |
| 279 | <a name="l00314"></a>00314 { |
| 280 | <a name="l00315"></a>00315 <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* E=<span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> ( B ); |
| 281 | <a name="l00316"></a>00316 <span class="comment">// sum(beta) should be equal to sum(B.beta)</span> |
| 282 | <a name="l00317"></a>00317 <span class="keyword">const</span> vec &Eb=E-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;<span class="comment">//const_cast<multiBM*> ( E )->_beta();</span> |
| 283 | <a name="l00318"></a>00318 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*= ( sum ( Eb ) /sum ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ) ); |
| 284 | <a name="l00319"></a>00319 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 285 | <a name="l00320"></a>00320 } |
| 286 | <a name="l00321"></a>00321 <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& posterior()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; |
| 287 | <a name="l00322"></a>00322 <span class="keyword">const</span> eDirich* _e()<span class="keyword"> const </span>{<span class="keywordflow">return</span> &<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; |
| 288 | <a name="l00323"></a>00323 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &beta0 ) |
| 289 | <a name="l00324"></a>00324 { |
| 290 | <a name="l00325"></a>00325 <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.set_parameters ( beta0 ); |
| 291 | <a name="l00326"></a>00326 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.lognc();} |
| 292 | <a name="l00327"></a>00327 } |
| 293 | <a name="l00328"></a>00328 }; |
295 | | <a name="l00366"></a><a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f">00366</a> vec <a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> 1.0/<a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample, from density .">egamma::sample</a>();}; |
296 | | <a name="l00368"></a><a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb">00368</a> vec <a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>,<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>-1 );} |
297 | | <a name="l00369"></a><a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133">00369</a> vec <a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{vec mea=<a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>(); <span class="keywordflow">return</span> elem_div ( elem_mult ( mea,mea ),<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>-2 );} |
298 | | <a name="l00370"></a>00370 }; |
299 | | <a name="l00371"></a>00371 <span class="comment">/*</span> |
300 | | <a name="l00373"></a>00373 <span class="comment">class emix : public epdf {</span> |
301 | | <a name="l00374"></a>00374 <span class="comment">protected:</span> |
302 | | <a name="l00375"></a>00375 <span class="comment"> int n;</span> |
303 | | <a name="l00376"></a>00376 <span class="comment"> vec &w;</span> |
304 | | <a name="l00377"></a>00377 <span class="comment"> Array<epdf*> Coms;</span> |
305 | | <a name="l00378"></a>00378 <span class="comment">public:</span> |
306 | | <a name="l00380"></a>00380 <span class="comment"> emix ( const RV &rv, vec &w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span> |
307 | | <a name="l00381"></a>00381 <span class="comment"> void set_parameters( int &i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span> |
308 | | <a name="l00382"></a>00382 <span class="comment"> vec mean(){vec pom; for(int i=0;i<n;i++){pom+=Coms(i)->mean()*w(i);} return pom;};</span> |
309 | | <a name="l00383"></a>00383 <span class="comment"> vec sample() {it_error ( "Not implemented" );return 0;}</span> |
310 | | <a name="l00384"></a>00384 <span class="comment">};</span> |
311 | | <a name="l00385"></a>00385 <span class="comment">*/</span> |
312 | | <a name="l00386"></a>00386 |
313 | | <a name="l00388"></a>00388 |
314 | | <a name="l00389"></a><a class="code" href="classbdm_1_1euni.html">00389</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
315 | | <a name="l00390"></a>00390 <span class="keyword">protected</span>: |
316 | | <a name="l00392"></a><a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32">00392</a> vec <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>; |
317 | | <a name="l00394"></a><a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1">00394</a> vec <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>; |
318 | | <a name="l00396"></a><a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c">00396</a> vec <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>; |
319 | | <a name="l00398"></a><a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20">00398</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>; |
320 | | <a name="l00400"></a><a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476">00400</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>; |
321 | | <a name="l00401"></a>00401 <span class="keyword">public</span>: |
322 | | <a name="l00404"></a>00404 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ) {} |
323 | | <a name="l00405"></a>00405 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) {set_parameters ( low0,high0 );} |
324 | | <a name="l00406"></a>00406 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) { |
325 | | <a name="l00407"></a>00407 <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> = high0-low0; |
326 | | <a name="l00408"></a>00408 it_assert_debug ( min ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ) >0.0,<span class="stringliteral">"bad support"</span> ); |
327 | | <a name="l00409"></a>00409 <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> = low0; |
328 | | <a name="l00410"></a>00410 <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a> = high0; |
329 | | <a name="l00411"></a>00411 <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> = prod ( 1.0/<a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ); |
330 | | <a name="l00412"></a>00412 <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a> = log ( <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> ); |
331 | | <a name="l00413"></a>00413 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>.length(); |
332 | | <a name="l00414"></a>00414 } |
333 | | <a name="l00416"></a>00416 |
334 | | <a name="l00417"></a>00417 <span class="keywordtype">double</span> eval ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>;} |
335 | | <a name="l00418"></a><a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81">00418</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81" title="Compute log-probability of argument val.">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>;} |
336 | | <a name="l00419"></a><a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194">00419</a> vec <a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{ |
337 | | <a name="l00420"></a>00420 vec smp ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
338 | | <a name="l00421"></a>00421 <span class="preprocessor">#pragma omp critical</span> |
339 | | <a name="l00422"></a>00422 <span class="preprocessor"></span> UniRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ,smp ); |
340 | | <a name="l00423"></a>00423 <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>+elem_mult ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>,smp ); |
341 | | <a name="l00424"></a>00424 } |
342 | | <a name="l00426"></a><a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226">00426</a> vec <a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226" title="set values of low and high ">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>-<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> ) /2.0;} |
343 | | <a name="l00427"></a><a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c">00427</a> vec <a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> ( pow ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,2 ) +pow ( <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>,2 ) +elem_mult ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> ) ) /3.0;} |
344 | | <a name="l00428"></a>00428 }; |
345 | | <a name="l00429"></a>00429 |
346 | | <a name="l00430"></a>00430 |
347 | | <a name="l00436"></a>00436 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
348 | | <a name="l00437"></a><a class="code" href="classbdm_1_1mlnorm.html">00437</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> { |
349 | | <a name="l00438"></a>00438 <span class="keyword">protected</span>: |
350 | | <a name="l00440"></a><a class="code" href="classbdm_1_1mlnorm.html#150ad6acb223b0a0abeaf92346686dcd">00440</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
351 | | <a name="l00441"></a>00441 mat A; |
352 | | <a name="l00442"></a>00442 vec mu_const; |
353 | | <a name="l00443"></a>00443 vec& _mu; <span class="comment">//cached epdf.mu;</span> |
354 | | <a name="l00444"></a>00444 <span class="keyword">public</span>: |
355 | | <a name="l00447"></a>00447 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> ( ) :<a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (),<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),A ( ),_mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a> =&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; }; |
356 | | <a name="l00448"></a>00448 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),_mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) { |
357 | | <a name="l00449"></a>00449 <a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a> =&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( A,mu0,R ); |
358 | | <a name="l00450"></a>00450 }; |
359 | | <a name="l00452"></a>00452 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R ); |
360 | | <a name="l00455"></a>00455 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">condition</a> ( <span class="keyword">const</span> vec &cond ); |
361 | | <a name="l00456"></a>00456 |
362 | | <a name="l00458"></a><a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced">00458</a> vec& <a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced" title="access function">_mu_const</a>() {<span class="keywordflow">return</span> mu_const;} |
363 | | <a name="l00460"></a><a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614">00460</a> mat& <a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614" title="access function">_A</a>() {<span class="keywordflow">return</span> A;} |
364 | | <a name="l00462"></a><a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604">00462</a> mat <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R().to_mat();} |
365 | | <a name="l00463"></a>00463 |
366 | | <a name="l00464"></a>00464 <span class="keyword">template</span><<span class="keyword">class</span> sq_M> |
367 | | <a name="l00465"></a>00465 <span class="keyword">friend</span> std::ostream &operator<< ( std::ostream &os, mlnorm<sq_M> &ml ); |
368 | | <a name="l00466"></a>00466 }; |
369 | | <a name="l00467"></a>00467 |
370 | | <a name="l00469"></a>00469 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
371 | | <a name="l00470"></a><a class="code" href="classbdm_1_1mgnorm.html">00470</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgnorm.html" title="Mpdf with general function for mean value.">mgnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> { |
372 | | <a name="l00471"></a>00471 <span class="keyword">protected</span>: |
373 | | <a name="l00473"></a><a class="code" href="classbdm_1_1mgnorm.html#8f7a376a1d2197e0634557e88e03104a">00473</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
374 | | <a name="l00474"></a>00474 vec &mu; |
375 | | <a name="l00475"></a>00475 <a class="code" href="classbdm_1_1fnc.html" title="Class representing function of variable represented by rv.">fnc</a>* g; |
376 | | <a name="l00476"></a>00476 <span class="keyword">public</span>: |
377 | | <a name="l00478"></a><a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d">00478</a> <a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d" title="default constructor">mgnorm</a>() :mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;} |
378 | | <a name="l00480"></a><a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564">00480</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564" title="set mean function">set_parameters</a> ( <a class="code" href="classbdm_1_1fnc.html" title="Class representing function of variable represented by rv.">fnc</a>* g0, <span class="keyword">const</span> sq_T &R0 ) {g=g0; <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( g-><a class="code" href="classbdm_1_1fnc.html#083832294da9d1e40804158b979c4341" title="access function">dimension</a>() ), R0 );} |
379 | | <a name="l00481"></a><a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d">00481</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &cond ) {mu=g-><a class="code" href="classbdm_1_1fnc.html#6277b11d7fffc7ef8a2fa3e84ae5bad4" title="function evaluates numerical value of at cond ">eval</a> ( cond );}; |
380 | | <a name="l00482"></a>00482 }; |
381 | | <a name="l00483"></a>00483 |
382 | | <a name="l00491"></a><a class="code" href="classbdm_1_1mlstudent.html">00491</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a><ldmat> { |
383 | | <a name="l00492"></a>00492 <span class="keyword">protected</span>: |
384 | | <a name="l00493"></a>00493 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Lambda; |
385 | | <a name="l00494"></a>00494 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &<a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>; |
386 | | <a name="l00495"></a>00495 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Re; |
387 | | <a name="l00496"></a>00496 <span class="keyword">public</span>: |
388 | | <a name="l00497"></a>00497 <a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> ( ) :<a class="code" href="classbdm_1_1mlnorm.html">mlnorm<ldmat></a> (), |
389 | | <a name="l00498"></a>00498 Lambda (), <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R() ) {} |
390 | | <a name="l00499"></a>00499 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &R0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& Lambda0 ) { |
391 | | <a name="l00500"></a>00500 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> ); |
392 | | <a name="l00501"></a>00501 it_assert_debug ( R0.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>() ==A0.rows(),<span class="stringliteral">""</span> ); |
393 | | <a name="l00502"></a>00502 |
394 | | <a name="l00503"></a>00503 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( mu0,Lambda ); <span class="comment">//</span> |
395 | | <a name="l00504"></a>00504 A = A0; |
396 | | <a name="l00505"></a>00505 mu_const = mu0; |
397 | | <a name="l00506"></a>00506 Re=R0; |
398 | | <a name="l00507"></a>00507 Lambda = Lambda0; |
399 | | <a name="l00508"></a>00508 } |
400 | | <a name="l00509"></a><a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">00509</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">condition</a> ( <span class="keyword">const</span> vec &cond ) { |
401 | | <a name="l00510"></a>00510 _mu = A*cond + mu_const; |
402 | | <a name="l00511"></a>00511 <span class="keywordtype">double</span> zeta; |
403 | | <a name="l00512"></a>00512 <span class="comment">//ugly hack!</span> |
404 | | <a name="l00513"></a>00513 <span class="keywordflow">if</span> ( ( cond.length() +1 ) ==Lambda.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>() ) { |
405 | | <a name="l00514"></a>00514 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( concat ( cond, vec_1 ( 1.0 ) ) ); |
406 | | <a name="l00515"></a>00515 } |
407 | | <a name="l00516"></a>00516 <span class="keywordflow">else</span> { |
408 | | <a name="l00517"></a>00517 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( cond ); |
409 | | <a name="l00518"></a>00518 } |
410 | | <a name="l00519"></a>00519 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> = Re; |
411 | | <a name="l00520"></a>00520 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>*= ( 1+zeta );<span class="comment">// / ( nu ); << nu is in Re!!!!!!</span> |
412 | | <a name="l00521"></a>00521 }; |
413 | | <a name="l00522"></a>00522 |
414 | | <a name="l00523"></a>00523 }; |
415 | | <a name="l00533"></a><a class="code" href="classbdm_1_1mgamma.html">00533</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> { |
416 | | <a name="l00534"></a>00534 <span class="keyword">protected</span>: |
417 | | <a name="l00536"></a><a class="code" href="classbdm_1_1mgamma.html#bdc9f1e9e03c09e91103fee269864438">00536</a> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
418 | | <a name="l00538"></a><a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09">00538</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>; |
419 | | <a name="l00540"></a><a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312">00540</a> vec &<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>; |
420 | | <a name="l00541"></a>00541 |
421 | | <a name="l00542"></a>00542 <span class="keyword">public</span>: |
422 | | <a name="l00544"></a><a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1">00544</a> <a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1" title="Constructor.">mgamma</a> ( ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> ( ), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> (), <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
423 | | <a name="l00546"></a>00546 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, <span class="keyword">const</span> vec &beta0 ); |
424 | | <a name="l00547"></a><a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff">00547</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/val;}; |
425 | | <a name="l00548"></a>00548 }; |
426 | | <a name="l00549"></a>00549 |
427 | | <a name="l00559"></a><a class="code" href="classbdm_1_1migamma.html">00559</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> { |
428 | | <a name="l00560"></a>00560 <span class="keyword">protected</span>: |
429 | | <a name="l00562"></a><a class="code" href="classbdm_1_1migamma.html#a31b39d4179551b593c9e0d7d756783a">00562</a> <a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
430 | | <a name="l00564"></a><a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c">00564</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>; |
431 | | <a name="l00566"></a><a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc">00566</a> vec &<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>; |
432 | | <a name="l00568"></a><a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5">00568</a> vec &<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>; |
433 | | <a name="l00569"></a>00569 |
434 | | <a name="l00570"></a>00570 <span class="keyword">public</span>: |
435 | | <a name="l00573"></a>00573 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ), <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>() ), <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
436 | | <a name="l00574"></a>00574 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> &m ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( m.<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ), <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>() ), <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
437 | | <a name="l00576"></a>00576 |
438 | | <a name="l00578"></a><a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151">00578</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> len, <span class="keywordtype">double</span> k0 ) { |
439 | | <a name="l00579"></a>00579 <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>=k0; |
440 | | <a name="l00580"></a>00580 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( ( 1.0/ ( <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>*<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> ) +2.0 ) *ones ( len ) <span class="comment">/*alpha*/</span>, ones ( len ) <span class="comment">/*beta*/</span> ); |
441 | | <a name="l00581"></a>00581 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); |
442 | | <a name="l00582"></a>00582 }; |
443 | | <a name="l00583"></a><a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c">00583</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) { |
444 | | <a name="l00584"></a>00584 <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>=elem_mult ( val, ( <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>-1.0 ) ); |
| 315 | <a name="l00382"></a><a class="code" href="classbdm_1_1eigamma.html">00382</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> |
| 316 | <a name="l00383"></a>00383 { |
| 317 | <a name="l00384"></a>00384 <span class="keyword">protected</span>: |
| 318 | <a name="l00385"></a>00385 <span class="keyword">public</span> : |
| 319 | <a name="l00390"></a>00390 |
| 320 | <a name="l00391"></a><a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f">00391</a> vec <a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> 1.0/<a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample, from density .">egamma::sample</a>();}; |
| 321 | <a name="l00393"></a><a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb">00393</a> vec <a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>,<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>-1 );} |
| 322 | <a name="l00394"></a><a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133">00394</a> vec <a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{vec mea=<a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>(); <span class="keywordflow">return</span> elem_div ( elem_mult ( mea,mea ),<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>-2 );} |
| 323 | <a name="l00395"></a>00395 }; |
| 324 | <a name="l00396"></a>00396 <span class="comment">/*</span> |
| 325 | <a name="l00398"></a>00398 <span class="comment"> class emix : public epdf {</span> |
| 326 | <a name="l00399"></a>00399 <span class="comment"> protected:</span> |
| 327 | <a name="l00400"></a>00400 <span class="comment"> int n;</span> |
| 328 | <a name="l00401"></a>00401 <span class="comment"> vec &w;</span> |
| 329 | <a name="l00402"></a>00402 <span class="comment"> Array<epdf*> Coms;</span> |
| 330 | <a name="l00403"></a>00403 <span class="comment"> public:</span> |
| 331 | <a name="l00405"></a>00405 <span class="comment"> emix ( const RV &rv, vec &w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span> |
| 332 | <a name="l00406"></a>00406 <span class="comment"> void set_parameters( int &i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span> |
| 333 | <a name="l00407"></a>00407 <span class="comment"> vec mean(){vec pom; for(int i=0;i<n;i++){pom+=Coms(i)->mean()*w(i);} return pom;};</span> |
| 334 | <a name="l00408"></a>00408 <span class="comment"> vec sample() {it_error ( "Not implemented" );return 0;}</span> |
| 335 | <a name="l00409"></a>00409 <span class="comment"> };</span> |
| 336 | <a name="l00410"></a>00410 <span class="comment"> */</span> |
| 337 | <a name="l00411"></a>00411 |
| 338 | <a name="l00413"></a>00413 |
| 339 | <a name="l00414"></a><a class="code" href="classbdm_1_1euni.html">00414</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
| 340 | <a name="l00415"></a>00415 { |
| 341 | <a name="l00416"></a>00416 <span class="keyword">protected</span>: |
| 342 | <a name="l00418"></a><a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32">00418</a> vec <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>; |
| 343 | <a name="l00420"></a><a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1">00420</a> vec <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>; |
| 344 | <a name="l00422"></a><a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c">00422</a> vec <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>; |
| 345 | <a name="l00424"></a><a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20">00424</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>; |
| 346 | <a name="l00426"></a><a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476">00426</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>; |
| 347 | <a name="l00427"></a>00427 <span class="keyword">public</span>: |
| 348 | <a name="l00430"></a>00430 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ) {} |
| 349 | <a name="l00431"></a>00431 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) {set_parameters ( low0,high0 );} |
| 350 | <a name="l00432"></a>00432 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) |
| 351 | <a name="l00433"></a>00433 { |
| 352 | <a name="l00434"></a>00434 <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> = high0-low0; |
| 353 | <a name="l00435"></a>00435 it_assert_debug ( min ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ) >0.0,<span class="stringliteral">"bad support"</span> ); |
| 354 | <a name="l00436"></a>00436 <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> = low0; |
| 355 | <a name="l00437"></a>00437 <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a> = high0; |
| 356 | <a name="l00438"></a>00438 <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> = prod ( 1.0/<a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ); |
| 357 | <a name="l00439"></a>00439 <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a> = log ( <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> ); |
| 358 | <a name="l00440"></a>00440 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>.length(); |
| 359 | <a name="l00441"></a>00441 } |
| 360 | <a name="l00443"></a>00443 |
| 361 | <a name="l00444"></a>00444 <span class="keywordtype">double</span> eval ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>;} |
| 362 | <a name="l00445"></a><a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81">00445</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81" title="Compute log-probability of argument val.">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>;} |
| 363 | <a name="l00446"></a><a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194">00446</a> vec <a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const</span> |
| 364 | <a name="l00447"></a>00447 <span class="keyword"> </span>{ |
| 365 | <a name="l00448"></a>00448 vec smp ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 366 | <a name="l00449"></a>00449 <span class="preprocessor">#pragma omp critical</span> |
| 367 | <a name="l00450"></a>00450 <span class="preprocessor"></span> UniRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ,smp ); |
| 368 | <a name="l00451"></a>00451 <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>+elem_mult ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>,smp ); |
| 369 | <a name="l00452"></a>00452 } |
| 370 | <a name="l00454"></a><a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226">00454</a> vec <a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226" title="set values of low and high ">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>-<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> ) /2.0;} |
| 371 | <a name="l00455"></a><a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c">00455</a> vec <a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> ( pow ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,2 ) +pow ( <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>,2 ) +elem_mult ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> ) ) /3.0;} |
| 372 | <a name="l00456"></a>00456 }; |
| 373 | <a name="l00457"></a>00457 |
| 374 | <a name="l00458"></a>00458 |
| 375 | <a name="l00464"></a>00464 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 376 | <a name="l00465"></a><a class="code" href="classbdm_1_1mlnorm.html">00465</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
| 377 | <a name="l00466"></a>00466 { |
| 378 | <a name="l00467"></a>00467 <span class="keyword">protected</span>: |
| 379 | <a name="l00469"></a><a class="code" href="classbdm_1_1mlnorm.html#150ad6acb223b0a0abeaf92346686dcd">00469</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
| 380 | <a name="l00470"></a>00470 mat A; |
| 381 | <a name="l00471"></a>00471 vec mu_const; |
| 382 | <a name="l00472"></a>00472 vec& _mu; <span class="comment">//cached epdf.mu;</span> |
| 383 | <a name="l00473"></a>00473 <span class="keyword">public</span>: |
| 384 | <a name="l00476"></a>00476 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> ( ) :<a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (),<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),A ( ),_mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a> =&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; }; |
| 385 | <a name="l00477"></a>00477 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),_mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) |
| 386 | <a name="l00478"></a>00478 { |
| 387 | <a name="l00479"></a>00479 <a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a> =&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( A,mu0,R ); |
| 388 | <a name="l00480"></a>00480 }; |
| 389 | <a name="l00482"></a>00482 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R ); |
| 390 | <a name="l00485"></a>00485 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">condition</a> ( <span class="keyword">const</span> vec &cond ); |
| 391 | <a name="l00486"></a>00486 |
| 392 | <a name="l00488"></a><a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced">00488</a> vec& <a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced" title="access function">_mu_const</a>() {<span class="keywordflow">return</span> mu_const;} |
| 393 | <a name="l00490"></a><a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614">00490</a> mat& <a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614" title="access function">_A</a>() {<span class="keywordflow">return</span> A;} |
| 394 | <a name="l00492"></a><a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604">00492</a> mat <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R().to_mat();} |
| 395 | <a name="l00493"></a>00493 |
| 396 | <a name="l00494"></a>00494 <span class="keyword">template</span><<span class="keyword">class</span> sq_M> |
| 397 | <a name="l00495"></a>00495 <span class="keyword">friend</span> std::ostream &operator<< ( std::ostream &os, mlnorm<sq_M> &ml ); |
| 398 | <a name="l00496"></a>00496 }; |
| 399 | <a name="l00497"></a>00497 |
| 400 | <a name="l00499"></a>00499 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 401 | <a name="l00500"></a><a class="code" href="classbdm_1_1mgnorm.html">00500</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgnorm.html" title="Mpdf with general function for mean value.">mgnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
| 402 | <a name="l00501"></a>00501 { |
| 403 | <a name="l00502"></a>00502 <span class="keyword">protected</span>: |
| 404 | <a name="l00504"></a><a class="code" href="classbdm_1_1mgnorm.html#8f7a376a1d2197e0634557e88e03104a">00504</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
| 405 | <a name="l00505"></a>00505 vec &mu; |
| 406 | <a name="l00506"></a>00506 <a class="code" href="classbdm_1_1fnc.html" title="Class representing function of variable represented by rv.">fnc</a>* g; |
| 407 | <a name="l00507"></a>00507 <span class="keyword">public</span>: |
| 408 | <a name="l00509"></a><a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d">00509</a> <a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d" title="default constructor">mgnorm</a>() :mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;} |
| 409 | <a name="l00511"></a><a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564">00511</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564" title="set mean function">set_parameters</a> ( <a class="code" href="classbdm_1_1fnc.html" title="Class representing function of variable represented by rv.">fnc</a>* g0, <span class="keyword">const</span> sq_T &R0 ) {g=g0; <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( g-><a class="code" href="classbdm_1_1fnc.html#083832294da9d1e40804158b979c4341" title="access function">dimension</a>() ), R0 );} |
| 410 | <a name="l00512"></a><a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d">00512</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &cond ) {mu=g-><a class="code" href="classbdm_1_1fnc.html#6277b11d7fffc7ef8a2fa3e84ae5bad4" title="function evaluates numerical value of at cond ">eval</a> ( cond );}; |
| 411 | <a name="l00513"></a>00513 }; |
| 412 | <a name="l00514"></a>00514 |
| 413 | <a name="l00522"></a><a class="code" href="classbdm_1_1mlstudent.html">00522</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a><ldmat> |
| 414 | <a name="l00523"></a>00523 { |
| 415 | <a name="l00524"></a>00524 <span class="keyword">protected</span>: |
| 416 | <a name="l00525"></a>00525 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Lambda; |
| 417 | <a name="l00526"></a>00526 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &<a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>; |
| 418 | <a name="l00527"></a>00527 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Re; |
| 419 | <a name="l00528"></a>00528 <span class="keyword">public</span>: |
| 420 | <a name="l00529"></a>00529 <a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> ( ) :<a class="code" href="classbdm_1_1mlnorm.html">mlnorm<ldmat></a> (), |
| 421 | <a name="l00530"></a>00530 Lambda (), <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R() ) {} |
| 422 | <a name="l00531"></a>00531 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &R0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& Lambda0 ) |
| 423 | <a name="l00532"></a>00532 { |
| 424 | <a name="l00533"></a>00533 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> ); |
| 425 | <a name="l00534"></a>00534 it_assert_debug ( R0.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>() ==A0.rows(),<span class="stringliteral">""</span> ); |
| 426 | <a name="l00535"></a>00535 |
| 427 | <a name="l00536"></a>00536 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( mu0,Lambda ); <span class="comment">//</span> |
| 428 | <a name="l00537"></a>00537 A = A0; |
| 429 | <a name="l00538"></a>00538 mu_const = mu0; |
| 430 | <a name="l00539"></a>00539 Re=R0; |
| 431 | <a name="l00540"></a>00540 Lambda = Lambda0; |
| 432 | <a name="l00541"></a>00541 } |
| 433 | <a name="l00542"></a><a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">00542</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">condition</a> ( <span class="keyword">const</span> vec &cond ) |
| 434 | <a name="l00543"></a>00543 { |
| 435 | <a name="l00544"></a>00544 _mu = A*cond + mu_const; |
| 436 | <a name="l00545"></a>00545 <span class="keywordtype">double</span> zeta; |
| 437 | <a name="l00546"></a>00546 <span class="comment">//ugly hack!</span> |
| 438 | <a name="l00547"></a>00547 <span class="keywordflow">if</span> ( ( cond.length() +1 ) ==Lambda.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>() ) |
| 439 | <a name="l00548"></a>00548 { |
| 440 | <a name="l00549"></a>00549 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( concat ( cond, vec_1 ( 1.0 ) ) ); |
| 441 | <a name="l00550"></a>00550 } |
| 442 | <a name="l00551"></a>00551 <span class="keywordflow">else</span> |
| 443 | <a name="l00552"></a>00552 { |
| 444 | <a name="l00553"></a>00553 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( cond ); |
| 445 | <a name="l00554"></a>00554 } |
| 446 | <a name="l00555"></a>00555 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> = Re; |
| 447 | <a name="l00556"></a>00556 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>*= ( 1+zeta );<span class="comment">// / ( nu ); << nu is in Re!!!!!!</span> |
| 448 | <a name="l00557"></a>00557 }; |
| 449 | <a name="l00558"></a>00558 |
| 450 | <a name="l00559"></a>00559 }; |
| 451 | <a name="l00569"></a><a class="code" href="classbdm_1_1mgamma.html">00569</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
| 452 | <a name="l00570"></a>00570 { |
| 453 | <a name="l00571"></a>00571 <span class="keyword">protected</span>: |
| 454 | <a name="l00573"></a><a class="code" href="classbdm_1_1mgamma.html#bdc9f1e9e03c09e91103fee269864438">00573</a> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
| 455 | <a name="l00575"></a><a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09">00575</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>; |
| 456 | <a name="l00577"></a><a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312">00577</a> vec &<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>; |
| 457 | <a name="l00578"></a>00578 |
| 458 | <a name="l00579"></a>00579 <span class="keyword">public</span>: |
| 459 | <a name="l00581"></a><a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1">00581</a> <a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1" title="Constructor.">mgamma</a> ( ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> ( ), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> (), <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
| 460 | <a name="l00583"></a>00583 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, <span class="keyword">const</span> vec &beta0 ); |
| 461 | <a name="l00584"></a><a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff">00584</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/val;}; |
460 | | <a name="l00615"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7">00615</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {vec mean=elem_mult ( <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a> ) ); <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/mean;}; |
461 | | <a name="l00616"></a>00616 }; |
462 | | <a name="l00617"></a>00617 |
463 | | <a name="l00618"></a>00618 |
464 | | <a name="l00631"></a><a class="code" href="classbdm_1_1migamma__ref.html">00631</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma__ref.html" title="Inverse-Gamma random walk around a fixed point.">migamma_ref</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> { |
465 | | <a name="l00632"></a>00632 <span class="keyword">protected</span>: |
466 | | <a name="l00634"></a><a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d">00634</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>; |
467 | | <a name="l00636"></a><a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6">00636</a> vec <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>; |
468 | | <a name="l00637"></a>00637 <span class="keyword">public</span>: |
469 | | <a name="l00639"></a><a class="code" href="classbdm_1_1migamma__ref.html#f45b15a10f084991ba6b48295f10421f">00639</a> <a class="code" href="classbdm_1_1migamma__ref.html#f45b15a10f084991ba6b48295f10421f" title="Constructor.">migamma_ref</a> ( ) : <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> (),<a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a> ( ) {}; |
470 | | <a name="l00641"></a><a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800">00641</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) { |
471 | | <a name="l00642"></a>00642 <a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">migamma::set_parameters</a> ( ref0.length(), k0 ); |
472 | | <a name="l00643"></a>00643 <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>=pow ( ref0,1.0-l0 ); |
473 | | <a name="l00644"></a>00644 <a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>=l0; |
474 | | <a name="l00645"></a>00645 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); |
475 | | <a name="l00646"></a>00646 }; |
476 | | <a name="l00647"></a>00647 |
477 | | <a name="l00648"></a><a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a">00648</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) { |
478 | | <a name="l00649"></a>00649 vec mean=elem_mult ( <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a> ) ); |
479 | | <a name="l00650"></a>00650 <a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">migamma::condition</a> ( mean ); |
480 | | <a name="l00651"></a>00651 }; |
481 | | <a name="l00652"></a>00652 }; |
482 | | <a name="l00653"></a>00653 |
483 | | <a name="l00663"></a><a class="code" href="classbdm_1_1elognorm.html">00663</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1elognorm.html">elognorm</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a><ldmat>{ |
484 | | <a name="l00664"></a>00664 <span class="keyword">public</span>: |
485 | | <a name="l00665"></a><a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba">00665</a> vec <a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> exp(<a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<ldmat>::sample</a>());}; |
486 | | <a name="l00666"></a><a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea">00666</a> vec <a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec var=<a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">enorm<ldmat>::variance</a>();<span class="keywordflow">return</span> exp(<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> - 0.5*var);}; |
487 | | <a name="l00667"></a>00667 |
488 | | <a name="l00668"></a>00668 }; |
489 | | <a name="l00669"></a>00669 |
490 | | <a name="l00681"></a><a class="code" href="classbdm_1_1mlognorm.html">00681</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlognorm.html" title="Log-Normal random walk.">mlognorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> { |
491 | | <a name="l00682"></a>00682 <span class="keyword">protected</span>: |
492 | | <a name="l00683"></a>00683 <a class="code" href="classbdm_1_1elognorm.html">elognorm</a> eno; |
493 | | <a name="l00685"></a><a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a">00685</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>; |
494 | | <a name="l00687"></a><a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2">00687</a> vec &<a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>; |
495 | | <a name="l00688"></a>00688 <span class="keyword">public</span>: |
496 | | <a name="l00690"></a><a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41">00690</a> <a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41" title="Constructor.">mlognorm</a> ( ) : eno (), <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>(eno._mu()) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&eno;}; |
497 | | <a name="l00692"></a><a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f">00692</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> size, <span class="keywordtype">double</span> k) { |
498 | | <a name="l00693"></a>00693 <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a> = 0.5*log(k*k+1); |
499 | | <a name="l00694"></a>00694 eno.<a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a>(zeros(size),2*<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>*eye(size)); |
500 | | <a name="l00695"></a>00695 |
501 | | <a name="l00696"></a>00696 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = size; |
502 | | <a name="l00697"></a>00697 }; |
| 476 | <a name="l00616"></a><a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151">00616</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> len, <span class="keywordtype">double</span> k0 ) |
| 477 | <a name="l00617"></a>00617 { |
| 478 | <a name="l00618"></a>00618 <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>=k0; |
| 479 | <a name="l00619"></a>00619 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( ( 1.0/ ( <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>*<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> ) +2.0 ) *ones ( len ) <span class="comment">/*alpha*/</span>, ones ( len ) <span class="comment">/*beta*/</span> ); |
| 480 | <a name="l00620"></a>00620 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); |
| 481 | <a name="l00621"></a>00621 }; |
| 482 | <a name="l00622"></a><a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c">00622</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) |
| 483 | <a name="l00623"></a>00623 { |
| 484 | <a name="l00624"></a>00624 <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>=elem_mult ( val, ( <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>-1.0 ) ); |
| 485 | <a name="l00625"></a>00625 }; |
| 486 | <a name="l00626"></a>00626 }; |
| 487 | <a name="l00627"></a>00627 |
| 488 | <a name="l00639"></a><a class="code" href="classbdm_1_1mgamma__fix.html">00639</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> |
| 489 | <a name="l00640"></a>00640 { |
| 490 | <a name="l00641"></a>00641 <span class="keyword">protected</span>: |
| 491 | <a name="l00643"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa">00643</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>; |
| 492 | <a name="l00645"></a><a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2">00645</a> vec <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>; |
| 493 | <a name="l00646"></a>00646 <span class="keyword">public</span>: |
| 494 | <a name="l00648"></a><a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d">00648</a> <a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d" title="Constructor.">mgamma_fix</a> ( ) : <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> ( ),<a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a> () {}; |
| 495 | <a name="l00650"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2">00650</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) |
| 496 | <a name="l00651"></a>00651 { |
| 497 | <a name="l00652"></a>00652 <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">mgamma::set_parameters</a> ( k0, ref0 ); |
| 498 | <a name="l00653"></a>00653 <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>=l0; |
| 499 | <a name="l00654"></a>00654 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=dimension(); |
| 500 | <a name="l00655"></a>00655 }; |
| 501 | <a name="l00656"></a>00656 |
| 502 | <a name="l00657"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7">00657</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {vec mean=elem_mult ( <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a> ) ); <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/mean;}; |
| 503 | <a name="l00658"></a>00658 }; |
| 504 | <a name="l00659"></a>00659 |
| 505 | <a name="l00660"></a>00660 |
| 506 | <a name="l00673"></a><a class="code" href="classbdm_1_1migamma__ref.html">00673</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma__ref.html" title="Inverse-Gamma random walk around a fixed point.">migamma_ref</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> |
| 507 | <a name="l00674"></a>00674 { |
| 508 | <a name="l00675"></a>00675 <span class="keyword">protected</span>: |
| 509 | <a name="l00677"></a><a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d">00677</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>; |
| 510 | <a name="l00679"></a><a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6">00679</a> vec <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>; |
| 511 | <a name="l00680"></a>00680 <span class="keyword">public</span>: |
| 512 | <a name="l00682"></a><a class="code" href="classbdm_1_1migamma__ref.html#f45b15a10f084991ba6b48295f10421f">00682</a> <a class="code" href="classbdm_1_1migamma__ref.html#f45b15a10f084991ba6b48295f10421f" title="Constructor.">migamma_ref</a> ( ) : <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> (),<a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a> ( ) {}; |
| 513 | <a name="l00684"></a><a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800">00684</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) |
| 514 | <a name="l00685"></a>00685 { |
| 515 | <a name="l00686"></a>00686 <a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">migamma::set_parameters</a> ( ref0.length(), k0 ); |
| 516 | <a name="l00687"></a>00687 <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>=pow ( ref0,1.0-l0 ); |
| 517 | <a name="l00688"></a>00688 <a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>=l0; |
| 518 | <a name="l00689"></a>00689 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); |
| 519 | <a name="l00690"></a>00690 }; |
| 520 | <a name="l00691"></a>00691 |
| 521 | <a name="l00692"></a><a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a">00692</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) |
| 522 | <a name="l00693"></a>00693 { |
| 523 | <a name="l00694"></a>00694 vec mean=elem_mult ( <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a> ) ); |
| 524 | <a name="l00695"></a>00695 <a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">migamma::condition</a> ( mean ); |
| 525 | <a name="l00696"></a>00696 }; |
| 526 | <a name="l00697"></a>00697 }; |
504 | | <a name="l00699"></a><a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e">00699</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) { |
505 | | <a name="l00700"></a>00700 <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>=log(val)-<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>;<span class="comment">//elem_mult ( refl,pow ( val,l ) );</span> |
506 | | <a name="l00701"></a>00701 }; |
507 | | <a name="l00702"></a>00702 }; |
508 | | <a name="l00703"></a>00703 |
509 | | <a name="l00707"></a><a class="code" href="classbdm_1_1iW.html">00707</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1iW.html">iW</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>{ |
510 | | <a name="l00708"></a>00708 <span class="keyword">public</span>: |
511 | | <a name="l00709"></a>00709 vec sample(){<span class="keywordflow">return</span> vec();} |
512 | | <a name="l00710"></a>00710 }; |
513 | | <a name="l00711"></a>00711 |
514 | | <a name="l00713"></a>00713 <span class="keyword">enum</span> RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
515 | | <a name="l00719"></a><a class="code" href="classbdm_1_1eEmp.html">00719</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> { |
516 | | <a name="l00720"></a>00720 <span class="keyword">protected</span> : |
517 | | <a name="l00722"></a><a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031">00722</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>; |
518 | | <a name="l00724"></a><a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d">00724</a> vec <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>; |
519 | | <a name="l00726"></a><a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3">00726</a> Array<vec> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>; |
520 | | <a name="l00727"></a>00727 <span class="keyword">public</span>: |
521 | | <a name="l00730"></a>00730 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( ) {}; |
522 | | <a name="l00731"></a>00731 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> &e ) : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( e ), <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ), <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ) {}; |
523 | | <a name="l00733"></a>00733 |
524 | | <a name="l00735"></a>00735 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#7cfd383180b486fe4526bdf0179350c0" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> vec &w0, <span class="keyword">const</span> epdf* pdf0 ); |
525 | | <a name="l00737"></a><a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7">00737</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 , <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> ) {<a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( ones ( n ) /n,pdf0 );}; |
526 | | <a name="l00739"></a>00739 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b62d802b8ef39f7c4dcbeb366c90951a" title="Set sample.">set_samples</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
527 | | <a name="l00741"></a><a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1">00741</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1" title="Set sample.">set_parameters</a> ( <span class="keywordtype">int</span> n0, <span class="keywordtype">bool</span> copy=<span class="keyword">true</span> ) {<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>=n0; <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>.set_size ( n0,copy );<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>.set_size ( n0,copy );}; |
528 | | <a name="l00743"></a><a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef">00743</a> vec& <a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
529 | | <a name="l00745"></a><a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714">00745</a> <span class="keyword">const</span> vec& <a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714" title="Potentially dangerous, use with care.">_w</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
530 | | <a name="l00747"></a><a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2">00747</a> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
531 | | <a name="l00749"></a><a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2">00749</a> <span class="keyword">const</span> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2" title="access function">_samples</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
532 | | <a name="l00751"></a>00751 ivec <a class="code" href="classbdm_1_1eEmp.html#f06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( RESAMPLING_METHOD method=SYSTEMATIC ); |
533 | | <a name="l00753"></a><a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270">00753</a> vec <a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} |
534 | | <a name="l00755"></a><a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09">00755</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09" title="inherited operation : NOT implemneted">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} |
535 | | <a name="l00756"></a><a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9">00756</a> vec <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>()<span class="keyword"> const </span>{ |
536 | | <a name="l00757"></a>00757 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
537 | | <a name="l00758"></a>00758 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
538 | | <a name="l00759"></a>00759 <span class="keywordflow">return</span> pom; |
539 | | <a name="l00760"></a>00760 } |
540 | | <a name="l00761"></a><a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87">00761</a> vec <a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{ |
541 | | <a name="l00762"></a>00762 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
542 | | <a name="l00763"></a>00763 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=pow ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ),2 ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
543 | | <a name="l00764"></a>00764 <span class="keywordflow">return</span> pom-pow ( <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>(),2 ); |
544 | | <a name="l00765"></a>00765 } |
545 | | <a name="l00767"></a><a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f">00767</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f" title="For this class, qbounds are minimum and maximum value of the population!">qbounds</a> ( vec &lb, vec &ub, <span class="keywordtype">double</span> perc=0.95 )<span class="keyword"> const </span>{ |
546 | | <a name="l00768"></a>00768 <span class="comment">// lb in inf so than it will be pushed below;</span> |
547 | | <a name="l00769"></a>00769 lb.set_size(<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>); |
548 | | <a name="l00770"></a>00770 ub.set_size(<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>); |
549 | | <a name="l00771"></a>00771 lb = std::numeric_limits<double>::infinity(); |
550 | | <a name="l00772"></a>00772 ub = -std::numeric_limits<double>::infinity(); |
551 | | <a name="l00773"></a>00773 <span class="keywordtype">int</span> j; |
552 | | <a name="l00774"></a>00774 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) { |
553 | | <a name="l00775"></a>00775 <span class="keywordflow">for</span> ( j=0;j<<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>; j++ ) { |
554 | | <a name="l00776"></a>00776 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) <lb ( j ) ) {lb ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} |
555 | | <a name="l00777"></a>00777 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) >ub ( j ) ) {ub ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} |
556 | | <a name="l00778"></a>00778 } |
557 | | <a name="l00779"></a>00779 } |
558 | | <a name="l00780"></a>00780 } |
559 | | <a name="l00781"></a>00781 }; |
560 | | <a name="l00782"></a>00782 |
561 | | <a name="l00783"></a>00783 |
562 | | <a name="l00785"></a>00785 |
563 | | <a name="l00786"></a>00786 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
564 | | <a name="l00787"></a>00787 <span class="keywordtype">void</span> enorm<sq_T>::set_parameters ( <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) { |
565 | | <a name="l00788"></a>00788 <span class="comment">//Fixme test dimensions of mu0 and R0;</span> |
566 | | <a name="l00789"></a>00789 mu = mu0; |
567 | | <a name="l00790"></a>00790 R = R0; |
568 | | <a name="l00791"></a>00791 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = mu0.length(); |
569 | | <a name="l00792"></a>00792 }; |
570 | | <a name="l00793"></a>00793 |
571 | | <a name="l00794"></a>00794 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
572 | | <a name="l00795"></a><a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2">00795</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">enorm<sq_T>::dupdate</a> ( mat &v, <span class="keywordtype">double</span> nu ) { |
573 | | <a name="l00796"></a>00796 <span class="comment">//</span> |
574 | | <a name="l00797"></a>00797 }; |
575 | | <a name="l00798"></a>00798 |
576 | | <a name="l00799"></a>00799 <span class="comment">// template<class sq_T></span> |
577 | | <a name="l00800"></a>00800 <span class="comment">// void enorm<sq_T>::tupdate ( double phi, mat &vbar, double nubar ) {</span> |
578 | | <a name="l00801"></a>00801 <span class="comment">// //</span> |
579 | | <a name="l00802"></a>00802 <span class="comment">// };</span> |
580 | | <a name="l00803"></a>00803 |
581 | | <a name="l00804"></a>00804 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
582 | | <a name="l00805"></a><a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766">00805</a> vec <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample, from density .">enorm<sq_T>::sample</a>()<span class="keyword"> const </span>{ |
583 | | <a name="l00806"></a>00806 vec x ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
584 | | <a name="l00807"></a>00807 <span class="preprocessor">#pragma omp critical</span> |
585 | | <a name="l00808"></a>00808 <span class="preprocessor"></span> NorRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,x ); |
586 | | <a name="l00809"></a>00809 vec smp = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
587 | | <a name="l00810"></a>00810 |
588 | | <a name="l00811"></a>00811 smp += <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
589 | | <a name="l00812"></a>00812 <span class="keywordflow">return</span> smp; |
590 | | <a name="l00813"></a>00813 }; |
591 | | <a name="l00814"></a>00814 |
592 | | <a name="l00815"></a>00815 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
593 | | <a name="l00816"></a>00816 mat <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample, from density .">enorm<sq_T>::sample</a> ( <span class="keywordtype">int</span> N )<span class="keyword"> const </span>{ |
594 | | <a name="l00817"></a>00817 mat X ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,N ); |
595 | | <a name="l00818"></a>00818 vec x ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
596 | | <a name="l00819"></a>00819 vec pom; |
597 | | <a name="l00820"></a>00820 <span class="keywordtype">int</span> i; |
598 | | <a name="l00821"></a>00821 |
599 | | <a name="l00822"></a>00822 <span class="keywordflow">for</span> ( i=0;i<N;i++ ) { |
600 | | <a name="l00823"></a>00823 <span class="preprocessor">#pragma omp critical</span> |
601 | | <a name="l00824"></a>00824 <span class="preprocessor"></span> NorRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,x ); |
602 | | <a name="l00825"></a>00825 pom = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
603 | | <a name="l00826"></a>00826 pom +=<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
604 | | <a name="l00827"></a>00827 X.set_col ( i, pom ); |
605 | | <a name="l00828"></a>00828 } |
606 | | <a name="l00829"></a>00829 |
607 | | <a name="l00830"></a>00830 <span class="keywordflow">return</span> X; |
608 | | <a name="l00831"></a>00831 }; |
609 | | <a name="l00832"></a>00832 |
610 | | <a name="l00833"></a>00833 <span class="comment">// template<class sq_T></span> |
611 | | <a name="l00834"></a>00834 <span class="comment">// double enorm<sq_T>::eval ( const vec &val ) const {</span> |
612 | | <a name="l00835"></a>00835 <span class="comment">// double pdfl,e;</span> |
613 | | <a name="l00836"></a>00836 <span class="comment">// pdfl = evallog ( val );</span> |
614 | | <a name="l00837"></a>00837 <span class="comment">// e = exp ( pdfl );</span> |
615 | | <a name="l00838"></a>00838 <span class="comment">// return e;</span> |
616 | | <a name="l00839"></a>00839 <span class="comment">// };</span> |
617 | | <a name="l00840"></a>00840 |
618 | | <a name="l00841"></a>00841 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
619 | | <a name="l00842"></a><a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3">00842</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">enorm<sq_T>::evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
620 | | <a name="l00843"></a>00843 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
621 | | <a name="l00844"></a>00844 <span class="keywordtype">double</span> tmp=-0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>-val ) );<span class="comment">// - lognc();</span> |
622 | | <a name="l00845"></a>00845 <span class="keywordflow">return</span> tmp; |
623 | | <a name="l00846"></a>00846 }; |
| 528 | <a name="l00708"></a><a class="code" href="classbdm_1_1elognorm.html">00708</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1elognorm.html">elognorm</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a><ldmat> |
| 529 | <a name="l00709"></a>00709 { |
| 530 | <a name="l00710"></a>00710 <span class="keyword">public</span>: |
| 531 | <a name="l00711"></a><a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba">00711</a> vec <a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> exp ( <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<ldmat>::sample</a>() );}; |
| 532 | <a name="l00712"></a><a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea">00712</a> vec <a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec var=<a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">enorm<ldmat>::variance</a>();<span class="keywordflow">return</span> exp ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> - 0.5*var );}; |
| 533 | <a name="l00713"></a>00713 |
| 534 | <a name="l00714"></a>00714 }; |
| 535 | <a name="l00715"></a>00715 |
| 536 | <a name="l00727"></a><a class="code" href="classbdm_1_1mlognorm.html">00727</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlognorm.html" title="Log-Normal random walk.">mlognorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> |
| 537 | <a name="l00728"></a>00728 { |
| 538 | <a name="l00729"></a>00729 <span class="keyword">protected</span>: |
| 539 | <a name="l00730"></a>00730 <a class="code" href="classbdm_1_1elognorm.html">elognorm</a> eno; |
| 540 | <a name="l00732"></a><a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a">00732</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>; |
| 541 | <a name="l00734"></a><a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2">00734</a> vec &<a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>; |
| 542 | <a name="l00735"></a>00735 <span class="keyword">public</span>: |
| 543 | <a name="l00737"></a><a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41">00737</a> <a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41" title="Constructor.">mlognorm</a> ( ) : eno (), <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a> ( eno._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&eno;}; |
| 544 | <a name="l00739"></a><a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f">00739</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> size, <span class="keywordtype">double</span> k ) |
| 545 | <a name="l00740"></a>00740 { |
| 546 | <a name="l00741"></a>00741 <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a> = 0.5*log ( k*k+1 ); |
| 547 | <a name="l00742"></a>00742 eno.<a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> ( zeros ( size ),2*<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>*eye ( size ) ); |
| 548 | <a name="l00743"></a>00743 |
| 549 | <a name="l00744"></a>00744 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = size; |
| 550 | <a name="l00745"></a>00745 }; |
| 551 | <a name="l00746"></a>00746 |
| 552 | <a name="l00747"></a><a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e">00747</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) |
| 553 | <a name="l00748"></a>00748 { |
| 554 | <a name="l00749"></a>00749 <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>=log ( val )-<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>;<span class="comment">//elem_mult ( refl,pow ( val,l ) );</span> |
| 555 | <a name="l00750"></a>00750 }; |
| 556 | <a name="l00751"></a>00751 }; |
| 557 | <a name="l00752"></a>00752 |
| 558 | <a name="l00756"></a><a class="code" href="classbdm_1_1eWishartCh.html">00756</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eWishartCh.html">eWishartCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
| 559 | <a name="l00757"></a>00757 { |
| 560 | <a name="l00758"></a>00758 <span class="keyword">protected</span>: |
| 561 | <a name="l00760"></a><a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490">00760</a> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>; |
| 562 | <a name="l00762"></a><a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f">00762</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; |
| 563 | <a name="l00764"></a><a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3">00764</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>; |
| 564 | <a name="l00765"></a>00765 <span class="keyword">public</span>: |
| 565 | <a name="l00766"></a>00766 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0 ) {<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>=<a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> ( Y0 );<a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>=delta0; <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>=<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classsqmat.html#071e80ced9cc3b8cbb360fa7462eb646" title="Reimplementing common functions of mat: cols().">rows</a>(); <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>*<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; } |
| 566 | <a name="l00767"></a>00767 mat sample_mat()<span class="keyword"> const</span> |
| 567 | <a name="l00768"></a>00768 <span class="keyword"> </span>{ |
| 568 | <a name="l00769"></a>00769 mat X=zeros ( <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>,<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a> ); |
| 569 | <a name="l00770"></a>00770 |
| 570 | <a name="l00771"></a>00771 <span class="comment">//sample diagonal</span> |
| 571 | <a name="l00772"></a>00772 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>;i++ ) |
| 572 | <a name="l00773"></a>00773 { |
| 573 | <a name="l00774"></a>00774 GamRNG.<a class="code" href="classitpp_1_1Gamma__RNG.html#dfaae19411e39aa87e1f72e409b6babe" title="Set lambda.">setup</a> ( 0.5* ( <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>-i ) , 0.5 ); <span class="comment">// no +1 !! index if from 0</span> |
| 574 | <a name="l00775"></a>00775 <span class="preprocessor">#pragma omp critical</span> |
| 575 | <a name="l00776"></a>00776 <span class="preprocessor"></span> X ( i,i ) =sqrt ( GamRNG() ); |
| 576 | <a name="l00777"></a>00777 } |
| 577 | <a name="l00778"></a>00778 <span class="comment">//do the rest</span> |
| 578 | <a name="l00779"></a>00779 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<p;i++ ) |
| 579 | <a name="l00780"></a>00780 { |
| 580 | <a name="l00781"></a>00781 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> j=i+1;j<p;j++ ) |
| 581 | <a name="l00782"></a>00782 { |
| 582 | <a name="l00783"></a>00783 <span class="preprocessor">#pragma omp critical</span> |
| 583 | <a name="l00784"></a>00784 <span class="preprocessor"></span> X ( i,j ) =NorRNG.sample(); |
| 584 | <a name="l00785"></a>00785 } |
| 585 | <a name="l00786"></a>00786 } |
| 586 | <a name="l00787"></a>00787 <span class="keywordflow">return</span> X*<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>();<span class="comment">// return upper triangular part of the decomposition</span> |
| 587 | <a name="l00788"></a>00788 } |
| 588 | <a name="l00789"></a><a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a">00789</a> vec <a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a" title="Returns a sample, from density .">sample</a> ()<span class="keyword"> const</span> |
| 589 | <a name="l00790"></a>00790 <span class="keyword"> </span>{ |
| 590 | <a name="l00791"></a>00791 <span class="keywordflow">return</span> vec ( sample_mat()._data(),p*p ); |
| 591 | <a name="l00792"></a>00792 } |
| 592 | <a name="l00794"></a><a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981">00794</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981" title="fast access function y0 will be copied into Y.Ch.">setY</a> ( <span class="keyword">const</span> mat &Ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,Ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() );} |
| 593 | <a name="l00796"></a><a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a">00796</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a" title="fast access function y0 will be copied into Y.Ch.">_setY</a> ( <span class="keyword">const</span> vec &ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() ); } |
| 594 | <a name="l00798"></a><a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e">00798</a> <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>& <a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e" title="access function">getY</a>()<span class="keyword">const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>;} |
| 595 | <a name="l00799"></a>00799 }; |
| 596 | <a name="l00800"></a>00800 |
| 597 | <a name="l00801"></a>00801 <span class="keyword">class </span>eiWishartCh: <span class="keyword">public</span> epdf |
| 598 | <a name="l00802"></a>00802 { |
| 599 | <a name="l00803"></a>00803 <span class="keyword">protected</span>: |
| 600 | <a name="l00804"></a>00804 eWishartCh W; |
| 601 | <a name="l00805"></a>00805 <span class="keywordtype">int</span> p; |
| 602 | <a name="l00806"></a>00806 <span class="keywordtype">double</span> delta; |
| 603 | <a name="l00807"></a>00807 <span class="keyword">public</span>: |
| 604 | <a name="l00808"></a>00808 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0) { |
| 605 | <a name="l00809"></a>00809 delta = delta0; |
| 606 | <a name="l00810"></a>00810 W.set_parameters ( inv ( Y0 ),delta0 ); |
| 607 | <a name="l00811"></a>00811 dim = W.dimension(); p=Y0.rows(); |
| 608 | <a name="l00812"></a>00812 } |
| 609 | <a name="l00813"></a>00813 vec sample()<span class="keyword"> const </span>{mat iCh; iCh=inv ( W.sample_mat() ); <span class="keywordflow">return</span> vec ( iCh._data(),<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> );} |
| 610 | <a name="l00814"></a>00814 <span class="keywordtype">void</span> _setY ( <span class="keyword">const</span> vec &y0 ) |
| 611 | <a name="l00815"></a>00815 { |
| 612 | <a name="l00816"></a>00816 mat Ch ( p,p ); |
| 613 | <a name="l00817"></a>00817 mat iCh ( p,p ); |
| 614 | <a name="l00818"></a>00818 copy_vector ( dim, y0._data(), Ch._data() ); |
| 615 | <a name="l00819"></a>00819 |
| 616 | <a name="l00820"></a>00820 iCh=inv ( Ch ); |
| 617 | <a name="l00821"></a>00821 W.setY ( iCh ); |
| 618 | <a name="l00822"></a>00822 } |
| 619 | <a name="l00823"></a>00823 <span class="keyword">virtual</span> <span class="keywordtype">double</span> evallog ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
| 620 | <a name="l00824"></a>00824 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> X(p); |
| 621 | <a name="l00825"></a>00825 <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>& Y=W.getY(); |
| 622 | <a name="l00826"></a>00826 |
| 623 | <a name="l00827"></a>00827 copy_vector(p*p,val._data(),X._Ch()._data()); |
| 624 | <a name="l00828"></a>00828 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> iX(p);X.inv(iX); |
| 625 | <a name="l00829"></a>00829 <span class="comment">// compute </span> |
| 626 | <a name="l00830"></a>00830 <span class="comment">// \frac{ |\Psi|^{m/2}|X|^{-(m+p+1)/2}e^{-tr(\Psi X^{-1})/2} }{ 2^{mp/2}\Gamma_p(m/2)},</span> |
| 627 | <a name="l00831"></a>00831 mat M=Y.<a class="code" href="classchmat.html#045addd685f8d978efda232d7dcb070e" title="Conversion to full matrix.">to_mat</a>()*iX.to_mat(); |
| 628 | <a name="l00832"></a>00832 |
| 629 | <a name="l00833"></a>00833 <span class="keywordtype">double</span> log1 = 0.5*p*(2*Y.<a class="code" href="classchmat.html#b504ca818203b13e667cb3c503980382" title="Logarithm of a determinant.">logdet</a>())-0.5*(delta+p+1)*(2*X.logdet())-0.5*trace(M); |
| 630 | <a name="l00834"></a>00834 <span class="comment">//Fixme! Multivariate gamma omitted!! it is ok for sampling, but not otherwise!!</span> |
| 631 | <a name="l00835"></a>00835 |
| 632 | <a name="l00836"></a>00836 <span class="comment">/* if (0) {</span> |
| 633 | <a name="l00837"></a>00837 <span class="comment"> mat XX=X.to_mat();</span> |
| 634 | <a name="l00838"></a>00838 <span class="comment"> mat YY=Y.to_mat();</span> |
| 635 | <a name="l00839"></a>00839 <span class="comment"> </span> |
| 636 | <a name="l00840"></a>00840 <span class="comment"> double log2 = 0.5*p*log(det(YY))-0.5*(delta+p+1)*log(det(XX))-0.5*trace(YY*inv(XX)); </span> |
| 637 | <a name="l00841"></a>00841 <span class="comment"> cout << log1 << "," << log2 << endl;</span> |
| 638 | <a name="l00842"></a>00842 <span class="comment"> }*/</span> |
| 639 | <a name="l00843"></a>00843 <span class="keywordflow">return</span> log1; |
| 640 | <a name="l00844"></a>00844 }; |
| 641 | <a name="l00845"></a>00845 |
| 642 | <a name="l00846"></a>00846 }; |
625 | | <a name="l00848"></a>00848 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
626 | | <a name="l00849"></a><a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32">00849</a> <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">enorm<sq_T>::lognc</a> ()<span class="keyword"> const </span>{ |
627 | | <a name="l00850"></a>00850 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
628 | | <a name="l00851"></a>00851 <span class="keywordtype">double</span> tmp=0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.logdet() ); |
629 | | <a name="l00852"></a>00852 <span class="keywordflow">return</span> tmp; |
630 | | <a name="l00853"></a>00853 }; |
631 | | <a name="l00854"></a>00854 |
632 | | <a name="l00855"></a>00855 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
633 | | <a name="l00856"></a><a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f">00856</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">mlnorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) { |
634 | | <a name="l00857"></a>00857 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> ); |
635 | | <a name="l00858"></a>00858 it_assert_debug ( A0.rows() ==R0.rows(),<span class="stringliteral">""</span> ); |
636 | | <a name="l00859"></a>00859 |
637 | | <a name="l00860"></a>00860 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( A0.rows() ),R0 ); |
638 | | <a name="l00861"></a>00861 A = A0; |
639 | | <a name="l00862"></a>00862 mu_const = mu0; |
640 | | <a name="l00863"></a>00863 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=A0.cols(); |
641 | | <a name="l00864"></a>00864 } |
642 | | <a name="l00865"></a>00865 |
643 | | <a name="l00866"></a>00866 <span class="comment">// template<class sq_T></span> |
644 | | <a name="l00867"></a>00867 <span class="comment">// vec mlnorm<sq_T>::samplecond (const vec &cond, double &lik ) {</span> |
645 | | <a name="l00868"></a>00868 <span class="comment">// this->condition ( cond );</span> |
646 | | <a name="l00869"></a>00869 <span class="comment">// vec smp = epdf.sample();</span> |
647 | | <a name="l00870"></a>00870 <span class="comment">// lik = epdf.eval ( smp );</span> |
648 | | <a name="l00871"></a>00871 <span class="comment">// return smp;</span> |
649 | | <a name="l00872"></a>00872 <span class="comment">// }</span> |
650 | | <a name="l00873"></a>00873 |
651 | | <a name="l00874"></a>00874 <span class="comment">// template<class sq_T></span> |
652 | | <a name="l00875"></a>00875 <span class="comment">// mat mlnorm<sq_T>::samplecond (const vec &cond, vec &lik, int n ) {</span> |
653 | | <a name="l00876"></a>00876 <span class="comment">// int i;</span> |
654 | | <a name="l00877"></a>00877 <span class="comment">// int dim = rv.count();</span> |
655 | | <a name="l00878"></a>00878 <span class="comment">// mat Smp ( dim,n );</span> |
656 | | <a name="l00879"></a>00879 <span class="comment">// vec smp ( dim );</span> |
657 | | <a name="l00880"></a>00880 <span class="comment">// this->condition ( cond );</span> |
658 | | <a name="l00881"></a>00881 <span class="comment">//</span> |
659 | | <a name="l00882"></a>00882 <span class="comment">// for ( i=0; i<n; i++ ) {</span> |
660 | | <a name="l00883"></a>00883 <span class="comment">// smp = epdf.sample();</span> |
661 | | <a name="l00884"></a>00884 <span class="comment">// lik ( i ) = epdf.eval ( smp );</span> |
662 | | <a name="l00885"></a>00885 <span class="comment">// Smp.set_col ( i ,smp );</span> |
663 | | <a name="l00886"></a>00886 <span class="comment">// }</span> |
664 | | <a name="l00887"></a>00887 <span class="comment">//</span> |
665 | | <a name="l00888"></a>00888 <span class="comment">// return Smp;</span> |
666 | | <a name="l00889"></a>00889 <span class="comment">// }</span> |
667 | | <a name="l00890"></a>00890 |
668 | | <a name="l00891"></a>00891 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
669 | | <a name="l00892"></a><a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">00892</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">mlnorm<sq_T>::condition</a> ( <span class="keyword">const</span> vec &cond ) { |
670 | | <a name="l00893"></a>00893 _mu = A*cond + mu_const; |
671 | | <a name="l00894"></a>00894 <span class="comment">//R is already assigned;</span> |
672 | | <a name="l00895"></a>00895 } |
673 | | <a name="l00896"></a>00896 |
674 | | <a name="l00897"></a>00897 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
675 | | <a name="l00898"></a><a class="code" href="classbdm_1_1enorm.html#cd02d76e9d4f96bdd3fa6b604e273039">00898</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* <a class="code" href="classbdm_1_1enorm.html#cd02d76e9d4f96bdd3fa6b604e273039" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">enorm<sq_T>::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const </span>{ |
676 | | <a name="l00899"></a>00899 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(), <span class="stringliteral">"rv description is not assigned"</span> ); |
677 | | <a name="l00900"></a>00900 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
678 | | <a name="l00901"></a>00901 |
679 | | <a name="l00902"></a>00902 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,irvn ); <span class="comment">//select rows and columns of R</span> |
680 | | <a name="l00903"></a>00903 |
681 | | <a name="l00904"></a>00904 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>* tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>; |
682 | | <a name="l00905"></a>00905 tmp-><a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a> ( rvn ); |
683 | | <a name="l00906"></a>00906 tmp-><a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ), Rn ); |
684 | | <a name="l00907"></a>00907 <span class="keywordflow">return</span> tmp; |
685 | | <a name="l00908"></a>00908 } |
686 | | <a name="l00909"></a>00909 |
687 | | <a name="l00910"></a>00910 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
688 | | <a name="l00911"></a><a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26">00911</a> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">enorm<sq_T>::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const </span>{ |
689 | | <a name="l00912"></a>00912 |
690 | | <a name="l00913"></a>00913 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(),<span class="stringliteral">"rvs are not assigned"</span> ); |
691 | | <a name="l00914"></a>00914 |
692 | | <a name="l00915"></a>00915 <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvc = <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#aec44dabdf0a6d90fbae95e1356eda39" title="Subtract another variable from the current one.">subt</a> ( rvn ); |
693 | | <a name="l00916"></a>00916 it_assert_debug ( ( rvc.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() +rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ==<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ),<span class="stringliteral">"wrong rvn"</span> ); |
694 | | <a name="l00917"></a>00917 <span class="comment">//Permutation vector of the new R</span> |
695 | | <a name="l00918"></a>00918 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
696 | | <a name="l00919"></a>00919 ivec irvc = rvc.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
697 | | <a name="l00920"></a>00920 ivec perm=concat ( irvn , irvc ); |
698 | | <a name="l00921"></a>00921 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,perm ); |
699 | | <a name="l00922"></a>00922 |
700 | | <a name="l00923"></a>00923 <span class="comment">//fixme - could this be done in general for all sq_T?</span> |
701 | | <a name="l00924"></a>00924 mat S=Rn.to_mat(); |
702 | | <a name="l00925"></a>00925 <span class="comment">//fixme</span> |
703 | | <a name="l00926"></a>00926 <span class="keywordtype">int</span> n=rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>()-1; |
704 | | <a name="l00927"></a>00927 <span class="keywordtype">int</span> end=<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows()-1; |
705 | | <a name="l00928"></a>00928 mat S11 = S.get ( 0,n, 0, n ); |
706 | | <a name="l00929"></a>00929 mat S12 = S.get ( 0, n , rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); |
707 | | <a name="l00930"></a>00930 mat S22 = S.get ( rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end, rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); |
708 | | <a name="l00931"></a>00931 |
709 | | <a name="l00932"></a>00932 vec mu1 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ); |
710 | | <a name="l00933"></a>00933 vec mu2 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvc ); |
711 | | <a name="l00934"></a>00934 mat A=S12*inv ( S22 ); |
712 | | <a name="l00935"></a>00935 sq_T R_n ( S11 - A *S12.T() ); |
713 | | <a name="l00936"></a>00936 |
714 | | <a name="l00937"></a>00937 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a>* tmp=<span class="keyword">new</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a> ( ); |
715 | | <a name="l00938"></a>00938 tmp->set_rv ( rvn ); tmp->set_rvc ( rvc ); |
716 | | <a name="l00939"></a>00939 tmp->set_parameters ( A,mu1-A*mu2,R_n ); |
717 | | <a name="l00940"></a>00940 <span class="keywordflow">return</span> tmp; |
718 | | <a name="l00941"></a>00941 } |
719 | | <a name="l00942"></a>00942 |
720 | | <a name="l00944"></a>00944 |
721 | | <a name="l00945"></a>00945 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
722 | | <a name="l00946"></a>00946 std::ostream &operator<< ( std::ostream &os, mlnorm<sq_T> &ml ) { |
723 | | <a name="l00947"></a>00947 os << <span class="stringliteral">"A:"</span><< ml.A<<endl; |
724 | | <a name="l00948"></a>00948 os << <span class="stringliteral">"mu:"</span><< ml.mu_const<<endl; |
725 | | <a name="l00949"></a>00949 os << <span class="stringliteral">"R:"</span> << ml.epdf._R().to_mat() <<endl; |
726 | | <a name="l00950"></a>00950 <span class="keywordflow">return</span> os; |
727 | | <a name="l00951"></a>00951 }; |
728 | | <a name="l00952"></a>00952 |
729 | | <a name="l00953"></a>00953 } |
730 | | <a name="l00954"></a>00954 <span class="preprocessor">#endif //EF_H</span> |
| 644 | <a name="l00848"></a>00848 <span class="keyword">class </span>rwiWishartCh : <span class="keyword">public</span> mpdf |
| 645 | <a name="l00849"></a>00849 { |
| 646 | <a name="l00850"></a>00850 <span class="keyword">protected</span>: |
| 647 | <a name="l00851"></a>00851 eiWishartCh eiW; |
| 648 | <a name="l00853"></a>00853 <span class="keywordtype">double</span> sqd; |
| 649 | <a name="l00854"></a>00854 <span class="comment">//reference point for diagonal</span> |
| 650 | <a name="l00855"></a>00855 vec refl; |
| 651 | <a name="l00856"></a>00856 <span class="keywordtype">double</span> l; |
| 652 | <a name="l00857"></a>00857 <span class="keywordtype">int</span> p; |
| 653 | <a name="l00858"></a>00858 <span class="keyword">public</span>: |
| 654 | <a name="l00859"></a>00859 <span class="keywordtype">void</span> set_parameters ( <span class="keywordtype">int</span> p0, <span class="keywordtype">double</span> k, vec ref0, <span class="keywordtype">double</span> l0 ) |
| 655 | <a name="l00860"></a>00860 { |
| 656 | <a name="l00861"></a>00861 p=p0; |
| 657 | <a name="l00862"></a>00862 <span class="keywordtype">double</span> delta = 2/(k*k)+p+3; |
| 658 | <a name="l00863"></a>00863 sqd=sqrt ( delta-p-1 ); |
| 659 | <a name="l00864"></a>00864 l=l0; |
| 660 | <a name="l00865"></a>00865 refl=pow(ref0,1-l); |
| 661 | <a name="l00866"></a>00866 |
| 662 | <a name="l00867"></a>00867 eiW.set_parameters ( eye ( p ),delta ); |
| 663 | <a name="l00868"></a>00868 <a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&eiW; |
| 664 | <a name="l00869"></a>00869 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=eiW.dimension(); |
| 665 | <a name="l00870"></a>00870 } |
| 666 | <a name="l00871"></a>00871 <span class="keywordtype">void</span> condition ( <span class="keyword">const</span> vec &c ) { |
| 667 | <a name="l00872"></a>00872 vec z=c; |
| 668 | <a name="l00873"></a>00873 <span class="keywordtype">int</span> ri=0; |
| 669 | <a name="l00874"></a>00874 <span class="keywordflow">for</span>(<span class="keywordtype">int</span> i=0;i<p*p;i+=(p+1)){<span class="comment">//trace diagonal element</span> |
| 670 | <a name="l00875"></a>00875 z(i) = pow(z(i),l)*refl(ri); |
| 671 | <a name="l00876"></a>00876 ri++; |
| 672 | <a name="l00877"></a>00877 } |
| 673 | <a name="l00878"></a>00878 |
| 674 | <a name="l00879"></a>00879 eiW._setY ( sqd*z ); |
| 675 | <a name="l00880"></a>00880 } |
| 676 | <a name="l00881"></a>00881 }; |
| 677 | <a name="l00882"></a>00882 |
| 678 | <a name="l00884"></a>00884 <span class="keyword">enum</span> RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
| 679 | <a name="l00890"></a><a class="code" href="classbdm_1_1eEmp.html">00890</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
| 680 | <a name="l00891"></a>00891 { |
| 681 | <a name="l00892"></a>00892 <span class="keyword">protected</span> : |
| 682 | <a name="l00894"></a><a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031">00894</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>; |
| 683 | <a name="l00896"></a><a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d">00896</a> vec <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>; |
| 684 | <a name="l00898"></a><a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3">00898</a> Array<vec> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>; |
| 685 | <a name="l00899"></a>00899 <span class="keyword">public</span>: |
| 686 | <a name="l00902"></a>00902 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( ) {}; |
| 687 | <a name="l00903"></a>00903 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> &e ) : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( e ), <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ), <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ) {}; |
| 688 | <a name="l00905"></a>00905 |
| 689 | <a name="l00907"></a>00907 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#7cfd383180b486fe4526bdf0179350c0" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> vec &w0, <span class="keyword">const</span> epdf* pdf0 ); |
| 690 | <a name="l00909"></a><a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7">00909</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 , <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> ) {<a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( ones ( n ) /n,pdf0 );}; |
| 691 | <a name="l00911"></a>00911 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b62d802b8ef39f7c4dcbeb366c90951a" title="Set sample.">set_samples</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
| 692 | <a name="l00913"></a><a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1">00913</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1" title="Set sample.">set_parameters</a> ( <span class="keywordtype">int</span> n0, <span class="keywordtype">bool</span> copy=<span class="keyword">true</span> ) {<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>=n0; <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>.set_size ( n0,copy );<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>.set_size ( n0,copy );}; |
| 693 | <a name="l00915"></a><a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef">00915</a> vec& <a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
| 694 | <a name="l00917"></a><a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714">00917</a> <span class="keyword">const</span> vec& <a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714" title="Potentially dangerous, use with care.">_w</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
| 695 | <a name="l00919"></a><a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2">00919</a> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
| 696 | <a name="l00921"></a><a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2">00921</a> <span class="keyword">const</span> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2" title="access function">_samples</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
| 697 | <a name="l00923"></a>00923 ivec <a class="code" href="classbdm_1_1eEmp.html#f06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( RESAMPLING_METHOD method=SYSTEMATIC ); |
| 698 | <a name="l00925"></a><a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270">00925</a> vec <a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} |
| 699 | <a name="l00927"></a><a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09">00927</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09" title="inherited operation : NOT implemneted">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} |
| 700 | <a name="l00928"></a><a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9">00928</a> vec <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>()<span class="keyword"> const</span> |
| 701 | <a name="l00929"></a>00929 <span class="keyword"> </span>{ |
| 702 | <a name="l00930"></a>00930 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 703 | <a name="l00931"></a>00931 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
| 704 | <a name="l00932"></a>00932 <span class="keywordflow">return</span> pom; |
| 705 | <a name="l00933"></a>00933 } |
| 706 | <a name="l00934"></a><a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87">00934</a> vec <a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const</span> |
| 707 | <a name="l00935"></a>00935 <span class="keyword"> </span>{ |
| 708 | <a name="l00936"></a>00936 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 709 | <a name="l00937"></a>00937 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=pow ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ),2 ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
| 710 | <a name="l00938"></a>00938 <span class="keywordflow">return</span> pom-pow ( <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>(),2 ); |
| 711 | <a name="l00939"></a>00939 } |
| 712 | <a name="l00941"></a><a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f">00941</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f" title="For this class, qbounds are minimum and maximum value of the population!">qbounds</a> ( vec &lb, vec &ub, <span class="keywordtype">double</span> perc=0.95 )<span class="keyword"> const</span> |
| 713 | <a name="l00942"></a>00942 <span class="keyword"> </span>{ |
| 714 | <a name="l00943"></a>00943 <span class="comment">// lb in inf so than it will be pushed below;</span> |
| 715 | <a name="l00944"></a>00944 lb.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 716 | <a name="l00945"></a>00945 ub.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 717 | <a name="l00946"></a>00946 lb = std::numeric_limits<double>::infinity(); |
| 718 | <a name="l00947"></a>00947 ub = -std::numeric_limits<double>::infinity(); |
| 719 | <a name="l00948"></a>00948 <span class="keywordtype">int</span> j; |
| 720 | <a name="l00949"></a>00949 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) |
| 721 | <a name="l00950"></a>00950 { |
| 722 | <a name="l00951"></a>00951 <span class="keywordflow">for</span> ( j=0;j<<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>; j++ ) |
| 723 | <a name="l00952"></a>00952 { |
| 724 | <a name="l00953"></a>00953 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) <lb ( j ) ) {lb ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} |
| 725 | <a name="l00954"></a>00954 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) >ub ( j ) ) {ub ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} |
| 726 | <a name="l00955"></a>00955 } |
| 727 | <a name="l00956"></a>00956 } |
| 728 | <a name="l00957"></a>00957 } |
| 729 | <a name="l00958"></a>00958 }; |
| 730 | <a name="l00959"></a>00959 |
| 731 | <a name="l00960"></a>00960 |
| 732 | <a name="l00962"></a>00962 |
| 733 | <a name="l00963"></a>00963 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 734 | <a name="l00964"></a>00964 <span class="keywordtype">void</span> enorm<sq_T>::set_parameters ( <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) |
| 735 | <a name="l00965"></a>00965 { |
| 736 | <a name="l00966"></a>00966 <span class="comment">//Fixme test dimensions of mu0 and R0;</span> |
| 737 | <a name="l00967"></a>00967 mu = mu0; |
| 738 | <a name="l00968"></a>00968 R = R0; |
| 739 | <a name="l00969"></a>00969 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = mu0.length(); |
| 740 | <a name="l00970"></a>00970 }; |
| 741 | <a name="l00971"></a>00971 |
| 742 | <a name="l00972"></a>00972 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 743 | <a name="l00973"></a><a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2">00973</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">enorm<sq_T>::dupdate</a> ( mat &v, <span class="keywordtype">double</span> nu ) |
| 744 | <a name="l00974"></a>00974 { |
| 745 | <a name="l00975"></a>00975 <span class="comment">//</span> |
| 746 | <a name="l00976"></a>00976 }; |
| 747 | <a name="l00977"></a>00977 |
| 748 | <a name="l00978"></a>00978 <span class="comment">// template<class sq_T></span> |
| 749 | <a name="l00979"></a>00979 <span class="comment">// void enorm<sq_T>::tupdate ( double phi, mat &vbar, double nubar ) {</span> |
| 750 | <a name="l00980"></a>00980 <span class="comment">// //</span> |
| 751 | <a name="l00981"></a>00981 <span class="comment">// };</span> |
| 752 | <a name="l00982"></a>00982 |
| 753 | <a name="l00983"></a>00983 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 754 | <a name="l00984"></a><a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766">00984</a> vec <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample, from density .">enorm<sq_T>::sample</a>()<span class="keyword"> const</span> |
| 755 | <a name="l00985"></a>00985 <span class="keyword"> </span>{ |
| 756 | <a name="l00986"></a>00986 vec x ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 757 | <a name="l00987"></a>00987 <span class="preprocessor">#pragma omp critical</span> |
| 758 | <a name="l00988"></a>00988 <span class="preprocessor"></span> NorRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,x ); |
| 759 | <a name="l00989"></a>00989 vec smp = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
| 760 | <a name="l00990"></a>00990 |
| 761 | <a name="l00991"></a>00991 smp += <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
| 762 | <a name="l00992"></a>00992 <span class="keywordflow">return</span> smp; |
| 763 | <a name="l00993"></a>00993 }; |
| 764 | <a name="l00994"></a>00994 |
| 765 | <a name="l00995"></a>00995 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 766 | <a name="l00996"></a>00996 mat <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample, from density .">enorm<sq_T>::sample</a> ( <span class="keywordtype">int</span> N )<span class="keyword"> const</span> |
| 767 | <a name="l00997"></a>00997 <span class="keyword"> </span>{ |
| 768 | <a name="l00998"></a>00998 mat X ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,N ); |
| 769 | <a name="l00999"></a>00999 vec x ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 770 | <a name="l01000"></a>01000 vec pom; |
| 771 | <a name="l01001"></a>01001 <span class="keywordtype">int</span> i; |
| 772 | <a name="l01002"></a>01002 |
| 773 | <a name="l01003"></a>01003 <span class="keywordflow">for</span> ( i=0;i<N;i++ ) |
| 774 | <a name="l01004"></a>01004 { |
| 775 | <a name="l01005"></a>01005 <span class="preprocessor">#pragma omp critical</span> |
| 776 | <a name="l01006"></a>01006 <span class="preprocessor"></span> NorRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,x ); |
| 777 | <a name="l01007"></a>01007 pom = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
| 778 | <a name="l01008"></a>01008 pom +=<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
| 779 | <a name="l01009"></a>01009 X.set_col ( i, pom ); |
| 780 | <a name="l01010"></a>01010 } |
| 781 | <a name="l01011"></a>01011 |
| 782 | <a name="l01012"></a>01012 <span class="keywordflow">return</span> X; |
| 783 | <a name="l01013"></a>01013 }; |
| 784 | <a name="l01014"></a>01014 |
| 785 | <a name="l01015"></a>01015 <span class="comment">// template<class sq_T></span> |
| 786 | <a name="l01016"></a>01016 <span class="comment">// double enorm<sq_T>::eval ( const vec &val ) const {</span> |
| 787 | <a name="l01017"></a>01017 <span class="comment">// double pdfl,e;</span> |
| 788 | <a name="l01018"></a>01018 <span class="comment">// pdfl = evallog ( val );</span> |
| 789 | <a name="l01019"></a>01019 <span class="comment">// e = exp ( pdfl );</span> |
| 790 | <a name="l01020"></a>01020 <span class="comment">// return e;</span> |
| 791 | <a name="l01021"></a>01021 <span class="comment">// };</span> |
| 792 | <a name="l01022"></a>01022 |
| 793 | <a name="l01023"></a>01023 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 794 | <a name="l01024"></a><a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3">01024</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">enorm<sq_T>::evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const</span> |
| 795 | <a name="l01025"></a>01025 <span class="keyword"> </span>{ |
| 796 | <a name="l01026"></a>01026 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
| 797 | <a name="l01027"></a>01027 <span class="keywordtype">double</span> tmp=-0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>-val ) );<span class="comment">// - lognc();</span> |
| 798 | <a name="l01028"></a>01028 <span class="keywordflow">return</span> tmp; |
| 799 | <a name="l01029"></a>01029 }; |
| 800 | <a name="l01030"></a>01030 |
| 801 | <a name="l01031"></a>01031 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 802 | <a name="l01032"></a><a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32">01032</a> <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">enorm<sq_T>::lognc</a> ()<span class="keyword"> const</span> |
| 803 | <a name="l01033"></a>01033 <span class="keyword"> </span>{ |
| 804 | <a name="l01034"></a>01034 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
| 805 | <a name="l01035"></a>01035 <span class="keywordtype">double</span> tmp=0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.logdet() ); |
| 806 | <a name="l01036"></a>01036 <span class="keywordflow">return</span> tmp; |
| 807 | <a name="l01037"></a>01037 }; |
| 808 | <a name="l01038"></a>01038 |
| 809 | <a name="l01039"></a>01039 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 810 | <a name="l01040"></a><a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f">01040</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">mlnorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) |
| 811 | <a name="l01041"></a>01041 { |
| 812 | <a name="l01042"></a>01042 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> ); |
| 813 | <a name="l01043"></a>01043 it_assert_debug ( A0.rows() ==R0.rows(),<span class="stringliteral">""</span> ); |
| 814 | <a name="l01044"></a>01044 |
| 815 | <a name="l01045"></a>01045 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( A0.rows() ),R0 ); |
| 816 | <a name="l01046"></a>01046 A = A0; |
| 817 | <a name="l01047"></a>01047 mu_const = mu0; |
| 818 | <a name="l01048"></a>01048 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=A0.cols(); |
| 819 | <a name="l01049"></a>01049 } |
| 820 | <a name="l01050"></a>01050 |
| 821 | <a name="l01051"></a>01051 <span class="comment">// template<class sq_T></span> |
| 822 | <a name="l01052"></a>01052 <span class="comment">// vec mlnorm<sq_T>::samplecond (const vec &cond, double &lik ) {</span> |
| 823 | <a name="l01053"></a>01053 <span class="comment">// this->condition ( cond );</span> |
| 824 | <a name="l01054"></a>01054 <span class="comment">// vec smp = epdf.sample();</span> |
| 825 | <a name="l01055"></a>01055 <span class="comment">// lik = epdf.eval ( smp );</span> |
| 826 | <a name="l01056"></a>01056 <span class="comment">// return smp;</span> |
| 827 | <a name="l01057"></a>01057 <span class="comment">// }</span> |
| 828 | <a name="l01058"></a>01058 |
| 829 | <a name="l01059"></a>01059 <span class="comment">// template<class sq_T></span> |
| 830 | <a name="l01060"></a>01060 <span class="comment">// mat mlnorm<sq_T>::samplecond (const vec &cond, vec &lik, int n ) {</span> |
| 831 | <a name="l01061"></a>01061 <span class="comment">// int i;</span> |
| 832 | <a name="l01062"></a>01062 <span class="comment">// int dim = rv.count();</span> |
| 833 | <a name="l01063"></a>01063 <span class="comment">// mat Smp ( dim,n );</span> |
| 834 | <a name="l01064"></a>01064 <span class="comment">// vec smp ( dim );</span> |
| 835 | <a name="l01065"></a>01065 <span class="comment">// this->condition ( cond );</span> |
| 836 | <a name="l01066"></a>01066 <span class="comment">//</span> |
| 837 | <a name="l01067"></a>01067 <span class="comment">// for ( i=0; i<n; i++ ) {</span> |
| 838 | <a name="l01068"></a>01068 <span class="comment">// smp = epdf.sample();</span> |
| 839 | <a name="l01069"></a>01069 <span class="comment">// lik ( i ) = epdf.eval ( smp );</span> |
| 840 | <a name="l01070"></a>01070 <span class="comment">// Smp.set_col ( i ,smp );</span> |
| 841 | <a name="l01071"></a>01071 <span class="comment">// }</span> |
| 842 | <a name="l01072"></a>01072 <span class="comment">//</span> |
| 843 | <a name="l01073"></a>01073 <span class="comment">// return Smp;</span> |
| 844 | <a name="l01074"></a>01074 <span class="comment">// }</span> |
| 845 | <a name="l01075"></a>01075 |
| 846 | <a name="l01076"></a>01076 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 847 | <a name="l01077"></a><a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">01077</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">mlnorm<sq_T>::condition</a> ( <span class="keyword">const</span> vec &cond ) |
| 848 | <a name="l01078"></a>01078 { |
| 849 | <a name="l01079"></a>01079 _mu = A*cond + mu_const; |
| 850 | <a name="l01080"></a>01080 <span class="comment">//R is already assigned;</span> |
| 851 | <a name="l01081"></a>01081 } |
| 852 | <a name="l01082"></a>01082 |
| 853 | <a name="l01083"></a>01083 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 854 | <a name="l01084"></a><a class="code" href="classbdm_1_1enorm.html#cd02d76e9d4f96bdd3fa6b604e273039">01084</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* <a class="code" href="classbdm_1_1enorm.html#cd02d76e9d4f96bdd3fa6b604e273039" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">enorm<sq_T>::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const</span> |
| 855 | <a name="l01085"></a>01085 <span class="keyword"> </span>{ |
| 856 | <a name="l01086"></a>01086 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(), <span class="stringliteral">"rv description is not assigned"</span> ); |
| 857 | <a name="l01087"></a>01087 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
| 858 | <a name="l01088"></a>01088 |
| 859 | <a name="l01089"></a>01089 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,irvn ); <span class="comment">//select rows and columns of R</span> |
| 860 | <a name="l01090"></a>01090 |
| 861 | <a name="l01091"></a>01091 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>* tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>; |
| 862 | <a name="l01092"></a>01092 tmp-><a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a> ( rvn ); |
| 863 | <a name="l01093"></a>01093 tmp-><a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ), Rn ); |
| 864 | <a name="l01094"></a>01094 <span class="keywordflow">return</span> tmp; |
| 865 | <a name="l01095"></a>01095 } |
| 866 | <a name="l01096"></a>01096 |
| 867 | <a name="l01097"></a>01097 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 868 | <a name="l01098"></a><a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26">01098</a> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">enorm<sq_T>::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const</span> |
| 869 | <a name="l01099"></a>01099 <span class="keyword"> </span>{ |
| 870 | <a name="l01100"></a>01100 |
| 871 | <a name="l01101"></a>01101 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(),<span class="stringliteral">"rvs are not assigned"</span> ); |
| 872 | <a name="l01102"></a>01102 |
| 873 | <a name="l01103"></a>01103 <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvc = <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#aec44dabdf0a6d90fbae95e1356eda39" title="Subtract another variable from the current one.">subt</a> ( rvn ); |
| 874 | <a name="l01104"></a>01104 it_assert_debug ( ( rvc.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() +rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ==<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ),<span class="stringliteral">"wrong rvn"</span> ); |
| 875 | <a name="l01105"></a>01105 <span class="comment">//Permutation vector of the new R</span> |
| 876 | <a name="l01106"></a>01106 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
| 877 | <a name="l01107"></a>01107 ivec irvc = rvc.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
| 878 | <a name="l01108"></a>01108 ivec perm=concat ( irvn , irvc ); |
| 879 | <a name="l01109"></a>01109 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,perm ); |
| 880 | <a name="l01110"></a>01110 |
| 881 | <a name="l01111"></a>01111 <span class="comment">//fixme - could this be done in general for all sq_T?</span> |
| 882 | <a name="l01112"></a>01112 mat S=Rn.to_mat(); |
| 883 | <a name="l01113"></a>01113 <span class="comment">//fixme</span> |
| 884 | <a name="l01114"></a>01114 <span class="keywordtype">int</span> n=rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>()-1; |
| 885 | <a name="l01115"></a>01115 <span class="keywordtype">int</span> end=<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows()-1; |
| 886 | <a name="l01116"></a>01116 mat S11 = S.get ( 0,n, 0, n ); |
| 887 | <a name="l01117"></a>01117 mat S12 = S.get ( 0, n , rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); |
| 888 | <a name="l01118"></a>01118 mat S22 = S.get ( rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end, rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); |
| 889 | <a name="l01119"></a>01119 |
| 890 | <a name="l01120"></a>01120 vec mu1 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ); |
| 891 | <a name="l01121"></a>01121 vec mu2 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvc ); |
| 892 | <a name="l01122"></a>01122 mat A=S12*inv ( S22 ); |
| 893 | <a name="l01123"></a>01123 sq_T R_n ( S11 - A *S12.T() ); |
| 894 | <a name="l01124"></a>01124 |
| 895 | <a name="l01125"></a>01125 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a>* tmp=<span class="keyword">new</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a> ( ); |
| 896 | <a name="l01126"></a>01126 tmp->set_rv ( rvn ); tmp->set_rvc ( rvc ); |
| 897 | <a name="l01127"></a>01127 tmp->set_parameters ( A,mu1-A*mu2,R_n ); |
| 898 | <a name="l01128"></a>01128 <span class="keywordflow">return</span> tmp; |
| 899 | <a name="l01129"></a>01129 } |
| 900 | <a name="l01130"></a>01130 |
| 901 | <a name="l01132"></a>01132 |
| 902 | <a name="l01133"></a>01133 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 903 | <a name="l01134"></a>01134 std::ostream &operator<< ( std::ostream &os, mlnorm<sq_T> &ml ) |
| 904 | <a name="l01135"></a>01135 { |
| 905 | <a name="l01136"></a>01136 os << <span class="stringliteral">"A:"</span><< ml.A<<endl; |
| 906 | <a name="l01137"></a>01137 os << <span class="stringliteral">"mu:"</span><< ml.mu_const<<endl; |
| 907 | <a name="l01138"></a>01138 os << <span class="stringliteral">"R:"</span> << ml.epdf._R().to_mat() <<endl; |
| 908 | <a name="l01139"></a>01139 <span class="keywordflow">return</span> os; |
| 909 | <a name="l01140"></a>01140 }; |
| 910 | <a name="l01141"></a>01141 |
| 911 | <a name="l01142"></a>01142 } |
| 912 | <a name="l01143"></a>01143 <span class="preprocessor">#endif //EF_H</span> |