210 | | <a name="l00233"></a><a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4">00233</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>; |
211 | | <a name="l00234"></a>00234 <span class="keyword">public</span>: |
212 | | <a name="l00237"></a>00237 |
213 | | <a name="l00238"></a>00238 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ) {}; |
214 | | <a name="l00239"></a>00239 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> &D0 ) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> () {set_parameters ( D0.<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> );}; |
215 | | <a name="l00240"></a>00240 eDirich ( <span class="keyword">const</span> vec &beta0 ) {set_parameters ( beta0 );}; |
216 | | <a name="l00241"></a>00241 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &beta0 ) |
217 | | <a name="l00242"></a>00242 { |
218 | | <a name="l00243"></a>00243 <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>= beta0; |
219 | | <a name="l00244"></a>00244 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length(); |
220 | | <a name="l00245"></a>00245 <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a> = sum ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ); |
221 | | <a name="l00246"></a>00246 } |
222 | | <a name="l00248"></a>00248 |
223 | | <a name="l00249"></a><a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc">00249</a> vec <a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> vec_1 ( 0.0 );}; |
224 | | <a name="l00250"></a><a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6">00250</a> vec <a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>/<a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>;}; |
225 | | <a name="l00251"></a><a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc">00251</a> vec <a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_mult ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>, ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>+1 ) ) / ( <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>* ( <a class="code" href="classbdm_1_1eDirich.html#ee9db192a6f0ab7b29c33b2a18a5e1b4" title="speedup variable">gamma</a>+1 ) );} |
226 | | <a name="l00253"></a><a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318">00253</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318" title="In this instance, val is ...">evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const</span> |
227 | | <a name="l00254"></a>00254 <span class="keyword"> </span>{ |
228 | | <a name="l00255"></a>00255 <span class="keywordtype">double</span> tmp; tmp= ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>-1 ) *log ( val ); it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> ); |
229 | | <a name="l00256"></a>00256 <span class="keywordflow">return</span> tmp; |
230 | | <a name="l00257"></a>00257 }; |
231 | | <a name="l00258"></a><a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2">00258</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a> ()<span class="keyword"> const</span> |
232 | | <a name="l00259"></a>00259 <span class="keyword"> </span>{ |
233 | | <a name="l00260"></a>00260 <span class="keywordtype">double</span> tmp; |
234 | | <a name="l00261"></a>00261 <span class="keywordtype">double</span> gam=sum ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ); |
235 | | <a name="l00262"></a>00262 <span class="keywordtype">double</span> lgb=0.0; |
236 | | <a name="l00263"></a>00263 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length();i++ ) {lgb+=lgamma ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ( i ) );} |
237 | | <a name="l00264"></a>00264 tmp= lgb-lgamma ( gam ); |
238 | | <a name="l00265"></a>00265 it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> ); |
239 | | <a name="l00266"></a>00266 <span class="keywordflow">return</span> tmp; |
240 | | <a name="l00267"></a>00267 }; |
241 | | <a name="l00269"></a><a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324">00269</a> vec& <a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>;} |
242 | | <a name="l00271"></a>00271 }; |
243 | | <a name="l00272"></a>00272 |
244 | | <a name="l00274"></a><a class="code" href="classbdm_1_1multiBM.html">00274</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> |
245 | | <a name="l00275"></a>00275 { |
246 | | <a name="l00276"></a>00276 <span class="keyword">protected</span>: |
247 | | <a name="l00278"></a><a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a">00278</a> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>; |
248 | | <a name="l00280"></a><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25">00280</a> vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>; |
249 | | <a name="l00281"></a>00281 <span class="keyword">public</span>: |
250 | | <a name="l00283"></a><a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf">00283</a> <a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf" title="Default constructor.">multiBM</a> ( ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) |
251 | | <a name="l00284"></a>00284 { |
252 | | <a name="l00285"></a>00285 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>.length() >0 ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
253 | | <a name="l00286"></a>00286 <span class="keywordflow">else</span>{<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=0.0;} |
254 | | <a name="l00287"></a>00287 } |
255 | | <a name="l00289"></a><a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31">00289</a> <a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31" title="Copy constructor.">multiBM</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> &B ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( B ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( B.<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) {} |
256 | | <a name="l00291"></a><a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52">00291</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52" title="Sets sufficient statistics to match that of givefrom mB0.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a>* mB0 ) {<span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* mB=<span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> ( mB0 ); <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>=mB-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;} |
257 | | <a name="l00292"></a><a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95">00292</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95" title="Incremental Bayes rule.">bayes</a> ( <span class="keyword">const</span> vec &dt ) |
258 | | <a name="l00293"></a>00293 { |
259 | | <a name="l00294"></a>00294 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a><1.0 ) {<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
260 | | <a name="l00295"></a>00295 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>+=dt; |
261 | | <a name="l00296"></a>00296 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BM.html#4064b6559d962633e4372b12f4cd204a" title="Logarithm of marginalized data likelihood.">ll</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
262 | | <a name="l00297"></a>00297 } |
263 | | <a name="l00298"></a><a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">00298</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">logpred</a> ( <span class="keyword">const</span> vec &dt )<span class="keyword"> const</span> |
264 | | <a name="l00299"></a>00299 <span class="keyword"> </span>{ |
265 | | <a name="l00300"></a>00300 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> pred ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ); |
266 | | <a name="l00301"></a>00301 vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> = pred.<a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>(); |
267 | | <a name="l00302"></a>00302 |
268 | | <a name="l00303"></a>00303 <span class="keywordtype">double</span> lll; |
269 | | <a name="l00304"></a>00304 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a><1.0 ) |
270 | | <a name="l00305"></a>00305 {beta*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
271 | | <a name="l00306"></a>00306 <span class="keywordflow">else</span> |
272 | | <a name="l00307"></a>00307 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {lll=<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
273 | | <a name="l00308"></a>00308 <span class="keywordflow">else</span>{lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
274 | | <a name="l00309"></a>00309 |
275 | | <a name="l00310"></a>00310 beta+=dt; |
276 | | <a name="l00311"></a>00311 <span class="keywordflow">return</span> pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-lll; |
277 | | <a name="l00312"></a>00312 } |
278 | | <a name="l00313"></a><a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732">00313</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* B ) |
279 | | <a name="l00314"></a>00314 { |
280 | | <a name="l00315"></a>00315 <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* E=<span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> ( B ); |
281 | | <a name="l00316"></a>00316 <span class="comment">// sum(beta) should be equal to sum(B.beta)</span> |
282 | | <a name="l00317"></a>00317 <span class="keyword">const</span> vec &Eb=E-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;<span class="comment">//const_cast<multiBM*> ( E )->_beta();</span> |
283 | | <a name="l00318"></a>00318 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*= ( sum ( Eb ) /sum ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ) ); |
284 | | <a name="l00319"></a>00319 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
285 | | <a name="l00320"></a>00320 } |
286 | | <a name="l00321"></a>00321 <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& posterior()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; |
287 | | <a name="l00322"></a>00322 <span class="keyword">const</span> eDirich* _e()<span class="keyword"> const </span>{<span class="keywordflow">return</span> &<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; |
288 | | <a name="l00323"></a>00323 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &beta0 ) |
289 | | <a name="l00324"></a>00324 { |
290 | | <a name="l00325"></a>00325 <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.set_parameters ( beta0 ); |
291 | | <a name="l00326"></a>00326 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.lognc();} |
292 | | <a name="l00327"></a>00327 } |
293 | | <a name="l00328"></a>00328 }; |
294 | | <a name="l00329"></a>00329 |
295 | | <a name="l00339"></a><a class="code" href="classbdm_1_1egamma.html">00339</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> |
296 | | <a name="l00340"></a>00340 { |
297 | | <a name="l00341"></a>00341 <span class="keyword">protected</span>: |
298 | | <a name="l00343"></a><a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa">00343</a> vec <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>; |
299 | | <a name="l00345"></a><a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1">00345</a> vec <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>; |
300 | | <a name="l00346"></a>00346 <span class="keyword">public</span> : |
301 | | <a name="l00349"></a>00349 <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> ( ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ), <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> ( 0 ), <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a> ( 0 ) {}; |
302 | | <a name="l00350"></a>00350 <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {set_parameters ( a, b );}; |
303 | | <a name="l00351"></a>00351 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>=a,<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>=b;<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length();}; |
304 | | <a name="l00353"></a>00353 |
305 | | <a name="l00354"></a>00354 vec <a class="code" href="classbdm_1_1egamma.html#6ed82f0fd05f6002487256d8e75a0bbd" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
306 | | <a name="l00356"></a>00356 <span class="comment">// mat sample ( int N ) const;</span> |
307 | | <a name="l00357"></a>00357 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#a8e11e5a580ff42a1b205974c60768c6" title="TODO: is it used anywhere?">evallog</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
308 | | <a name="l00358"></a>00358 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#9a66cbd100e8520c769ccb3c451f86f8" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
309 | | <a name="l00360"></a><a class="code" href="classbdm_1_1egamma.html#0865cb3d6339fdc7410806cf70a329ed">00360</a> vec& <a class="code" href="classbdm_1_1egamma.html#0865cb3d6339fdc7410806cf70a329ed" title="Returns poiter to alpha and beta. Potentially dengerous: use with care!">_alpha</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>;} |
310 | | <a name="l00361"></a>00361 vec& _beta() {<span class="keywordflow">return</span> beta;} |
311 | | <a name="l00362"></a><a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85">00362</a> vec <a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,beta );} |
312 | | <a name="l00363"></a><a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1">00363</a> vec <a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,elem_mult ( beta,beta ) ); } |
313 | | <a name="l00364"></a>00364 }; |
314 | | <a name="l00365"></a>00365 |
315 | | <a name="l00382"></a><a class="code" href="classbdm_1_1eigamma.html">00382</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> |
316 | | <a name="l00383"></a>00383 { |
317 | | <a name="l00384"></a>00384 <span class="keyword">protected</span>: |
318 | | <a name="l00385"></a>00385 <span class="keyword">public</span> : |
319 | | <a name="l00390"></a>00390 |
320 | | <a name="l00391"></a><a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f">00391</a> vec <a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> 1.0/<a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample, from density .">egamma::sample</a>();}; |
321 | | <a name="l00393"></a><a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb">00393</a> vec <a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>,<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>-1 );} |
322 | | <a name="l00394"></a><a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133">00394</a> vec <a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{vec mea=<a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>(); <span class="keywordflow">return</span> elem_div ( elem_mult ( mea,mea ),<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>-2 );} |
323 | | <a name="l00395"></a>00395 }; |
324 | | <a name="l00396"></a>00396 <span class="comment">/*</span> |
325 | | <a name="l00398"></a>00398 <span class="comment"> class emix : public epdf {</span> |
326 | | <a name="l00399"></a>00399 <span class="comment"> protected:</span> |
327 | | <a name="l00400"></a>00400 <span class="comment"> int n;</span> |
328 | | <a name="l00401"></a>00401 <span class="comment"> vec &w;</span> |
329 | | <a name="l00402"></a>00402 <span class="comment"> Array<epdf*> Coms;</span> |
330 | | <a name="l00403"></a>00403 <span class="comment"> public:</span> |
331 | | <a name="l00405"></a>00405 <span class="comment"> emix ( const RV &rv, vec &w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span> |
332 | | <a name="l00406"></a>00406 <span class="comment"> void set_parameters( int &i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span> |
333 | | <a name="l00407"></a>00407 <span class="comment"> vec mean(){vec pom; for(int i=0;i<n;i++){pom+=Coms(i)->mean()*w(i);} return pom;};</span> |
334 | | <a name="l00408"></a>00408 <span class="comment"> vec sample() {it_error ( "Not implemented" );return 0;}</span> |
335 | | <a name="l00409"></a>00409 <span class="comment"> };</span> |
336 | | <a name="l00410"></a>00410 <span class="comment"> */</span> |
337 | | <a name="l00411"></a>00411 |
338 | | <a name="l00413"></a>00413 |
339 | | <a name="l00414"></a><a class="code" href="classbdm_1_1euni.html">00414</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
340 | | <a name="l00415"></a>00415 { |
341 | | <a name="l00416"></a>00416 <span class="keyword">protected</span>: |
342 | | <a name="l00418"></a><a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32">00418</a> vec <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>; |
343 | | <a name="l00420"></a><a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1">00420</a> vec <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>; |
344 | | <a name="l00422"></a><a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c">00422</a> vec <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>; |
345 | | <a name="l00424"></a><a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20">00424</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>; |
346 | | <a name="l00426"></a><a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476">00426</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>; |
347 | | <a name="l00427"></a>00427 <span class="keyword">public</span>: |
348 | | <a name="l00430"></a>00430 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ) {} |
349 | | <a name="l00431"></a>00431 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) {set_parameters ( low0,high0 );} |
350 | | <a name="l00432"></a>00432 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) |
351 | | <a name="l00433"></a>00433 { |
352 | | <a name="l00434"></a>00434 <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> = high0-low0; |
353 | | <a name="l00435"></a>00435 it_assert_debug ( min ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ) >0.0,<span class="stringliteral">"bad support"</span> ); |
354 | | <a name="l00436"></a>00436 <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> = low0; |
355 | | <a name="l00437"></a>00437 <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a> = high0; |
356 | | <a name="l00438"></a>00438 <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> = prod ( 1.0/<a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ); |
357 | | <a name="l00439"></a>00439 <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a> = log ( <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> ); |
358 | | <a name="l00440"></a>00440 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>.length(); |
359 | | <a name="l00441"></a>00441 } |
360 | | <a name="l00443"></a>00443 |
361 | | <a name="l00444"></a>00444 <span class="keywordtype">double</span> eval ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>;} |
362 | | <a name="l00445"></a><a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81">00445</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81" title="Compute log-probability of argument val.">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>;} |
363 | | <a name="l00446"></a><a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194">00446</a> vec <a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const</span> |
364 | | <a name="l00447"></a>00447 <span class="keyword"> </span>{ |
365 | | <a name="l00448"></a>00448 vec smp ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
366 | | <a name="l00449"></a>00449 <span class="preprocessor">#pragma omp critical</span> |
367 | | <a name="l00450"></a>00450 <span class="preprocessor"></span> UniRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ,smp ); |
368 | | <a name="l00451"></a>00451 <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>+elem_mult ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>,smp ); |
369 | | <a name="l00452"></a>00452 } |
370 | | <a name="l00454"></a><a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226">00454</a> vec <a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226" title="set values of low and high ">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>-<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> ) /2.0;} |
371 | | <a name="l00455"></a><a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c">00455</a> vec <a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> ( pow ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,2 ) +pow ( <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>,2 ) +elem_mult ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> ) ) /3.0;} |
372 | | <a name="l00456"></a>00456 }; |
373 | | <a name="l00457"></a>00457 |
374 | | <a name="l00458"></a>00458 |
375 | | <a name="l00464"></a>00464 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
376 | | <a name="l00465"></a><a class="code" href="classbdm_1_1mlnorm.html">00465</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
377 | | <a name="l00466"></a>00466 { |
378 | | <a name="l00467"></a>00467 <span class="keyword">protected</span>: |
379 | | <a name="l00469"></a><a class="code" href="classbdm_1_1mlnorm.html#150ad6acb223b0a0abeaf92346686dcd">00469</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
380 | | <a name="l00470"></a>00470 mat A; |
381 | | <a name="l00471"></a>00471 vec mu_const; |
382 | | <a name="l00472"></a>00472 vec& _mu; <span class="comment">//cached epdf.mu;</span> |
383 | | <a name="l00473"></a>00473 <span class="keyword">public</span>: |
384 | | <a name="l00476"></a>00476 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> ( ) :<a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (),<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),A ( ),_mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a> =&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; }; |
385 | | <a name="l00477"></a>00477 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),_mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) |
386 | | <a name="l00478"></a>00478 { |
387 | | <a name="l00479"></a>00479 <a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a> =&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( A,mu0,R ); |
388 | | <a name="l00480"></a>00480 }; |
389 | | <a name="l00482"></a>00482 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R ); |
390 | | <a name="l00485"></a>00485 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">condition</a> ( <span class="keyword">const</span> vec &cond ); |
391 | | <a name="l00486"></a>00486 |
392 | | <a name="l00488"></a><a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced">00488</a> vec& <a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced" title="access function">_mu_const</a>() {<span class="keywordflow">return</span> mu_const;} |
393 | | <a name="l00490"></a><a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614">00490</a> mat& <a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614" title="access function">_A</a>() {<span class="keywordflow">return</span> A;} |
394 | | <a name="l00492"></a><a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604">00492</a> mat <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R().to_mat();} |
395 | | <a name="l00493"></a>00493 |
396 | | <a name="l00494"></a>00494 <span class="keyword">template</span><<span class="keyword">class</span> sq_M> |
397 | | <a name="l00495"></a>00495 <span class="keyword">friend</span> std::ostream &operator<< ( std::ostream &os, mlnorm<sq_M> &ml ); |
398 | | <a name="l00496"></a>00496 }; |
399 | | <a name="l00497"></a>00497 |
400 | | <a name="l00499"></a>00499 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
401 | | <a name="l00500"></a><a class="code" href="classbdm_1_1mgnorm.html">00500</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgnorm.html" title="Mpdf with general function for mean value.">mgnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
402 | | <a name="l00501"></a>00501 { |
403 | | <a name="l00502"></a>00502 <span class="keyword">protected</span>: |
404 | | <a name="l00504"></a><a class="code" href="classbdm_1_1mgnorm.html#8f7a376a1d2197e0634557e88e03104a">00504</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
405 | | <a name="l00505"></a>00505 vec &mu; |
406 | | <a name="l00506"></a>00506 <a class="code" href="classbdm_1_1fnc.html" title="Class representing function of variable represented by rv.">fnc</a>* g; |
407 | | <a name="l00507"></a>00507 <span class="keyword">public</span>: |
408 | | <a name="l00509"></a><a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d">00509</a> <a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d" title="default constructor">mgnorm</a>() :mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;} |
409 | | <a name="l00511"></a><a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564">00511</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564" title="set mean function">set_parameters</a> ( <a class="code" href="classbdm_1_1fnc.html" title="Class representing function of variable represented by rv.">fnc</a>* g0, <span class="keyword">const</span> sq_T &R0 ) {g=g0; <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( g-><a class="code" href="classbdm_1_1fnc.html#083832294da9d1e40804158b979c4341" title="access function">dimension</a>() ), R0 );} |
410 | | <a name="l00512"></a><a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d">00512</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &cond ) {mu=g-><a class="code" href="classbdm_1_1fnc.html#6277b11d7fffc7ef8a2fa3e84ae5bad4" title="function evaluates numerical value of at cond ">eval</a> ( cond );}; |
411 | | <a name="l00513"></a>00513 }; |
412 | | <a name="l00514"></a>00514 |
413 | | <a name="l00522"></a><a class="code" href="classbdm_1_1mlstudent.html">00522</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a><ldmat> |
414 | | <a name="l00523"></a>00523 { |
415 | | <a name="l00524"></a>00524 <span class="keyword">protected</span>: |
416 | | <a name="l00525"></a>00525 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Lambda; |
417 | | <a name="l00526"></a>00526 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &<a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>; |
418 | | <a name="l00527"></a>00527 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Re; |
419 | | <a name="l00528"></a>00528 <span class="keyword">public</span>: |
420 | | <a name="l00529"></a>00529 <a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> ( ) :<a class="code" href="classbdm_1_1mlnorm.html">mlnorm<ldmat></a> (), |
421 | | <a name="l00530"></a>00530 Lambda (), <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R() ) {} |
422 | | <a name="l00531"></a>00531 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &R0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& Lambda0 ) |
423 | | <a name="l00532"></a>00532 { |
424 | | <a name="l00533"></a>00533 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> ); |
425 | | <a name="l00534"></a>00534 it_assert_debug ( R0.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>() ==A0.rows(),<span class="stringliteral">""</span> ); |
426 | | <a name="l00535"></a>00535 |
427 | | <a name="l00536"></a>00536 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( mu0,Lambda ); <span class="comment">//</span> |
428 | | <a name="l00537"></a>00537 A = A0; |
429 | | <a name="l00538"></a>00538 mu_const = mu0; |
430 | | <a name="l00539"></a>00539 Re=R0; |
431 | | <a name="l00540"></a>00540 Lambda = Lambda0; |
432 | | <a name="l00541"></a>00541 } |
433 | | <a name="l00542"></a><a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">00542</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">condition</a> ( <span class="keyword">const</span> vec &cond ) |
434 | | <a name="l00543"></a>00543 { |
435 | | <a name="l00544"></a>00544 _mu = A*cond + mu_const; |
436 | | <a name="l00545"></a>00545 <span class="keywordtype">double</span> zeta; |
437 | | <a name="l00546"></a>00546 <span class="comment">//ugly hack!</span> |
438 | | <a name="l00547"></a>00547 <span class="keywordflow">if</span> ( ( cond.length() +1 ) ==Lambda.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>() ) |
439 | | <a name="l00548"></a>00548 { |
440 | | <a name="l00549"></a>00549 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( concat ( cond, vec_1 ( 1.0 ) ) ); |
441 | | <a name="l00550"></a>00550 } |
442 | | <a name="l00551"></a>00551 <span class="keywordflow">else</span> |
443 | | <a name="l00552"></a>00552 { |
444 | | <a name="l00553"></a>00553 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( cond ); |
445 | | <a name="l00554"></a>00554 } |
446 | | <a name="l00555"></a>00555 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> = Re; |
447 | | <a name="l00556"></a>00556 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>*= ( 1+zeta );<span class="comment">// / ( nu ); << nu is in Re!!!!!!</span> |
448 | | <a name="l00557"></a>00557 }; |
449 | | <a name="l00558"></a>00558 |
450 | | <a name="l00559"></a>00559 }; |
451 | | <a name="l00569"></a><a class="code" href="classbdm_1_1mgamma.html">00569</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
452 | | <a name="l00570"></a>00570 { |
453 | | <a name="l00571"></a>00571 <span class="keyword">protected</span>: |
454 | | <a name="l00573"></a><a class="code" href="classbdm_1_1mgamma.html#bdc9f1e9e03c09e91103fee269864438">00573</a> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
455 | | <a name="l00575"></a><a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09">00575</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>; |
456 | | <a name="l00577"></a><a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312">00577</a> vec &<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>; |
457 | | <a name="l00578"></a>00578 |
458 | | <a name="l00579"></a>00579 <span class="keyword">public</span>: |
459 | | <a name="l00581"></a><a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1">00581</a> <a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1" title="Constructor.">mgamma</a> ( ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> ( ), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> (), <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
460 | | <a name="l00583"></a>00583 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, <span class="keyword">const</span> vec &beta0 ); |
461 | | <a name="l00584"></a><a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff">00584</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/val;}; |
462 | | <a name="l00585"></a>00585 }; |
463 | | <a name="l00586"></a>00586 |
464 | | <a name="l00596"></a><a class="code" href="classbdm_1_1migamma.html">00596</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
465 | | <a name="l00597"></a>00597 { |
466 | | <a name="l00598"></a>00598 <span class="keyword">protected</span>: |
467 | | <a name="l00600"></a><a class="code" href="classbdm_1_1migamma.html#a31b39d4179551b593c9e0d7d756783a">00600</a> <a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
468 | | <a name="l00602"></a><a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c">00602</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>; |
469 | | <a name="l00604"></a><a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc">00604</a> vec &<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>; |
470 | | <a name="l00606"></a><a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5">00606</a> vec &<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>; |
471 | | <a name="l00607"></a>00607 |
472 | | <a name="l00608"></a>00608 <span class="keyword">public</span>: |
473 | | <a name="l00611"></a>00611 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ), <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>() ), <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
474 | | <a name="l00612"></a>00612 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> &m ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( m.<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ), <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>() ), <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
475 | | <a name="l00614"></a>00614 |
476 | | <a name="l00616"></a><a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151">00616</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> len, <span class="keywordtype">double</span> k0 ) |
477 | | <a name="l00617"></a>00617 { |
478 | | <a name="l00618"></a>00618 <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>=k0; |
479 | | <a name="l00619"></a>00619 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( ( 1.0/ ( <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>*<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> ) +2.0 ) *ones ( len ) <span class="comment">/*alpha*/</span>, ones ( len ) <span class="comment">/*beta*/</span> ); |
480 | | <a name="l00620"></a>00620 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); |
481 | | <a name="l00621"></a>00621 }; |
482 | | <a name="l00622"></a><a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c">00622</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) |
483 | | <a name="l00623"></a>00623 { |
484 | | <a name="l00624"></a>00624 <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>=elem_mult ( val, ( <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>-1.0 ) ); |
485 | | <a name="l00625"></a>00625 }; |
486 | | <a name="l00626"></a>00626 }; |
487 | | <a name="l00627"></a>00627 |
488 | | <a name="l00639"></a><a class="code" href="classbdm_1_1mgamma__fix.html">00639</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> |
489 | | <a name="l00640"></a>00640 { |
490 | | <a name="l00641"></a>00641 <span class="keyword">protected</span>: |
491 | | <a name="l00643"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa">00643</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>; |
492 | | <a name="l00645"></a><a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2">00645</a> vec <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>; |
493 | | <a name="l00646"></a>00646 <span class="keyword">public</span>: |
494 | | <a name="l00648"></a><a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d">00648</a> <a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d" title="Constructor.">mgamma_fix</a> ( ) : <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> ( ),<a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a> () {}; |
495 | | <a name="l00650"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2">00650</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) |
496 | | <a name="l00651"></a>00651 { |
497 | | <a name="l00652"></a>00652 <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">mgamma::set_parameters</a> ( k0, ref0 ); |
498 | | <a name="l00653"></a>00653 <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>=l0; |
499 | | <a name="l00654"></a>00654 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=dimension(); |
500 | | <a name="l00655"></a>00655 }; |
| 210 | <a name="l00232"></a>00232 <span class="keyword">public</span>: |
| 211 | <a name="l00235"></a>00235 |
| 212 | <a name="l00236"></a>00236 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ) {}; |
| 213 | <a name="l00237"></a>00237 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> &D0 ) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> () {set_parameters ( D0.<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> );}; |
| 214 | <a name="l00238"></a>00238 eDirich ( <span class="keyword">const</span> vec &beta0 ) {set_parameters ( beta0 );}; |
| 215 | <a name="l00239"></a>00239 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &beta0 ) |
| 216 | <a name="l00240"></a>00240 { |
| 217 | <a name="l00241"></a>00241 <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>= beta0; |
| 218 | <a name="l00242"></a>00242 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length(); |
| 219 | <a name="l00243"></a>00243 } |
| 220 | <a name="l00245"></a>00245 |
| 221 | <a name="l00246"></a><a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc">00246</a> vec <a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> vec_1 ( 0.0 );}; |
| 222 | <a name="l00247"></a><a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6">00247</a> vec <a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>/sum(<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>);}; |
| 223 | <a name="l00248"></a><a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc">00248</a> vec <a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordtype">double</span> gamma =sum(<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>); <span class="keywordflow">return</span> elem_mult ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>, ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>+1 ) ) / ( gamma* ( gamma+1 ) );} |
| 224 | <a name="l00250"></a><a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318">00250</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318" title="In this instance, val is ...">evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const</span> |
| 225 | <a name="l00251"></a>00251 <span class="keyword"> </span>{ |
| 226 | <a name="l00252"></a>00252 <span class="keywordtype">double</span> tmp; tmp= ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>-1 ) *log ( val ); it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> ); |
| 227 | <a name="l00253"></a>00253 <span class="keywordflow">return</span> tmp; |
| 228 | <a name="l00254"></a>00254 }; |
| 229 | <a name="l00255"></a><a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2">00255</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a> ()<span class="keyword"> const</span> |
| 230 | <a name="l00256"></a>00256 <span class="keyword"> </span>{ |
| 231 | <a name="l00257"></a>00257 <span class="keywordtype">double</span> tmp; |
| 232 | <a name="l00258"></a>00258 <span class="keywordtype">double</span> gam=sum ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ); |
| 233 | <a name="l00259"></a>00259 <span class="keywordtype">double</span> lgb=0.0; |
| 234 | <a name="l00260"></a>00260 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length();i++ ) {lgb+=lgamma ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ( i ) );} |
| 235 | <a name="l00261"></a>00261 tmp= lgb-lgamma ( gam ); |
| 236 | <a name="l00262"></a>00262 it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> ); |
| 237 | <a name="l00263"></a>00263 <span class="keywordflow">return</span> tmp; |
| 238 | <a name="l00264"></a>00264 }; |
| 239 | <a name="l00266"></a><a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324">00266</a> vec& <a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>;} |
| 240 | <a name="l00268"></a>00268 }; |
| 241 | <a name="l00269"></a>00269 |
| 242 | <a name="l00271"></a><a class="code" href="classbdm_1_1multiBM.html">00271</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> |
| 243 | <a name="l00272"></a>00272 { |
| 244 | <a name="l00273"></a>00273 <span class="keyword">protected</span>: |
| 245 | <a name="l00275"></a><a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a">00275</a> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>; |
| 246 | <a name="l00277"></a><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25">00277</a> vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>; |
| 247 | <a name="l00278"></a>00278 <span class="keyword">public</span>: |
| 248 | <a name="l00280"></a><a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf">00280</a> <a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf" title="Default constructor.">multiBM</a> ( ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) |
| 249 | <a name="l00281"></a>00281 { |
| 250 | <a name="l00282"></a>00282 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>.length() >0 ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 251 | <a name="l00283"></a>00283 <span class="keywordflow">else</span>{<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=0.0;} |
| 252 | <a name="l00284"></a>00284 } |
| 253 | <a name="l00286"></a><a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31">00286</a> <a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31" title="Copy constructor.">multiBM</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> &B ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( B ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( B.<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) {} |
| 254 | <a name="l00288"></a><a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52">00288</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52" title="Sets sufficient statistics to match that of givefrom mB0.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a>* mB0 ) {<span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* mB=<span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> ( mB0 ); <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>=mB-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;} |
| 255 | <a name="l00289"></a><a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95">00289</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95" title="Incremental Bayes rule.">bayes</a> ( <span class="keyword">const</span> vec &dt ) |
| 256 | <a name="l00290"></a>00290 { |
| 257 | <a name="l00291"></a>00291 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a><1.0 ) {<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 258 | <a name="l00292"></a>00292 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>+=dt; |
| 259 | <a name="l00293"></a>00293 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BM.html#4064b6559d962633e4372b12f4cd204a" title="Logarithm of marginalized data likelihood.">ll</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
| 260 | <a name="l00294"></a>00294 } |
| 261 | <a name="l00295"></a><a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">00295</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">logpred</a> ( <span class="keyword">const</span> vec &dt )<span class="keyword"> const</span> |
| 262 | <a name="l00296"></a>00296 <span class="keyword"> </span>{ |
| 263 | <a name="l00297"></a>00297 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> pred ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ); |
| 264 | <a name="l00298"></a>00298 vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> = pred.<a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>(); |
| 265 | <a name="l00299"></a>00299 |
| 266 | <a name="l00300"></a>00300 <span class="keywordtype">double</span> lll; |
| 267 | <a name="l00301"></a>00301 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a><1.0 ) |
| 268 | <a name="l00302"></a>00302 {beta*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 269 | <a name="l00303"></a>00303 <span class="keywordflow">else</span> |
| 270 | <a name="l00304"></a>00304 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {lll=<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
| 271 | <a name="l00305"></a>00305 <span class="keywordflow">else</span>{lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 272 | <a name="l00306"></a>00306 |
| 273 | <a name="l00307"></a>00307 beta+=dt; |
| 274 | <a name="l00308"></a>00308 <span class="keywordflow">return</span> pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-lll; |
| 275 | <a name="l00309"></a>00309 } |
| 276 | <a name="l00310"></a><a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732">00310</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* B ) |
| 277 | <a name="l00311"></a>00311 { |
| 278 | <a name="l00312"></a>00312 <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* E=<span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> ( B ); |
| 279 | <a name="l00313"></a>00313 <span class="comment">// sum(beta) should be equal to sum(B.beta)</span> |
| 280 | <a name="l00314"></a>00314 <span class="keyword">const</span> vec &Eb=E-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;<span class="comment">//const_cast<multiBM*> ( E )->_beta();</span> |
| 281 | <a name="l00315"></a>00315 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*= ( sum ( Eb ) /sum ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ) ); |
| 282 | <a name="l00316"></a>00316 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 283 | <a name="l00317"></a>00317 } |
| 284 | <a name="l00318"></a>00318 <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& posterior()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; |
| 285 | <a name="l00319"></a>00319 <span class="keyword">const</span> eDirich* _e()<span class="keyword"> const </span>{<span class="keywordflow">return</span> &<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; |
| 286 | <a name="l00320"></a>00320 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &beta0 ) |
| 287 | <a name="l00321"></a>00321 { |
| 288 | <a name="l00322"></a>00322 <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.set_parameters ( beta0 ); |
| 289 | <a name="l00323"></a>00323 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.lognc();} |
| 290 | <a name="l00324"></a>00324 } |
| 291 | <a name="l00325"></a>00325 }; |
| 292 | <a name="l00326"></a>00326 |
| 293 | <a name="l00336"></a><a class="code" href="classbdm_1_1egamma.html">00336</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> |
| 294 | <a name="l00337"></a>00337 { |
| 295 | <a name="l00338"></a>00338 <span class="keyword">protected</span>: |
| 296 | <a name="l00340"></a><a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa">00340</a> vec <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>; |
| 297 | <a name="l00342"></a><a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1">00342</a> vec <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>; |
| 298 | <a name="l00343"></a>00343 <span class="keyword">public</span> : |
| 299 | <a name="l00346"></a>00346 <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> ( ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ), <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> ( 0 ), <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a> ( 0 ) {}; |
| 300 | <a name="l00347"></a>00347 <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {set_parameters ( a, b );}; |
| 301 | <a name="l00348"></a>00348 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>=a,<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>=b;<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length();}; |
| 302 | <a name="l00350"></a>00350 |
| 303 | <a name="l00351"></a>00351 vec <a class="code" href="classbdm_1_1egamma.html#6ed82f0fd05f6002487256d8e75a0bbd" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
| 304 | <a name="l00353"></a>00353 <span class="comment">// mat sample ( int N ) const;</span> |
| 305 | <a name="l00354"></a>00354 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#a8e11e5a580ff42a1b205974c60768c6" title="TODO: is it used anywhere?">evallog</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
| 306 | <a name="l00355"></a>00355 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#9a66cbd100e8520c769ccb3c451f86f8" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
| 307 | <a name="l00357"></a><a class="code" href="classbdm_1_1egamma.html#0865cb3d6339fdc7410806cf70a329ed">00357</a> vec& <a class="code" href="classbdm_1_1egamma.html#0865cb3d6339fdc7410806cf70a329ed" title="Returns poiter to alpha and beta. Potentially dengerous: use with care!">_alpha</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>;} |
| 308 | <a name="l00358"></a>00358 vec& _beta() {<span class="keywordflow">return</span> beta;} |
| 309 | <a name="l00359"></a><a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85">00359</a> vec <a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,beta );} |
| 310 | <a name="l00360"></a><a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1">00360</a> vec <a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,elem_mult ( beta,beta ) ); } |
| 311 | <a name="l00361"></a>00361 }; |
| 312 | <a name="l00362"></a>00362 |
| 313 | <a name="l00379"></a><a class="code" href="classbdm_1_1eigamma.html">00379</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> |
| 314 | <a name="l00380"></a>00380 { |
| 315 | <a name="l00381"></a>00381 <span class="keyword">protected</span>: |
| 316 | <a name="l00382"></a>00382 <span class="keyword">public</span> : |
| 317 | <a name="l00387"></a>00387 |
| 318 | <a name="l00388"></a><a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f">00388</a> vec <a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> 1.0/<a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample, from density .">egamma::sample</a>();}; |
| 319 | <a name="l00390"></a><a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb">00390</a> vec <a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>,<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>-1 );} |
| 320 | <a name="l00391"></a><a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133">00391</a> vec <a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{vec mea=<a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>(); <span class="keywordflow">return</span> elem_div ( elem_mult ( mea,mea ),<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>-2 );} |
| 321 | <a name="l00392"></a>00392 }; |
| 322 | <a name="l00393"></a>00393 <span class="comment">/*</span> |
| 323 | <a name="l00395"></a>00395 <span class="comment"> class emix : public epdf {</span> |
| 324 | <a name="l00396"></a>00396 <span class="comment"> protected:</span> |
| 325 | <a name="l00397"></a>00397 <span class="comment"> int n;</span> |
| 326 | <a name="l00398"></a>00398 <span class="comment"> vec &w;</span> |
| 327 | <a name="l00399"></a>00399 <span class="comment"> Array<epdf*> Coms;</span> |
| 328 | <a name="l00400"></a>00400 <span class="comment"> public:</span> |
| 329 | <a name="l00402"></a>00402 <span class="comment"> emix ( const RV &rv, vec &w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span> |
| 330 | <a name="l00403"></a>00403 <span class="comment"> void set_parameters( int &i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span> |
| 331 | <a name="l00404"></a>00404 <span class="comment"> vec mean(){vec pom; for(int i=0;i<n;i++){pom+=Coms(i)->mean()*w(i);} return pom;};</span> |
| 332 | <a name="l00405"></a>00405 <span class="comment"> vec sample() {it_error ( "Not implemented" );return 0;}</span> |
| 333 | <a name="l00406"></a>00406 <span class="comment"> };</span> |
| 334 | <a name="l00407"></a>00407 <span class="comment"> */</span> |
| 335 | <a name="l00408"></a>00408 |
| 336 | <a name="l00410"></a>00410 |
| 337 | <a name="l00411"></a><a class="code" href="classbdm_1_1euni.html">00411</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
| 338 | <a name="l00412"></a>00412 { |
| 339 | <a name="l00413"></a>00413 <span class="keyword">protected</span>: |
| 340 | <a name="l00415"></a><a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32">00415</a> vec <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>; |
| 341 | <a name="l00417"></a><a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1">00417</a> vec <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>; |
| 342 | <a name="l00419"></a><a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c">00419</a> vec <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>; |
| 343 | <a name="l00421"></a><a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20">00421</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>; |
| 344 | <a name="l00423"></a><a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476">00423</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>; |
| 345 | <a name="l00424"></a>00424 <span class="keyword">public</span>: |
| 346 | <a name="l00427"></a>00427 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ) {} |
| 347 | <a name="l00428"></a>00428 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) {set_parameters ( low0,high0 );} |
| 348 | <a name="l00429"></a>00429 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) |
| 349 | <a name="l00430"></a>00430 { |
| 350 | <a name="l00431"></a>00431 <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> = high0-low0; |
| 351 | <a name="l00432"></a>00432 it_assert_debug ( min ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ) >0.0,<span class="stringliteral">"bad support"</span> ); |
| 352 | <a name="l00433"></a>00433 <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> = low0; |
| 353 | <a name="l00434"></a>00434 <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a> = high0; |
| 354 | <a name="l00435"></a>00435 <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> = prod ( 1.0/<a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ); |
| 355 | <a name="l00436"></a>00436 <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a> = log ( <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> ); |
| 356 | <a name="l00437"></a>00437 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>.length(); |
| 357 | <a name="l00438"></a>00438 } |
| 358 | <a name="l00440"></a>00440 |
| 359 | <a name="l00441"></a>00441 <span class="keywordtype">double</span> eval ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>;} |
| 360 | <a name="l00442"></a><a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81">00442</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81" title="Compute log-probability of argument val.">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>;} |
| 361 | <a name="l00443"></a><a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194">00443</a> vec <a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const</span> |
| 362 | <a name="l00444"></a>00444 <span class="keyword"> </span>{ |
| 363 | <a name="l00445"></a>00445 vec smp ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 364 | <a name="l00446"></a>00446 <span class="preprocessor">#pragma omp critical</span> |
| 365 | <a name="l00447"></a>00447 <span class="preprocessor"></span> UniRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ,smp ); |
| 366 | <a name="l00448"></a>00448 <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>+elem_mult ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>,smp ); |
| 367 | <a name="l00449"></a>00449 } |
| 368 | <a name="l00451"></a><a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226">00451</a> vec <a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226" title="set values of low and high ">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>-<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> ) /2.0;} |
| 369 | <a name="l00452"></a><a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c">00452</a> vec <a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> ( pow ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,2 ) +pow ( <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>,2 ) +elem_mult ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> ) ) /3.0;} |
| 370 | <a name="l00453"></a>00453 }; |
| 371 | <a name="l00454"></a>00454 |
| 372 | <a name="l00455"></a>00455 |
| 373 | <a name="l00461"></a>00461 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 374 | <a name="l00462"></a><a class="code" href="classbdm_1_1mlnorm.html">00462</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
| 375 | <a name="l00463"></a>00463 { |
| 376 | <a name="l00464"></a>00464 <span class="keyword">protected</span>: |
| 377 | <a name="l00466"></a><a class="code" href="classbdm_1_1mlnorm.html#150ad6acb223b0a0abeaf92346686dcd">00466</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
| 378 | <a name="l00467"></a>00467 mat A; |
| 379 | <a name="l00468"></a>00468 vec mu_const; |
| 380 | <a name="l00469"></a>00469 vec& _mu; <span class="comment">//cached epdf.mu;</span> |
| 381 | <a name="l00470"></a>00470 <span class="keyword">public</span>: |
| 382 | <a name="l00473"></a>00473 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> ( ) :<a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (),<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),A ( ),_mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a> =&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; }; |
| 383 | <a name="l00474"></a>00474 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),_mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) |
| 384 | <a name="l00475"></a>00475 { |
| 385 | <a name="l00476"></a>00476 <a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a> =&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( A,mu0,R ); |
| 386 | <a name="l00477"></a>00477 }; |
| 387 | <a name="l00479"></a>00479 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R ); |
| 388 | <a name="l00482"></a>00482 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">condition</a> ( <span class="keyword">const</span> vec &cond ); |
| 389 | <a name="l00483"></a>00483 |
| 390 | <a name="l00485"></a><a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced">00485</a> vec& <a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced" title="access function">_mu_const</a>() {<span class="keywordflow">return</span> mu_const;} |
| 391 | <a name="l00487"></a><a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614">00487</a> mat& <a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614" title="access function">_A</a>() {<span class="keywordflow">return</span> A;} |
| 392 | <a name="l00489"></a><a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604">00489</a> mat <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R().to_mat();} |
| 393 | <a name="l00490"></a>00490 |
| 394 | <a name="l00491"></a>00491 <span class="keyword">template</span><<span class="keyword">class</span> sq_M> |
| 395 | <a name="l00492"></a>00492 <span class="keyword">friend</span> std::ostream &operator<< ( std::ostream &os, mlnorm<sq_M> &ml ); |
| 396 | <a name="l00493"></a>00493 }; |
| 397 | <a name="l00494"></a>00494 |
| 398 | <a name="l00496"></a>00496 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 399 | <a name="l00497"></a><a class="code" href="classbdm_1_1mgnorm.html">00497</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgnorm.html" title="Mpdf with general function for mean value.">mgnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
| 400 | <a name="l00498"></a>00498 { |
| 401 | <a name="l00499"></a>00499 <span class="keyword">protected</span>: |
| 402 | <a name="l00501"></a><a class="code" href="classbdm_1_1mgnorm.html#8f7a376a1d2197e0634557e88e03104a">00501</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
| 403 | <a name="l00502"></a>00502 vec &mu; |
| 404 | <a name="l00503"></a>00503 <a class="code" href="classbdm_1_1fnc.html" title="Class representing function of variable represented by rv.">fnc</a>* g; |
| 405 | <a name="l00504"></a>00504 <span class="keyword">public</span>: |
| 406 | <a name="l00506"></a><a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d">00506</a> <a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d" title="default constructor">mgnorm</a>() :mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;} |
| 407 | <a name="l00508"></a><a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564">00508</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564" title="set mean function">set_parameters</a> ( <a class="code" href="classbdm_1_1fnc.html" title="Class representing function of variable represented by rv.">fnc</a>* g0, <span class="keyword">const</span> sq_T &R0 ) {g=g0; <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( g-><a class="code" href="classbdm_1_1fnc.html#083832294da9d1e40804158b979c4341" title="access function">dimension</a>() ), R0 );} |
| 408 | <a name="l00509"></a><a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d">00509</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &cond ) {mu=g-><a class="code" href="classbdm_1_1fnc.html#6277b11d7fffc7ef8a2fa3e84ae5bad4" title="function evaluates numerical value of at cond ">eval</a> ( cond );}; |
| 409 | <a name="l00510"></a>00510 }; |
| 410 | <a name="l00511"></a>00511 |
| 411 | <a name="l00519"></a><a class="code" href="classbdm_1_1mlstudent.html">00519</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a><ldmat> |
| 412 | <a name="l00520"></a>00520 { |
| 413 | <a name="l00521"></a>00521 <span class="keyword">protected</span>: |
| 414 | <a name="l00522"></a>00522 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Lambda; |
| 415 | <a name="l00523"></a>00523 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &<a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>; |
| 416 | <a name="l00524"></a>00524 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Re; |
| 417 | <a name="l00525"></a>00525 <span class="keyword">public</span>: |
| 418 | <a name="l00526"></a>00526 <a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> ( ) :<a class="code" href="classbdm_1_1mlnorm.html">mlnorm<ldmat></a> (), |
| 419 | <a name="l00527"></a>00527 Lambda (), <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R() ) {} |
| 420 | <a name="l00528"></a>00528 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &R0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& Lambda0 ) |
| 421 | <a name="l00529"></a>00529 { |
| 422 | <a name="l00530"></a>00530 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> ); |
| 423 | <a name="l00531"></a>00531 it_assert_debug ( R0.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>() ==A0.rows(),<span class="stringliteral">""</span> ); |
| 424 | <a name="l00532"></a>00532 |
| 425 | <a name="l00533"></a>00533 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( mu0,Lambda ); <span class="comment">//</span> |
| 426 | <a name="l00534"></a>00534 A = A0; |
| 427 | <a name="l00535"></a>00535 mu_const = mu0; |
| 428 | <a name="l00536"></a>00536 Re=R0; |
| 429 | <a name="l00537"></a>00537 Lambda = Lambda0; |
| 430 | <a name="l00538"></a>00538 } |
| 431 | <a name="l00539"></a><a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">00539</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">condition</a> ( <span class="keyword">const</span> vec &cond ) |
| 432 | <a name="l00540"></a>00540 { |
| 433 | <a name="l00541"></a>00541 _mu = A*cond + mu_const; |
| 434 | <a name="l00542"></a>00542 <span class="keywordtype">double</span> zeta; |
| 435 | <a name="l00543"></a>00543 <span class="comment">//ugly hack!</span> |
| 436 | <a name="l00544"></a>00544 <span class="keywordflow">if</span> ( ( cond.length() +1 ) ==Lambda.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>() ) |
| 437 | <a name="l00545"></a>00545 { |
| 438 | <a name="l00546"></a>00546 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( concat ( cond, vec_1 ( 1.0 ) ) ); |
| 439 | <a name="l00547"></a>00547 } |
| 440 | <a name="l00548"></a>00548 <span class="keywordflow">else</span> |
| 441 | <a name="l00549"></a>00549 { |
| 442 | <a name="l00550"></a>00550 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( cond ); |
| 443 | <a name="l00551"></a>00551 } |
| 444 | <a name="l00552"></a>00552 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> = Re; |
| 445 | <a name="l00553"></a>00553 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>*= ( 1+zeta );<span class="comment">// / ( nu ); << nu is in Re!!!!!!</span> |
| 446 | <a name="l00554"></a>00554 }; |
| 447 | <a name="l00555"></a>00555 |
| 448 | <a name="l00556"></a>00556 }; |
| 449 | <a name="l00566"></a><a class="code" href="classbdm_1_1mgamma.html">00566</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
| 450 | <a name="l00567"></a>00567 { |
| 451 | <a name="l00568"></a>00568 <span class="keyword">protected</span>: |
| 452 | <a name="l00570"></a><a class="code" href="classbdm_1_1mgamma.html#bdc9f1e9e03c09e91103fee269864438">00570</a> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
| 453 | <a name="l00572"></a><a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09">00572</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>; |
| 454 | <a name="l00574"></a><a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312">00574</a> vec &<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>; |
| 455 | <a name="l00575"></a>00575 |
| 456 | <a name="l00576"></a>00576 <span class="keyword">public</span>: |
| 457 | <a name="l00578"></a><a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1">00578</a> <a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1" title="Constructor.">mgamma</a> ( ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> ( ), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> (), <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
| 458 | <a name="l00580"></a>00580 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, <span class="keyword">const</span> vec &beta0 ); |
| 459 | <a name="l00581"></a><a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff">00581</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/val;}; |
| 460 | <a name="l00582"></a>00582 }; |
| 461 | <a name="l00583"></a>00583 |
| 462 | <a name="l00593"></a><a class="code" href="classbdm_1_1migamma.html">00593</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
| 463 | <a name="l00594"></a>00594 { |
| 464 | <a name="l00595"></a>00595 <span class="keyword">protected</span>: |
| 465 | <a name="l00597"></a><a class="code" href="classbdm_1_1migamma.html#a31b39d4179551b593c9e0d7d756783a">00597</a> <a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
| 466 | <a name="l00599"></a><a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c">00599</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>; |
| 467 | <a name="l00601"></a><a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc">00601</a> vec &<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>; |
| 468 | <a name="l00603"></a><a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5">00603</a> vec &<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>; |
| 469 | <a name="l00604"></a>00604 |
| 470 | <a name="l00605"></a>00605 <span class="keyword">public</span>: |
| 471 | <a name="l00608"></a>00608 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ), <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>() ), <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
| 472 | <a name="l00609"></a>00609 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> &m ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( m.<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ), <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>() ), <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
| 473 | <a name="l00611"></a>00611 |
| 474 | <a name="l00613"></a><a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151">00613</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> len, <span class="keywordtype">double</span> k0 ) |
| 475 | <a name="l00614"></a>00614 { |
| 476 | <a name="l00615"></a>00615 <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>=k0; |
| 477 | <a name="l00616"></a>00616 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( ( 1.0/ ( <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>*<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> ) +2.0 ) *ones ( len ) <span class="comment">/*alpha*/</span>, ones ( len ) <span class="comment">/*beta*/</span> ); |
| 478 | <a name="l00617"></a>00617 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); |
| 479 | <a name="l00618"></a>00618 }; |
| 480 | <a name="l00619"></a><a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c">00619</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) |
| 481 | <a name="l00620"></a>00620 { |
| 482 | <a name="l00621"></a>00621 <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>=elem_mult ( val, ( <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>-1.0 ) ); |
| 483 | <a name="l00622"></a>00622 }; |
| 484 | <a name="l00623"></a>00623 }; |
| 485 | <a name="l00624"></a>00624 |
| 486 | <a name="l00636"></a><a class="code" href="classbdm_1_1mgamma__fix.html">00636</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> |
| 487 | <a name="l00637"></a>00637 { |
| 488 | <a name="l00638"></a>00638 <span class="keyword">protected</span>: |
| 489 | <a name="l00640"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa">00640</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>; |
| 490 | <a name="l00642"></a><a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2">00642</a> vec <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>; |
| 491 | <a name="l00643"></a>00643 <span class="keyword">public</span>: |
| 492 | <a name="l00645"></a><a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d">00645</a> <a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d" title="Constructor.">mgamma_fix</a> ( ) : <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> ( ),<a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a> () {}; |
| 493 | <a name="l00647"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2">00647</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) |
| 494 | <a name="l00648"></a>00648 { |
| 495 | <a name="l00649"></a>00649 <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">mgamma::set_parameters</a> ( k0, ref0 ); |
| 496 | <a name="l00650"></a>00650 <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>=l0; |
| 497 | <a name="l00651"></a>00651 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=dimension(); |
| 498 | <a name="l00652"></a>00652 }; |
| 499 | <a name="l00653"></a>00653 |
| 500 | <a name="l00654"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7">00654</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {vec mean=elem_mult ( <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a> ) ); <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/mean;}; |
| 501 | <a name="l00655"></a>00655 }; |
549 | | <a name="l00744"></a>00744 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = size; |
550 | | <a name="l00745"></a>00745 }; |
551 | | <a name="l00746"></a>00746 |
552 | | <a name="l00747"></a><a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e">00747</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) |
553 | | <a name="l00748"></a>00748 { |
554 | | <a name="l00749"></a>00749 <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>=log ( val )-<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>;<span class="comment">//elem_mult ( refl,pow ( val,l ) );</span> |
555 | | <a name="l00750"></a>00750 }; |
556 | | <a name="l00751"></a>00751 }; |
557 | | <a name="l00752"></a>00752 |
558 | | <a name="l00756"></a><a class="code" href="classbdm_1_1eWishartCh.html">00756</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eWishartCh.html">eWishartCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
559 | | <a name="l00757"></a>00757 { |
560 | | <a name="l00758"></a>00758 <span class="keyword">protected</span>: |
561 | | <a name="l00760"></a><a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490">00760</a> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>; |
562 | | <a name="l00762"></a><a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f">00762</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; |
563 | | <a name="l00764"></a><a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3">00764</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>; |
564 | | <a name="l00765"></a>00765 <span class="keyword">public</span>: |
565 | | <a name="l00766"></a>00766 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0 ) {<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>=<a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> ( Y0 );<a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>=delta0; <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>=<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classsqmat.html#071e80ced9cc3b8cbb360fa7462eb646" title="Reimplementing common functions of mat: cols().">rows</a>(); <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>*<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; } |
566 | | <a name="l00767"></a>00767 mat sample_mat()<span class="keyword"> const</span> |
567 | | <a name="l00768"></a>00768 <span class="keyword"> </span>{ |
568 | | <a name="l00769"></a>00769 mat X=zeros ( <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>,<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a> ); |
569 | | <a name="l00770"></a>00770 |
570 | | <a name="l00771"></a>00771 <span class="comment">//sample diagonal</span> |
571 | | <a name="l00772"></a>00772 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>;i++ ) |
572 | | <a name="l00773"></a>00773 { |
573 | | <a name="l00774"></a>00774 GamRNG.<a class="code" href="classitpp_1_1Gamma__RNG.html#dfaae19411e39aa87e1f72e409b6babe" title="Set lambda.">setup</a> ( 0.5* ( <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>-i ) , 0.5 ); <span class="comment">// no +1 !! index if from 0</span> |
574 | | <a name="l00775"></a>00775 <span class="preprocessor">#pragma omp critical</span> |
575 | | <a name="l00776"></a>00776 <span class="preprocessor"></span> X ( i,i ) =sqrt ( GamRNG() ); |
576 | | <a name="l00777"></a>00777 } |
577 | | <a name="l00778"></a>00778 <span class="comment">//do the rest</span> |
578 | | <a name="l00779"></a>00779 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<p;i++ ) |
579 | | <a name="l00780"></a>00780 { |
580 | | <a name="l00781"></a>00781 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> j=i+1;j<p;j++ ) |
581 | | <a name="l00782"></a>00782 { |
582 | | <a name="l00783"></a>00783 <span class="preprocessor">#pragma omp critical</span> |
583 | | <a name="l00784"></a>00784 <span class="preprocessor"></span> X ( i,j ) =NorRNG.sample(); |
584 | | <a name="l00785"></a>00785 } |
585 | | <a name="l00786"></a>00786 } |
586 | | <a name="l00787"></a>00787 <span class="keywordflow">return</span> X*<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>();<span class="comment">// return upper triangular part of the decomposition</span> |
587 | | <a name="l00788"></a>00788 } |
588 | | <a name="l00789"></a><a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a">00789</a> vec <a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a" title="Returns a sample, from density .">sample</a> ()<span class="keyword"> const</span> |
589 | | <a name="l00790"></a>00790 <span class="keyword"> </span>{ |
590 | | <a name="l00791"></a>00791 <span class="keywordflow">return</span> vec ( sample_mat()._data(),p*p ); |
591 | | <a name="l00792"></a>00792 } |
592 | | <a name="l00794"></a><a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981">00794</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981" title="fast access function y0 will be copied into Y.Ch.">setY</a> ( <span class="keyword">const</span> mat &Ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,Ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() );} |
593 | | <a name="l00796"></a><a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a">00796</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a" title="fast access function y0 will be copied into Y.Ch.">_setY</a> ( <span class="keyword">const</span> vec &ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() ); } |
594 | | <a name="l00798"></a><a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e">00798</a> <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>& <a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e" title="access function">getY</a>()<span class="keyword">const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>;} |
595 | | <a name="l00799"></a>00799 }; |
596 | | <a name="l00800"></a>00800 |
597 | | <a name="l00801"></a>00801 <span class="keyword">class </span>eiWishartCh: <span class="keyword">public</span> epdf |
598 | | <a name="l00802"></a>00802 { |
599 | | <a name="l00803"></a>00803 <span class="keyword">protected</span>: |
600 | | <a name="l00804"></a>00804 eWishartCh W; |
601 | | <a name="l00805"></a>00805 <span class="keywordtype">int</span> p; |
602 | | <a name="l00806"></a>00806 <span class="keywordtype">double</span> delta; |
603 | | <a name="l00807"></a>00807 <span class="keyword">public</span>: |
604 | | <a name="l00808"></a>00808 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0) { |
605 | | <a name="l00809"></a>00809 delta = delta0; |
606 | | <a name="l00810"></a>00810 W.set_parameters ( inv ( Y0 ),delta0 ); |
607 | | <a name="l00811"></a>00811 dim = W.dimension(); p=Y0.rows(); |
608 | | <a name="l00812"></a>00812 } |
609 | | <a name="l00813"></a>00813 vec sample()<span class="keyword"> const </span>{mat iCh; iCh=inv ( W.sample_mat() ); <span class="keywordflow">return</span> vec ( iCh._data(),<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> );} |
610 | | <a name="l00814"></a>00814 <span class="keywordtype">void</span> _setY ( <span class="keyword">const</span> vec &y0 ) |
611 | | <a name="l00815"></a>00815 { |
612 | | <a name="l00816"></a>00816 mat Ch ( p,p ); |
613 | | <a name="l00817"></a>00817 mat iCh ( p,p ); |
614 | | <a name="l00818"></a>00818 copy_vector ( dim, y0._data(), Ch._data() ); |
615 | | <a name="l00819"></a>00819 |
616 | | <a name="l00820"></a>00820 iCh=inv ( Ch ); |
617 | | <a name="l00821"></a>00821 W.setY ( iCh ); |
618 | | <a name="l00822"></a>00822 } |
619 | | <a name="l00823"></a>00823 <span class="keyword">virtual</span> <span class="keywordtype">double</span> evallog ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
620 | | <a name="l00824"></a>00824 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> X(p); |
621 | | <a name="l00825"></a>00825 <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>& Y=W.getY(); |
622 | | <a name="l00826"></a>00826 |
623 | | <a name="l00827"></a>00827 copy_vector(p*p,val._data(),X._Ch()._data()); |
624 | | <a name="l00828"></a>00828 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> iX(p);X.inv(iX); |
625 | | <a name="l00829"></a>00829 <span class="comment">// compute </span> |
626 | | <a name="l00830"></a>00830 <span class="comment">// \frac{ |\Psi|^{m/2}|X|^{-(m+p+1)/2}e^{-tr(\Psi X^{-1})/2} }{ 2^{mp/2}\Gamma_p(m/2)},</span> |
627 | | <a name="l00831"></a>00831 mat M=Y.<a class="code" href="classchmat.html#045addd685f8d978efda232d7dcb070e" title="Conversion to full matrix.">to_mat</a>()*iX.to_mat(); |
| 550 | <a name="l00744"></a><a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e">00744</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) |
| 551 | <a name="l00745"></a>00745 { |
| 552 | <a name="l00746"></a>00746 <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>=log ( val )-<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>;<span class="comment">//elem_mult ( refl,pow ( val,l ) );</span> |
| 553 | <a name="l00747"></a>00747 }; |
| 554 | <a name="l00748"></a>00748 }; |
| 555 | <a name="l00749"></a>00749 |
| 556 | <a name="l00753"></a><a class="code" href="classbdm_1_1eWishartCh.html">00753</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eWishartCh.html">eWishartCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
| 557 | <a name="l00754"></a>00754 { |
| 558 | <a name="l00755"></a>00755 <span class="keyword">protected</span>: |
| 559 | <a name="l00757"></a><a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490">00757</a> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>; |
| 560 | <a name="l00759"></a><a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f">00759</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; |
| 561 | <a name="l00761"></a><a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3">00761</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>; |
| 562 | <a name="l00762"></a>00762 <span class="keyword">public</span>: |
| 563 | <a name="l00763"></a>00763 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0 ) {<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>=<a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> ( Y0 );<a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>=delta0; <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>=<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classsqmat.html#071e80ced9cc3b8cbb360fa7462eb646" title="Reimplementing common functions of mat: cols().">rows</a>(); <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>*<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; } |
| 564 | <a name="l00764"></a>00764 mat sample_mat()<span class="keyword"> const</span> |
| 565 | <a name="l00765"></a>00765 <span class="keyword"> </span>{ |
| 566 | <a name="l00766"></a>00766 mat X=zeros ( <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>,<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a> ); |
| 567 | <a name="l00767"></a>00767 |
| 568 | <a name="l00768"></a>00768 <span class="comment">//sample diagonal</span> |
| 569 | <a name="l00769"></a>00769 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>;i++ ) |
| 570 | <a name="l00770"></a>00770 { |
| 571 | <a name="l00771"></a>00771 GamRNG.<a class="code" href="classitpp_1_1Gamma__RNG.html#dfaae19411e39aa87e1f72e409b6babe" title="Set lambda.">setup</a> ( 0.5* ( <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>-i ) , 0.5 ); <span class="comment">// no +1 !! index if from 0</span> |
| 572 | <a name="l00772"></a>00772 <span class="preprocessor">#pragma omp critical</span> |
| 573 | <a name="l00773"></a>00773 <span class="preprocessor"></span> X ( i,i ) =sqrt ( GamRNG() ); |
| 574 | <a name="l00774"></a>00774 } |
| 575 | <a name="l00775"></a>00775 <span class="comment">//do the rest</span> |
| 576 | <a name="l00776"></a>00776 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<p;i++ ) |
| 577 | <a name="l00777"></a>00777 { |
| 578 | <a name="l00778"></a>00778 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> j=i+1;j<p;j++ ) |
| 579 | <a name="l00779"></a>00779 { |
| 580 | <a name="l00780"></a>00780 <span class="preprocessor">#pragma omp critical</span> |
| 581 | <a name="l00781"></a>00781 <span class="preprocessor"></span> X ( i,j ) =NorRNG.sample(); |
| 582 | <a name="l00782"></a>00782 } |
| 583 | <a name="l00783"></a>00783 } |
| 584 | <a name="l00784"></a>00784 <span class="keywordflow">return</span> X*<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>();<span class="comment">// return upper triangular part of the decomposition</span> |
| 585 | <a name="l00785"></a>00785 } |
| 586 | <a name="l00786"></a><a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a">00786</a> vec <a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a" title="Returns a sample, from density .">sample</a> ()<span class="keyword"> const</span> |
| 587 | <a name="l00787"></a>00787 <span class="keyword"> </span>{ |
| 588 | <a name="l00788"></a>00788 <span class="keywordflow">return</span> vec ( sample_mat()._data(),p*p ); |
| 589 | <a name="l00789"></a>00789 } |
| 590 | <a name="l00791"></a><a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981">00791</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981" title="fast access function y0 will be copied into Y.Ch.">setY</a> ( <span class="keyword">const</span> mat &Ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,Ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() );} |
| 591 | <a name="l00793"></a><a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a">00793</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a" title="fast access function y0 will be copied into Y.Ch.">_setY</a> ( <span class="keyword">const</span> vec &ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() ); } |
| 592 | <a name="l00795"></a><a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e">00795</a> <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>& <a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e" title="access function">getY</a>()<span class="keyword">const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>;} |
| 593 | <a name="l00796"></a>00796 }; |
| 594 | <a name="l00797"></a>00797 |
| 595 | <a name="l00798"></a>00798 <span class="keyword">class </span>eiWishartCh: <span class="keyword">public</span> epdf |
| 596 | <a name="l00799"></a>00799 { |
| 597 | <a name="l00800"></a>00800 <span class="keyword">protected</span>: |
| 598 | <a name="l00801"></a>00801 eWishartCh W; |
| 599 | <a name="l00802"></a>00802 <span class="keywordtype">int</span> p; |
| 600 | <a name="l00803"></a>00803 <span class="keywordtype">double</span> delta; |
| 601 | <a name="l00804"></a>00804 <span class="keyword">public</span>: |
| 602 | <a name="l00805"></a>00805 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0) { |
| 603 | <a name="l00806"></a>00806 delta = delta0; |
| 604 | <a name="l00807"></a>00807 W.set_parameters ( inv ( Y0 ),delta0 ); |
| 605 | <a name="l00808"></a>00808 dim = W.dimension(); p=Y0.rows(); |
| 606 | <a name="l00809"></a>00809 } |
| 607 | <a name="l00810"></a>00810 vec sample()<span class="keyword"> const </span>{mat iCh; iCh=inv ( W.sample_mat() ); <span class="keywordflow">return</span> vec ( iCh._data(),<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> );} |
| 608 | <a name="l00811"></a>00811 <span class="keywordtype">void</span> _setY ( <span class="keyword">const</span> vec &y0 ) |
| 609 | <a name="l00812"></a>00812 { |
| 610 | <a name="l00813"></a>00813 mat Ch ( p,p ); |
| 611 | <a name="l00814"></a>00814 mat iCh ( p,p ); |
| 612 | <a name="l00815"></a>00815 copy_vector ( dim, y0._data(), Ch._data() ); |
| 613 | <a name="l00816"></a>00816 |
| 614 | <a name="l00817"></a>00817 iCh=inv ( Ch ); |
| 615 | <a name="l00818"></a>00818 W.setY ( iCh ); |
| 616 | <a name="l00819"></a>00819 } |
| 617 | <a name="l00820"></a>00820 <span class="keyword">virtual</span> <span class="keywordtype">double</span> evallog ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
| 618 | <a name="l00821"></a>00821 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> X(p); |
| 619 | <a name="l00822"></a>00822 <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>& Y=W.getY(); |
| 620 | <a name="l00823"></a>00823 |
| 621 | <a name="l00824"></a>00824 copy_vector(p*p,val._data(),X._Ch()._data()); |
| 622 | <a name="l00825"></a>00825 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> iX(p);X.inv(iX); |
| 623 | <a name="l00826"></a>00826 <span class="comment">// compute </span> |
| 624 | <a name="l00827"></a>00827 <span class="comment">// \frac{ |\Psi|^{m/2}|X|^{-(m+p+1)/2}e^{-tr(\Psi X^{-1})/2} }{ 2^{mp/2}\Gamma_p(m/2)},</span> |
| 625 | <a name="l00828"></a>00828 mat M=Y.<a class="code" href="classchmat.html#045addd685f8d978efda232d7dcb070e" title="Conversion to full matrix.">to_mat</a>()*iX.to_mat(); |
| 626 | <a name="l00829"></a>00829 |
| 627 | <a name="l00830"></a>00830 <span class="keywordtype">double</span> log1 = 0.5*p*(2*Y.<a class="code" href="classchmat.html#b504ca818203b13e667cb3c503980382" title="Logarithm of a determinant.">logdet</a>())-0.5*(delta+p+1)*(2*X.logdet())-0.5*trace(M); |
| 628 | <a name="l00831"></a>00831 <span class="comment">//Fixme! Multivariate gamma omitted!! it is ok for sampling, but not otherwise!!</span> |
629 | | <a name="l00833"></a>00833 <span class="keywordtype">double</span> log1 = 0.5*p*(2*Y.<a class="code" href="classchmat.html#b504ca818203b13e667cb3c503980382" title="Logarithm of a determinant.">logdet</a>())-0.5*(delta+p+1)*(2*X.logdet())-0.5*trace(M); |
630 | | <a name="l00834"></a>00834 <span class="comment">//Fixme! Multivariate gamma omitted!! it is ok for sampling, but not otherwise!!</span> |
631 | | <a name="l00835"></a>00835 |
632 | | <a name="l00836"></a>00836 <span class="comment">/* if (0) {</span> |
633 | | <a name="l00837"></a>00837 <span class="comment"> mat XX=X.to_mat();</span> |
634 | | <a name="l00838"></a>00838 <span class="comment"> mat YY=Y.to_mat();</span> |
635 | | <a name="l00839"></a>00839 <span class="comment"> </span> |
636 | | <a name="l00840"></a>00840 <span class="comment"> double log2 = 0.5*p*log(det(YY))-0.5*(delta+p+1)*log(det(XX))-0.5*trace(YY*inv(XX)); </span> |
637 | | <a name="l00841"></a>00841 <span class="comment"> cout << log1 << "," << log2 << endl;</span> |
638 | | <a name="l00842"></a>00842 <span class="comment"> }*/</span> |
639 | | <a name="l00843"></a>00843 <span class="keywordflow">return</span> log1; |
640 | | <a name="l00844"></a>00844 }; |
641 | | <a name="l00845"></a>00845 |
642 | | <a name="l00846"></a>00846 }; |
643 | | <a name="l00847"></a>00847 |
644 | | <a name="l00848"></a>00848 <span class="keyword">class </span>rwiWishartCh : <span class="keyword">public</span> mpdf |
645 | | <a name="l00849"></a>00849 { |
646 | | <a name="l00850"></a>00850 <span class="keyword">protected</span>: |
647 | | <a name="l00851"></a>00851 eiWishartCh eiW; |
648 | | <a name="l00853"></a>00853 <span class="keywordtype">double</span> sqd; |
649 | | <a name="l00854"></a>00854 <span class="comment">//reference point for diagonal</span> |
650 | | <a name="l00855"></a>00855 vec refl; |
651 | | <a name="l00856"></a>00856 <span class="keywordtype">double</span> l; |
652 | | <a name="l00857"></a>00857 <span class="keywordtype">int</span> p; |
653 | | <a name="l00858"></a>00858 <span class="keyword">public</span>: |
654 | | <a name="l00859"></a>00859 <span class="keywordtype">void</span> set_parameters ( <span class="keywordtype">int</span> p0, <span class="keywordtype">double</span> k, vec ref0, <span class="keywordtype">double</span> l0 ) |
655 | | <a name="l00860"></a>00860 { |
656 | | <a name="l00861"></a>00861 p=p0; |
657 | | <a name="l00862"></a>00862 <span class="keywordtype">double</span> delta = 2/(k*k)+p+3; |
658 | | <a name="l00863"></a>00863 sqd=sqrt ( delta-p-1 ); |
659 | | <a name="l00864"></a>00864 l=l0; |
660 | | <a name="l00865"></a>00865 refl=pow(ref0,1-l); |
661 | | <a name="l00866"></a>00866 |
662 | | <a name="l00867"></a>00867 eiW.set_parameters ( eye ( p ),delta ); |
663 | | <a name="l00868"></a>00868 <a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&eiW; |
664 | | <a name="l00869"></a>00869 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=eiW.dimension(); |
665 | | <a name="l00870"></a>00870 } |
666 | | <a name="l00871"></a>00871 <span class="keywordtype">void</span> condition ( <span class="keyword">const</span> vec &c ) { |
667 | | <a name="l00872"></a>00872 vec z=c; |
668 | | <a name="l00873"></a>00873 <span class="keywordtype">int</span> ri=0; |
669 | | <a name="l00874"></a>00874 <span class="keywordflow">for</span>(<span class="keywordtype">int</span> i=0;i<p*p;i+=(p+1)){<span class="comment">//trace diagonal element</span> |
670 | | <a name="l00875"></a>00875 z(i) = pow(z(i),l)*refl(ri); |
671 | | <a name="l00876"></a>00876 ri++; |
672 | | <a name="l00877"></a>00877 } |
673 | | <a name="l00878"></a>00878 |
674 | | <a name="l00879"></a>00879 eiW._setY ( sqd*z ); |
675 | | <a name="l00880"></a>00880 } |
676 | | <a name="l00881"></a>00881 }; |
677 | | <a name="l00882"></a>00882 |
678 | | <a name="l00884"></a>00884 <span class="keyword">enum</span> RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
679 | | <a name="l00890"></a><a class="code" href="classbdm_1_1eEmp.html">00890</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
680 | | <a name="l00891"></a>00891 { |
681 | | <a name="l00892"></a>00892 <span class="keyword">protected</span> : |
682 | | <a name="l00894"></a><a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031">00894</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>; |
683 | | <a name="l00896"></a><a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d">00896</a> vec <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>; |
684 | | <a name="l00898"></a><a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3">00898</a> Array<vec> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>; |
685 | | <a name="l00899"></a>00899 <span class="keyword">public</span>: |
686 | | <a name="l00902"></a>00902 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( ) {}; |
687 | | <a name="l00903"></a>00903 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> &e ) : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( e ), <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ), <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ) {}; |
688 | | <a name="l00905"></a>00905 |
689 | | <a name="l00907"></a>00907 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#7cfd383180b486fe4526bdf0179350c0" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> vec &w0, <span class="keyword">const</span> epdf* pdf0 ); |
690 | | <a name="l00909"></a><a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7">00909</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 , <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> ) {<a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( ones ( n ) /n,pdf0 );}; |
691 | | <a name="l00911"></a>00911 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b62d802b8ef39f7c4dcbeb366c90951a" title="Set sample.">set_samples</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
692 | | <a name="l00913"></a><a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1">00913</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1" title="Set sample.">set_parameters</a> ( <span class="keywordtype">int</span> n0, <span class="keywordtype">bool</span> copy=<span class="keyword">true</span> ) {<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>=n0; <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>.set_size ( n0,copy );<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>.set_size ( n0,copy );}; |
693 | | <a name="l00915"></a><a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef">00915</a> vec& <a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
694 | | <a name="l00917"></a><a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714">00917</a> <span class="keyword">const</span> vec& <a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714" title="Potentially dangerous, use with care.">_w</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
695 | | <a name="l00919"></a><a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2">00919</a> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
696 | | <a name="l00921"></a><a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2">00921</a> <span class="keyword">const</span> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2" title="access function">_samples</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
697 | | <a name="l00923"></a>00923 ivec <a class="code" href="classbdm_1_1eEmp.html#f06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( RESAMPLING_METHOD method=SYSTEMATIC ); |
698 | | <a name="l00925"></a><a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270">00925</a> vec <a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} |
699 | | <a name="l00927"></a><a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09">00927</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09" title="inherited operation : NOT implemneted">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} |
700 | | <a name="l00928"></a><a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9">00928</a> vec <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>()<span class="keyword"> const</span> |
701 | | <a name="l00929"></a>00929 <span class="keyword"> </span>{ |
702 | | <a name="l00930"></a>00930 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
703 | | <a name="l00931"></a>00931 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
704 | | <a name="l00932"></a>00932 <span class="keywordflow">return</span> pom; |
705 | | <a name="l00933"></a>00933 } |
706 | | <a name="l00934"></a><a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87">00934</a> vec <a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const</span> |
707 | | <a name="l00935"></a>00935 <span class="keyword"> </span>{ |
708 | | <a name="l00936"></a>00936 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
709 | | <a name="l00937"></a>00937 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=pow ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ),2 ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
710 | | <a name="l00938"></a>00938 <span class="keywordflow">return</span> pom-pow ( <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>(),2 ); |
711 | | <a name="l00939"></a>00939 } |
712 | | <a name="l00941"></a><a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f">00941</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f" title="For this class, qbounds are minimum and maximum value of the population!">qbounds</a> ( vec &lb, vec &ub, <span class="keywordtype">double</span> perc=0.95 )<span class="keyword"> const</span> |
713 | | <a name="l00942"></a>00942 <span class="keyword"> </span>{ |
714 | | <a name="l00943"></a>00943 <span class="comment">// lb in inf so than it will be pushed below;</span> |
715 | | <a name="l00944"></a>00944 lb.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
716 | | <a name="l00945"></a>00945 ub.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
717 | | <a name="l00946"></a>00946 lb = std::numeric_limits<double>::infinity(); |
718 | | <a name="l00947"></a>00947 ub = -std::numeric_limits<double>::infinity(); |
719 | | <a name="l00948"></a>00948 <span class="keywordtype">int</span> j; |
720 | | <a name="l00949"></a>00949 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) |
721 | | <a name="l00950"></a>00950 { |
722 | | <a name="l00951"></a>00951 <span class="keywordflow">for</span> ( j=0;j<<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>; j++ ) |
723 | | <a name="l00952"></a>00952 { |
724 | | <a name="l00953"></a>00953 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) <lb ( j ) ) {lb ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} |
725 | | <a name="l00954"></a>00954 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) >ub ( j ) ) {ub ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} |
726 | | <a name="l00955"></a>00955 } |
727 | | <a name="l00956"></a>00956 } |
728 | | <a name="l00957"></a>00957 } |
729 | | <a name="l00958"></a>00958 }; |
| 630 | <a name="l00833"></a>00833 <span class="comment">/* if (0) {</span> |
| 631 | <a name="l00834"></a>00834 <span class="comment"> mat XX=X.to_mat();</span> |
| 632 | <a name="l00835"></a>00835 <span class="comment"> mat YY=Y.to_mat();</span> |
| 633 | <a name="l00836"></a>00836 <span class="comment"> </span> |
| 634 | <a name="l00837"></a>00837 <span class="comment"> double log2 = 0.5*p*log(det(YY))-0.5*(delta+p+1)*log(det(XX))-0.5*trace(YY*inv(XX)); </span> |
| 635 | <a name="l00838"></a>00838 <span class="comment"> cout << log1 << "," << log2 << endl;</span> |
| 636 | <a name="l00839"></a>00839 <span class="comment"> }*/</span> |
| 637 | <a name="l00840"></a>00840 <span class="keywordflow">return</span> log1; |
| 638 | <a name="l00841"></a>00841 }; |
| 639 | <a name="l00842"></a>00842 |
| 640 | <a name="l00843"></a>00843 }; |
| 641 | <a name="l00844"></a>00844 |
| 642 | <a name="l00845"></a>00845 <span class="keyword">class </span>rwiWishartCh : <span class="keyword">public</span> mpdf |
| 643 | <a name="l00846"></a>00846 { |
| 644 | <a name="l00847"></a>00847 <span class="keyword">protected</span>: |
| 645 | <a name="l00848"></a>00848 eiWishartCh eiW; |
| 646 | <a name="l00850"></a>00850 <span class="keywordtype">double</span> sqd; |
| 647 | <a name="l00851"></a>00851 <span class="comment">//reference point for diagonal</span> |
| 648 | <a name="l00852"></a>00852 vec refl; |
| 649 | <a name="l00853"></a>00853 <span class="keywordtype">double</span> l; |
| 650 | <a name="l00854"></a>00854 <span class="keywordtype">int</span> p; |
| 651 | <a name="l00855"></a>00855 <span class="keyword">public</span>: |
| 652 | <a name="l00856"></a>00856 <span class="keywordtype">void</span> set_parameters ( <span class="keywordtype">int</span> p0, <span class="keywordtype">double</span> k, vec ref0, <span class="keywordtype">double</span> l0 ) |
| 653 | <a name="l00857"></a>00857 { |
| 654 | <a name="l00858"></a>00858 p=p0; |
| 655 | <a name="l00859"></a>00859 <span class="keywordtype">double</span> delta = 2/(k*k)+p+3; |
| 656 | <a name="l00860"></a>00860 sqd=sqrt ( delta-p-1 ); |
| 657 | <a name="l00861"></a>00861 l=l0; |
| 658 | <a name="l00862"></a>00862 refl=pow(ref0,1-l); |
| 659 | <a name="l00863"></a>00863 |
| 660 | <a name="l00864"></a>00864 eiW.set_parameters ( eye ( p ),delta ); |
| 661 | <a name="l00865"></a>00865 <a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&eiW; |
| 662 | <a name="l00866"></a>00866 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=eiW.dimension(); |
| 663 | <a name="l00867"></a>00867 } |
| 664 | <a name="l00868"></a>00868 <span class="keywordtype">void</span> condition ( <span class="keyword">const</span> vec &c ) { |
| 665 | <a name="l00869"></a>00869 vec z=c; |
| 666 | <a name="l00870"></a>00870 <span class="keywordtype">int</span> ri=0; |
| 667 | <a name="l00871"></a>00871 <span class="keywordflow">for</span>(<span class="keywordtype">int</span> i=0;i<p*p;i+=(p+1)){<span class="comment">//trace diagonal element</span> |
| 668 | <a name="l00872"></a>00872 z(i) = pow(z(i),l)*refl(ri); |
| 669 | <a name="l00873"></a>00873 ri++; |
| 670 | <a name="l00874"></a>00874 } |
| 671 | <a name="l00875"></a>00875 |
| 672 | <a name="l00876"></a>00876 eiW._setY ( sqd*z ); |
| 673 | <a name="l00877"></a>00877 } |
| 674 | <a name="l00878"></a>00878 }; |
| 675 | <a name="l00879"></a>00879 |
| 676 | <a name="l00881"></a>00881 <span class="keyword">enum</span> RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
| 677 | <a name="l00887"></a><a class="code" href="classbdm_1_1eEmp.html">00887</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
| 678 | <a name="l00888"></a>00888 { |
| 679 | <a name="l00889"></a>00889 <span class="keyword">protected</span> : |
| 680 | <a name="l00891"></a><a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031">00891</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>; |
| 681 | <a name="l00893"></a><a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d">00893</a> vec <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>; |
| 682 | <a name="l00895"></a><a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3">00895</a> Array<vec> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>; |
| 683 | <a name="l00896"></a>00896 <span class="keyword">public</span>: |
| 684 | <a name="l00899"></a>00899 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( ) {}; |
| 685 | <a name="l00900"></a>00900 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> &e ) : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( e ), <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ), <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ) {}; |
| 686 | <a name="l00902"></a>00902 |
| 687 | <a name="l00904"></a>00904 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#7cfd383180b486fe4526bdf0179350c0" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> vec &w0, <span class="keyword">const</span> epdf* pdf0 ); |
| 688 | <a name="l00906"></a><a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7">00906</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 , <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> ) {<a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( ones ( n ) /n,pdf0 );}; |
| 689 | <a name="l00908"></a>00908 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b62d802b8ef39f7c4dcbeb366c90951a" title="Set sample.">set_samples</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
| 690 | <a name="l00910"></a><a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1">00910</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1" title="Set sample.">set_parameters</a> ( <span class="keywordtype">int</span> n0, <span class="keywordtype">bool</span> copy=<span class="keyword">true</span> ) {<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>=n0; <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>.set_size ( n0,copy );<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>.set_size ( n0,copy );}; |
| 691 | <a name="l00912"></a><a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef">00912</a> vec& <a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
| 692 | <a name="l00914"></a><a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714">00914</a> <span class="keyword">const</span> vec& <a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714" title="Potentially dangerous, use with care.">_w</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
| 693 | <a name="l00916"></a><a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2">00916</a> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
| 694 | <a name="l00918"></a><a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2">00918</a> <span class="keyword">const</span> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2" title="access function">_samples</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
| 695 | <a name="l00920"></a>00920 ivec <a class="code" href="classbdm_1_1eEmp.html#f06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( RESAMPLING_METHOD method=SYSTEMATIC ); |
| 696 | <a name="l00922"></a><a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270">00922</a> vec <a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} |
| 697 | <a name="l00924"></a><a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09">00924</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09" title="inherited operation : NOT implemneted">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} |
| 698 | <a name="l00925"></a><a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9">00925</a> vec <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>()<span class="keyword"> const</span> |
| 699 | <a name="l00926"></a>00926 <span class="keyword"> </span>{ |
| 700 | <a name="l00927"></a>00927 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 701 | <a name="l00928"></a>00928 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
| 702 | <a name="l00929"></a>00929 <span class="keywordflow">return</span> pom; |
| 703 | <a name="l00930"></a>00930 } |
| 704 | <a name="l00931"></a><a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87">00931</a> vec <a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const</span> |
| 705 | <a name="l00932"></a>00932 <span class="keyword"> </span>{ |
| 706 | <a name="l00933"></a>00933 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 707 | <a name="l00934"></a>00934 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=pow ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ),2 ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
| 708 | <a name="l00935"></a>00935 <span class="keywordflow">return</span> pom-pow ( <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>(),2 ); |
| 709 | <a name="l00936"></a>00936 } |
| 710 | <a name="l00938"></a><a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f">00938</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f" title="For this class, qbounds are minimum and maximum value of the population!">qbounds</a> ( vec &lb, vec &ub, <span class="keywordtype">double</span> perc=0.95 )<span class="keyword"> const</span> |
| 711 | <a name="l00939"></a>00939 <span class="keyword"> </span>{ |
| 712 | <a name="l00940"></a>00940 <span class="comment">// lb in inf so than it will be pushed below;</span> |
| 713 | <a name="l00941"></a>00941 lb.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 714 | <a name="l00942"></a>00942 ub.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 715 | <a name="l00943"></a>00943 lb = std::numeric_limits<double>::infinity(); |
| 716 | <a name="l00944"></a>00944 ub = -std::numeric_limits<double>::infinity(); |
| 717 | <a name="l00945"></a>00945 <span class="keywordtype">int</span> j; |
| 718 | <a name="l00946"></a>00946 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) |
| 719 | <a name="l00947"></a>00947 { |
| 720 | <a name="l00948"></a>00948 <span class="keywordflow">for</span> ( j=0;j<<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>; j++ ) |
| 721 | <a name="l00949"></a>00949 { |
| 722 | <a name="l00950"></a>00950 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) <lb ( j ) ) {lb ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} |
| 723 | <a name="l00951"></a>00951 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) >ub ( j ) ) {ub ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} |
| 724 | <a name="l00952"></a>00952 } |
| 725 | <a name="l00953"></a>00953 } |
| 726 | <a name="l00954"></a>00954 } |
| 727 | <a name="l00955"></a>00955 }; |
| 728 | <a name="l00956"></a>00956 |
| 729 | <a name="l00957"></a>00957 |
782 | | <a name="l01012"></a>01012 <span class="keywordflow">return</span> X; |
783 | | <a name="l01013"></a>01013 }; |
784 | | <a name="l01014"></a>01014 |
785 | | <a name="l01015"></a>01015 <span class="comment">// template<class sq_T></span> |
786 | | <a name="l01016"></a>01016 <span class="comment">// double enorm<sq_T>::eval ( const vec &val ) const {</span> |
787 | | <a name="l01017"></a>01017 <span class="comment">// double pdfl,e;</span> |
788 | | <a name="l01018"></a>01018 <span class="comment">// pdfl = evallog ( val );</span> |
789 | | <a name="l01019"></a>01019 <span class="comment">// e = exp ( pdfl );</span> |
790 | | <a name="l01020"></a>01020 <span class="comment">// return e;</span> |
791 | | <a name="l01021"></a>01021 <span class="comment">// };</span> |
792 | | <a name="l01022"></a>01022 |
793 | | <a name="l01023"></a>01023 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
794 | | <a name="l01024"></a><a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3">01024</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">enorm<sq_T>::evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const</span> |
795 | | <a name="l01025"></a>01025 <span class="keyword"> </span>{ |
796 | | <a name="l01026"></a>01026 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
797 | | <a name="l01027"></a>01027 <span class="keywordtype">double</span> tmp=-0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>-val ) );<span class="comment">// - lognc();</span> |
798 | | <a name="l01028"></a>01028 <span class="keywordflow">return</span> tmp; |
799 | | <a name="l01029"></a>01029 }; |
800 | | <a name="l01030"></a>01030 |
801 | | <a name="l01031"></a>01031 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
802 | | <a name="l01032"></a><a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32">01032</a> <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">enorm<sq_T>::lognc</a> ()<span class="keyword"> const</span> |
803 | | <a name="l01033"></a>01033 <span class="keyword"> </span>{ |
804 | | <a name="l01034"></a>01034 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
805 | | <a name="l01035"></a>01035 <span class="keywordtype">double</span> tmp=0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.logdet() ); |
806 | | <a name="l01036"></a>01036 <span class="keywordflow">return</span> tmp; |
807 | | <a name="l01037"></a>01037 }; |
808 | | <a name="l01038"></a>01038 |
809 | | <a name="l01039"></a>01039 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
810 | | <a name="l01040"></a><a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f">01040</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">mlnorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) |
811 | | <a name="l01041"></a>01041 { |
812 | | <a name="l01042"></a>01042 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> ); |
813 | | <a name="l01043"></a>01043 it_assert_debug ( A0.rows() ==R0.rows(),<span class="stringliteral">""</span> ); |
814 | | <a name="l01044"></a>01044 |
815 | | <a name="l01045"></a>01045 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( A0.rows() ),R0 ); |
816 | | <a name="l01046"></a>01046 A = A0; |
817 | | <a name="l01047"></a>01047 mu_const = mu0; |
818 | | <a name="l01048"></a>01048 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=A0.cols(); |
819 | | <a name="l01049"></a>01049 } |
820 | | <a name="l01050"></a>01050 |
821 | | <a name="l01051"></a>01051 <span class="comment">// template<class sq_T></span> |
822 | | <a name="l01052"></a>01052 <span class="comment">// vec mlnorm<sq_T>::samplecond (const vec &cond, double &lik ) {</span> |
823 | | <a name="l01053"></a>01053 <span class="comment">// this->condition ( cond );</span> |
824 | | <a name="l01054"></a>01054 <span class="comment">// vec smp = epdf.sample();</span> |
825 | | <a name="l01055"></a>01055 <span class="comment">// lik = epdf.eval ( smp );</span> |
826 | | <a name="l01056"></a>01056 <span class="comment">// return smp;</span> |
827 | | <a name="l01057"></a>01057 <span class="comment">// }</span> |
828 | | <a name="l01058"></a>01058 |
829 | | <a name="l01059"></a>01059 <span class="comment">// template<class sq_T></span> |
830 | | <a name="l01060"></a>01060 <span class="comment">// mat mlnorm<sq_T>::samplecond (const vec &cond, vec &lik, int n ) {</span> |
831 | | <a name="l01061"></a>01061 <span class="comment">// int i;</span> |
832 | | <a name="l01062"></a>01062 <span class="comment">// int dim = rv.count();</span> |
833 | | <a name="l01063"></a>01063 <span class="comment">// mat Smp ( dim,n );</span> |
834 | | <a name="l01064"></a>01064 <span class="comment">// vec smp ( dim );</span> |
835 | | <a name="l01065"></a>01065 <span class="comment">// this->condition ( cond );</span> |
836 | | <a name="l01066"></a>01066 <span class="comment">//</span> |
837 | | <a name="l01067"></a>01067 <span class="comment">// for ( i=0; i<n; i++ ) {</span> |
838 | | <a name="l01068"></a>01068 <span class="comment">// smp = epdf.sample();</span> |
839 | | <a name="l01069"></a>01069 <span class="comment">// lik ( i ) = epdf.eval ( smp );</span> |
840 | | <a name="l01070"></a>01070 <span class="comment">// Smp.set_col ( i ,smp );</span> |
841 | | <a name="l01071"></a>01071 <span class="comment">// }</span> |
842 | | <a name="l01072"></a>01072 <span class="comment">//</span> |
843 | | <a name="l01073"></a>01073 <span class="comment">// return Smp;</span> |
844 | | <a name="l01074"></a>01074 <span class="comment">// }</span> |
845 | | <a name="l01075"></a>01075 |
846 | | <a name="l01076"></a>01076 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
847 | | <a name="l01077"></a><a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">01077</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">mlnorm<sq_T>::condition</a> ( <span class="keyword">const</span> vec &cond ) |
848 | | <a name="l01078"></a>01078 { |
849 | | <a name="l01079"></a>01079 _mu = A*cond + mu_const; |
850 | | <a name="l01080"></a>01080 <span class="comment">//R is already assigned;</span> |
851 | | <a name="l01081"></a>01081 } |
852 | | <a name="l01082"></a>01082 |
853 | | <a name="l01083"></a>01083 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
854 | | <a name="l01084"></a><a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80">01084</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>* <a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">enorm<sq_T>::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const</span> |
855 | | <a name="l01085"></a>01085 <span class="keyword"> </span>{ |
856 | | <a name="l01086"></a>01086 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(), <span class="stringliteral">"rv description is not assigned"</span> ); |
857 | | <a name="l01087"></a>01087 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
858 | | <a name="l01088"></a>01088 |
859 | | <a name="l01089"></a>01089 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,irvn ); <span class="comment">//select rows and columns of R</span> |
860 | | <a name="l01090"></a>01090 |
861 | | <a name="l01091"></a>01091 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>* tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>; |
862 | | <a name="l01092"></a>01092 tmp-><a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a> ( rvn ); |
863 | | <a name="l01093"></a>01093 tmp-><a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ), Rn ); |
864 | | <a name="l01094"></a>01094 <span class="keywordflow">return</span> tmp; |
865 | | <a name="l01095"></a>01095 } |
866 | | <a name="l01096"></a>01096 |
867 | | <a name="l01097"></a>01097 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
868 | | <a name="l01098"></a><a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26">01098</a> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">enorm<sq_T>::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const</span> |
869 | | <a name="l01099"></a>01099 <span class="keyword"> </span>{ |
870 | | <a name="l01100"></a>01100 |
871 | | <a name="l01101"></a>01101 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(),<span class="stringliteral">"rvs are not assigned"</span> ); |
872 | | <a name="l01102"></a>01102 |
873 | | <a name="l01103"></a>01103 <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvc = <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#aec44dabdf0a6d90fbae95e1356eda39" title="Subtract another variable from the current one.">subt</a> ( rvn ); |
874 | | <a name="l01104"></a>01104 it_assert_debug ( ( rvc.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() +rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ==<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ),<span class="stringliteral">"wrong rvn"</span> ); |
875 | | <a name="l01105"></a>01105 <span class="comment">//Permutation vector of the new R</span> |
876 | | <a name="l01106"></a>01106 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
877 | | <a name="l01107"></a>01107 ivec irvc = rvc.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
878 | | <a name="l01108"></a>01108 ivec perm=concat ( irvn , irvc ); |
879 | | <a name="l01109"></a>01109 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,perm ); |
880 | | <a name="l01110"></a>01110 |
881 | | <a name="l01111"></a>01111 <span class="comment">//fixme - could this be done in general for all sq_T?</span> |
882 | | <a name="l01112"></a>01112 mat S=Rn.to_mat(); |
883 | | <a name="l01113"></a>01113 <span class="comment">//fixme</span> |
884 | | <a name="l01114"></a>01114 <span class="keywordtype">int</span> n=rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>()-1; |
885 | | <a name="l01115"></a>01115 <span class="keywordtype">int</span> end=<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows()-1; |
886 | | <a name="l01116"></a>01116 mat S11 = S.get ( 0,n, 0, n ); |
887 | | <a name="l01117"></a>01117 mat S12 = S.get ( 0, n , rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); |
888 | | <a name="l01118"></a>01118 mat S22 = S.get ( rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end, rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); |
889 | | <a name="l01119"></a>01119 |
890 | | <a name="l01120"></a>01120 vec mu1 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ); |
891 | | <a name="l01121"></a>01121 vec mu2 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvc ); |
892 | | <a name="l01122"></a>01122 mat A=S12*inv ( S22 ); |
893 | | <a name="l01123"></a>01123 sq_T R_n ( S11 - A *S12.T() ); |
894 | | <a name="l01124"></a>01124 |
895 | | <a name="l01125"></a>01125 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a>* tmp=<span class="keyword">new</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a> ( ); |
896 | | <a name="l01126"></a>01126 tmp->set_rv ( rvn ); tmp->set_rvc ( rvc ); |
897 | | <a name="l01127"></a>01127 tmp->set_parameters ( A,mu1-A*mu2,R_n ); |
898 | | <a name="l01128"></a>01128 <span class="keywordflow">return</span> tmp; |
899 | | <a name="l01129"></a>01129 } |
900 | | <a name="l01130"></a>01130 |
901 | | <a name="l01132"></a>01132 |
902 | | <a name="l01133"></a>01133 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
903 | | <a name="l01134"></a>01134 std::ostream &operator<< ( std::ostream &os, mlnorm<sq_T> &ml ) |
904 | | <a name="l01135"></a>01135 { |
905 | | <a name="l01136"></a>01136 os << <span class="stringliteral">"A:"</span><< ml.A<<endl; |
906 | | <a name="l01137"></a>01137 os << <span class="stringliteral">"mu:"</span><< ml.mu_const<<endl; |
907 | | <a name="l01138"></a>01138 os << <span class="stringliteral">"R:"</span> << ml.epdf._R().to_mat() <<endl; |
908 | | <a name="l01139"></a>01139 <span class="keywordflow">return</span> os; |
909 | | <a name="l01140"></a>01140 }; |
910 | | <a name="l01141"></a>01141 |
911 | | <a name="l01142"></a>01142 } |
912 | | <a name="l01143"></a>01143 <span class="preprocessor">#endif //EF_H</span> |
| 783 | <a name="l01012"></a>01012 <span class="comment">// template<class sq_T></span> |
| 784 | <a name="l01013"></a>01013 <span class="comment">// double enorm<sq_T>::eval ( const vec &val ) const {</span> |
| 785 | <a name="l01014"></a>01014 <span class="comment">// double pdfl,e;</span> |
| 786 | <a name="l01015"></a>01015 <span class="comment">// pdfl = evallog ( val );</span> |
| 787 | <a name="l01016"></a>01016 <span class="comment">// e = exp ( pdfl );</span> |
| 788 | <a name="l01017"></a>01017 <span class="comment">// return e;</span> |
| 789 | <a name="l01018"></a>01018 <span class="comment">// };</span> |
| 790 | <a name="l01019"></a>01019 |
| 791 | <a name="l01020"></a>01020 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 792 | <a name="l01021"></a><a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3">01021</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">enorm<sq_T>::evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const</span> |
| 793 | <a name="l01022"></a>01022 <span class="keyword"> </span>{ |
| 794 | <a name="l01023"></a>01023 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
| 795 | <a name="l01024"></a>01024 <span class="keywordtype">double</span> tmp=-0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>-val ) );<span class="comment">// - lognc();</span> |
| 796 | <a name="l01025"></a>01025 <span class="keywordflow">return</span> tmp; |
| 797 | <a name="l01026"></a>01026 }; |
| 798 | <a name="l01027"></a>01027 |
| 799 | <a name="l01028"></a>01028 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 800 | <a name="l01029"></a><a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32">01029</a> <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">enorm<sq_T>::lognc</a> ()<span class="keyword"> const</span> |
| 801 | <a name="l01030"></a>01030 <span class="keyword"> </span>{ |
| 802 | <a name="l01031"></a>01031 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
| 803 | <a name="l01032"></a>01032 <span class="keywordtype">double</span> tmp=0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.logdet() ); |
| 804 | <a name="l01033"></a>01033 <span class="keywordflow">return</span> tmp; |
| 805 | <a name="l01034"></a>01034 }; |
| 806 | <a name="l01035"></a>01035 |
| 807 | <a name="l01036"></a>01036 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 808 | <a name="l01037"></a><a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f">01037</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">mlnorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) |
| 809 | <a name="l01038"></a>01038 { |
| 810 | <a name="l01039"></a>01039 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> ); |
| 811 | <a name="l01040"></a>01040 it_assert_debug ( A0.rows() ==R0.rows(),<span class="stringliteral">""</span> ); |
| 812 | <a name="l01041"></a>01041 |
| 813 | <a name="l01042"></a>01042 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( A0.rows() ),R0 ); |
| 814 | <a name="l01043"></a>01043 A = A0; |
| 815 | <a name="l01044"></a>01044 mu_const = mu0; |
| 816 | <a name="l01045"></a>01045 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=A0.cols(); |
| 817 | <a name="l01046"></a>01046 } |
| 818 | <a name="l01047"></a>01047 |
| 819 | <a name="l01048"></a>01048 <span class="comment">// template<class sq_T></span> |
| 820 | <a name="l01049"></a>01049 <span class="comment">// vec mlnorm<sq_T>::samplecond (const vec &cond, double &lik ) {</span> |
| 821 | <a name="l01050"></a>01050 <span class="comment">// this->condition ( cond );</span> |
| 822 | <a name="l01051"></a>01051 <span class="comment">// vec smp = epdf.sample();</span> |
| 823 | <a name="l01052"></a>01052 <span class="comment">// lik = epdf.eval ( smp );</span> |
| 824 | <a name="l01053"></a>01053 <span class="comment">// return smp;</span> |
| 825 | <a name="l01054"></a>01054 <span class="comment">// }</span> |
| 826 | <a name="l01055"></a>01055 |
| 827 | <a name="l01056"></a>01056 <span class="comment">// template<class sq_T></span> |
| 828 | <a name="l01057"></a>01057 <span class="comment">// mat mlnorm<sq_T>::samplecond (const vec &cond, vec &lik, int n ) {</span> |
| 829 | <a name="l01058"></a>01058 <span class="comment">// int i;</span> |
| 830 | <a name="l01059"></a>01059 <span class="comment">// int dim = rv.count();</span> |
| 831 | <a name="l01060"></a>01060 <span class="comment">// mat Smp ( dim,n );</span> |
| 832 | <a name="l01061"></a>01061 <span class="comment">// vec smp ( dim );</span> |
| 833 | <a name="l01062"></a>01062 <span class="comment">// this->condition ( cond );</span> |
| 834 | <a name="l01063"></a>01063 <span class="comment">//</span> |
| 835 | <a name="l01064"></a>01064 <span class="comment">// for ( i=0; i<n; i++ ) {</span> |
| 836 | <a name="l01065"></a>01065 <span class="comment">// smp = epdf.sample();</span> |
| 837 | <a name="l01066"></a>01066 <span class="comment">// lik ( i ) = epdf.eval ( smp );</span> |
| 838 | <a name="l01067"></a>01067 <span class="comment">// Smp.set_col ( i ,smp );</span> |
| 839 | <a name="l01068"></a>01068 <span class="comment">// }</span> |
| 840 | <a name="l01069"></a>01069 <span class="comment">//</span> |
| 841 | <a name="l01070"></a>01070 <span class="comment">// return Smp;</span> |
| 842 | <a name="l01071"></a>01071 <span class="comment">// }</span> |
| 843 | <a name="l01072"></a>01072 |
| 844 | <a name="l01073"></a>01073 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 845 | <a name="l01074"></a><a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">01074</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">mlnorm<sq_T>::condition</a> ( <span class="keyword">const</span> vec &cond ) |
| 846 | <a name="l01075"></a>01075 { |
| 847 | <a name="l01076"></a>01076 _mu = A*cond + mu_const; |
| 848 | <a name="l01077"></a>01077 <span class="comment">//R is already assigned;</span> |
| 849 | <a name="l01078"></a>01078 } |
| 850 | <a name="l01079"></a>01079 |
| 851 | <a name="l01080"></a>01080 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 852 | <a name="l01081"></a><a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80">01081</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>* <a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">enorm<sq_T>::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const</span> |
| 853 | <a name="l01082"></a>01082 <span class="keyword"> </span>{ |
| 854 | <a name="l01083"></a>01083 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(), <span class="stringliteral">"rv description is not assigned"</span> ); |
| 855 | <a name="l01084"></a>01084 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
| 856 | <a name="l01085"></a>01085 |
| 857 | <a name="l01086"></a>01086 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,irvn ); <span class="comment">//select rows and columns of R</span> |
| 858 | <a name="l01087"></a>01087 |
| 859 | <a name="l01088"></a>01088 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>* tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>; |
| 860 | <a name="l01089"></a>01089 tmp-><a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a> ( rvn ); |
| 861 | <a name="l01090"></a>01090 tmp-><a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ), Rn ); |
| 862 | <a name="l01091"></a>01091 <span class="keywordflow">return</span> tmp; |
| 863 | <a name="l01092"></a>01092 } |
| 864 | <a name="l01093"></a>01093 |
| 865 | <a name="l01094"></a>01094 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 866 | <a name="l01095"></a><a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26">01095</a> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">enorm<sq_T>::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const</span> |
| 867 | <a name="l01096"></a>01096 <span class="keyword"> </span>{ |
| 868 | <a name="l01097"></a>01097 |
| 869 | <a name="l01098"></a>01098 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(),<span class="stringliteral">"rvs are not assigned"</span> ); |
| 870 | <a name="l01099"></a>01099 |
| 871 | <a name="l01100"></a>01100 <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvc = <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#aec44dabdf0a6d90fbae95e1356eda39" title="Subtract another variable from the current one.">subt</a> ( rvn ); |
| 872 | <a name="l01101"></a>01101 it_assert_debug ( ( rvc.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() +rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ==<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ),<span class="stringliteral">"wrong rvn"</span> ); |
| 873 | <a name="l01102"></a>01102 <span class="comment">//Permutation vector of the new R</span> |
| 874 | <a name="l01103"></a>01103 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
| 875 | <a name="l01104"></a>01104 ivec irvc = rvc.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
| 876 | <a name="l01105"></a>01105 ivec perm=concat ( irvn , irvc ); |
| 877 | <a name="l01106"></a>01106 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,perm ); |
| 878 | <a name="l01107"></a>01107 |
| 879 | <a name="l01108"></a>01108 <span class="comment">//fixme - could this be done in general for all sq_T?</span> |
| 880 | <a name="l01109"></a>01109 mat S=Rn.to_mat(); |
| 881 | <a name="l01110"></a>01110 <span class="comment">//fixme</span> |
| 882 | <a name="l01111"></a>01111 <span class="keywordtype">int</span> n=rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>()-1; |
| 883 | <a name="l01112"></a>01112 <span class="keywordtype">int</span> end=<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows()-1; |
| 884 | <a name="l01113"></a>01113 mat S11 = S.get ( 0,n, 0, n ); |
| 885 | <a name="l01114"></a>01114 mat S12 = S.get ( 0, n , rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); |
| 886 | <a name="l01115"></a>01115 mat S22 = S.get ( rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end, rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); |
| 887 | <a name="l01116"></a>01116 |
| 888 | <a name="l01117"></a>01117 vec mu1 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ); |
| 889 | <a name="l01118"></a>01118 vec mu2 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvc ); |
| 890 | <a name="l01119"></a>01119 mat A=S12*inv ( S22 ); |
| 891 | <a name="l01120"></a>01120 sq_T R_n ( S11 - A *S12.T() ); |
| 892 | <a name="l01121"></a>01121 |
| 893 | <a name="l01122"></a>01122 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a>* tmp=<span class="keyword">new</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a> ( ); |
| 894 | <a name="l01123"></a>01123 tmp->set_rv ( rvn ); tmp->set_rvc ( rvc ); |
| 895 | <a name="l01124"></a>01124 tmp->set_parameters ( A,mu1-A*mu2,R_n ); |
| 896 | <a name="l01125"></a>01125 <span class="keywordflow">return</span> tmp; |
| 897 | <a name="l01126"></a>01126 } |
| 898 | <a name="l01127"></a>01127 |
| 899 | <a name="l01129"></a>01129 |
| 900 | <a name="l01130"></a>01130 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 901 | <a name="l01131"></a>01131 std::ostream &operator<< ( std::ostream &os, mlnorm<sq_T> &ml ) |
| 902 | <a name="l01132"></a>01132 { |
| 903 | <a name="l01133"></a>01133 os << <span class="stringliteral">"A:"</span><< ml.A<<endl; |
| 904 | <a name="l01134"></a>01134 os << <span class="stringliteral">"mu:"</span><< ml.mu_const<<endl; |
| 905 | <a name="l01135"></a>01135 os << <span class="stringliteral">"R:"</span> << ml.epdf._R().to_mat() <<endl; |
| 906 | <a name="l01136"></a>01136 <span class="keywordflow">return</span> os; |
| 907 | <a name="l01137"></a>01137 }; |
| 908 | <a name="l01138"></a>01138 |
| 909 | <a name="l01139"></a>01139 } |
| 910 | <a name="l01140"></a>01140 <span class="preprocessor">#endif //EF_H</span> |