50 | | <a name="l00056"></a>00056 <span class="keywordtype">int</span> dimx, dimy, dimu; |
51 | | <a name="l00057"></a>00057 mat A, B, C, D; |
52 | | <a name="l00058"></a>00058 sq_T R, Q; |
53 | | <a name="l00059"></a>00059 |
54 | | <a name="l00060"></a>00060 <span class="comment">//cache</span> |
55 | | <a name="l00061"></a>00061 mat _K; |
56 | | <a name="l00062"></a>00062 vec _yp; |
57 | | <a name="l00063"></a>00063 sq_T _Ry,_iRy; |
58 | | <a name="l00064"></a>00064 <span class="keyword">public</span>: |
59 | | <a name="l00065"></a>00065 <span class="comment">//posterior </span> |
60 | | <a name="l00067"></a><a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed">00067</a> <span class="comment"></span> vec <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>; |
61 | | <a name="l00069"></a><a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3">00069</a> sq_T <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>; |
62 | | <a name="l00070"></a>00070 |
63 | | <a name="l00071"></a>00071 <span class="keyword">public</span>: |
64 | | <a name="l00073"></a>00073 <a class="code" href="classKalman.html#96958a5ebfa966d892137987f265083a" title="Default constructor.">Kalman</a> (<span class="keywordtype">int</span> dimx, <span class="keywordtype">int</span> dimu, <span class="keywordtype">int</span> dimy); |
65 | | <a name="l00075"></a>00075 <a class="code" href="classKalman.html#96958a5ebfa966d892137987f265083a" title="Default constructor.">Kalman</a> ( mat A0, mat B0, mat C0, mat D0, sq_T R0, sq_T Q0, sq_T P0, vec mu0 ); |
66 | | <a name="l00077"></a>00077 <span class="keywordtype">void</span> <a class="code" href="classKalman.html#e945d9205ca14acbd83ba80ea6f72b8e" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a>(<span class="keyword">const</span> vec &dt, <span class="keywordtype">bool</span> <a class="code" href="classBM.html#bf6fb59b30141074f8ee1e2f43d03129" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>=<span class="keyword">true</span>); |
67 | | <a name="l00078"></a>00078 |
68 | | <a name="l00079"></a>00079 <span class="keyword">friend</span> std::ostream &operator<< ( std::ostream &os, <span class="keyword">const</span> <a class="code" href="classKalmanFull.html" title="Basic Kalman filter with full matrices (education purpose only)! Will be deleted...">KalmanFull</a> &kf ); |
69 | | <a name="l00080"></a>00080 |
70 | | <a name="l00081"></a>00081 }; |
71 | | <a name="l00082"></a>00082 |
72 | | <a name="l00088"></a>00088 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
73 | | <a name="l00089"></a><a class="code" href="classEKF.html">00089</a> <span class="keyword">class </span><a class="code" href="classEKF.html" title="Extended Kalman Filter.">EKF</a> : <span class="keyword">public</span> <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><fsqmat> { |
74 | | <a name="l00091"></a>00091 <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* pfxu; |
75 | | <a name="l00093"></a>00093 <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* phxu; |
76 | | <a name="l00094"></a>00094 <span class="keyword">public</span>: |
77 | | <a name="l00096"></a>00096 <a class="code" href="classEKF.html#003687c6cf2a01be90a00e2c99e3863e" title="Default constructor.">EKF</a> (<a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* pfxu, <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* phxu, sq_T Q0, sq_T R0, vec mu0, mat P0); |
78 | | <a name="l00098"></a>00098 <span class="keywordtype">void</span> <a class="code" href="classEKF.html#fb0a08463f14e5584344ea2df99fe747" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a>(<span class="keyword">const</span> vec &dt, <span class="keywordtype">bool</span> <a class="code" href="classBM.html#bf6fb59b30141074f8ee1e2f43d03129" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>=<span class="keyword">true</span>); |
79 | | <a name="l00099"></a>00099 }; |
80 | | <a name="l00100"></a>00100 |
81 | | <a name="l00102"></a>00102 |
82 | | <a name="l00103"></a>00103 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
83 | | <a name="l00104"></a><a class="code" href="classKalman.html#96958a5ebfa966d892137987f265083a">00104</a> <a class="code" href="classKalman.html#96958a5ebfa966d892137987f265083a" title="Default constructor.">Kalman<sq_T>::Kalman</a>( <span class="keywordtype">int</span> dx, <span class="keywordtype">int</span> du, <span class="keywordtype">int</span> dy): <a class="code" href="classBM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a>(), dimx(dx),dimy(dy),dimu(du){ |
84 | | <a name="l00105"></a>00105 A = mat(dimx,dimx); |
85 | | <a name="l00106"></a>00106 B = mat(dimx,dimu); |
86 | | <a name="l00107"></a>00107 C = mat(dimy,dimx); |
87 | | <a name="l00108"></a>00108 D = mat(dimy,dimu); |
88 | | <a name="l00109"></a>00109 |
89 | | <a name="l00110"></a>00110 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> = vec(dimx); |
90 | | <a name="l00111"></a>00111 <span class="comment">//TODO Initialize the rest?</span> |
91 | | <a name="l00112"></a>00112 }; |
92 | | <a name="l00113"></a>00113 |
93 | | <a name="l00114"></a>00114 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
94 | | <a name="l00115"></a><a class="code" href="classKalman.html#83118f4bd2ecbc70b03cfd573088ed6f">00115</a> <a class="code" href="classKalman.html#96958a5ebfa966d892137987f265083a" title="Default constructor.">Kalman<sq_T>::Kalman</a>(<span class="keyword">const</span> mat A0,<span class="keyword">const</span> mat B0, <span class="keyword">const</span> mat C0, <span class="keyword">const</span> mat D0, <span class="keyword">const</span> sq_T R0, <span class="keyword">const</span> sq_T Q0, <span class="keyword">const</span> sq_T P0, <span class="keyword">const</span> vec mu0 ): <a class="code" href="classBM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a>() { |
95 | | <a name="l00116"></a>00116 dimx = A0.rows(); |
96 | | <a name="l00117"></a>00117 dimu = B0.cols(); |
97 | | <a name="l00118"></a>00118 dimy = C0.rows(); |
98 | | <a name="l00119"></a>00119 |
99 | | <a name="l00120"></a>00120 it_assert_debug( A0.cols()==dimx, <span class="stringliteral">"Kalman: A is not square"</span> ); |
100 | | <a name="l00121"></a>00121 it_assert_debug( B0.rows()==dimx, <span class="stringliteral">"Kalman: B is not compatible"</span> ); |
101 | | <a name="l00122"></a>00122 it_assert_debug( C0.cols()==dimx, <span class="stringliteral">"Kalman: C is not square"</span> ); |
102 | | <a name="l00123"></a>00123 it_assert_debug(( D0.rows()==dimy ) || ( D0.cols()==dimu ), <span class="stringliteral">"Kalman: D is not compatible"</span> ); |
103 | | <a name="l00124"></a>00124 it_assert_debug(( R0.cols()==dimy ) || ( R0.rows()==dimy ), <span class="stringliteral">"Kalman: R is not compatible"</span> ); |
104 | | <a name="l00125"></a>00125 it_assert_debug(( Q0.cols()==dimx ) || ( Q0.rows()==dimx ), <span class="stringliteral">"Kalman: Q is not compatible"</span> ); |
105 | | <a name="l00126"></a>00126 |
106 | | <a name="l00127"></a>00127 A = A0; |
107 | | <a name="l00128"></a>00128 B = B0; |
108 | | <a name="l00129"></a>00129 C = C0; |
109 | | <a name="l00130"></a>00130 D = D0; |
110 | | <a name="l00131"></a>00131 R = R0; |
111 | | <a name="l00132"></a>00132 Q = Q0; |
112 | | <a name="l00133"></a>00133 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> = mu0; |
113 | | <a name="l00134"></a>00134 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a> = P0; |
| 50 | <a name="l00056"></a>00056 <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvy; |
| 51 | <a name="l00057"></a>00057 <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvu; |
| 52 | <a name="l00058"></a>00058 <span class="keywordtype">int</span> dimx, dimy, dimu; |
| 53 | <a name="l00059"></a>00059 mat A, B, C, D; |
| 54 | <a name="l00060"></a>00060 sq_T R, Q; |
| 55 | <a name="l00061"></a>00061 |
| 56 | <a name="l00063"></a><a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424">00063</a> <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>; |
| 57 | <a name="l00065"></a><a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f">00065</a> <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>; |
| 58 | <a name="l00066"></a>00066 |
| 59 | <a name="l00067"></a>00067 mat _K; |
| 60 | <a name="l00068"></a>00068 <span class="comment">//cache of fy</span> |
| 61 | <a name="l00069"></a>00069 vec* _yp; |
| 62 | <a name="l00070"></a>00070 sq_T* _Ry,*_iRy; |
| 63 | <a name="l00071"></a>00071 <span class="comment">//cache of est</span> |
| 64 | <a name="l00072"></a>00072 vec* _mu; |
| 65 | <a name="l00073"></a>00073 sq_T* _P, *_iP; |
| 66 | <a name="l00074"></a>00074 |
| 67 | <a name="l00075"></a>00075 <span class="keyword">public</span>: |
| 68 | <a name="l00077"></a>00077 <a class="code" href="classKalman.html#3d56b0a97b8c1e25fdd3b10eef3c2ad3" title="Default constructor.">Kalman</a> (<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx0, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvy0, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvu0); |
| 69 | <a name="l00079"></a>00079 <a class="code" href="classKalman.html#3d56b0a97b8c1e25fdd3b10eef3c2ad3" title="Default constructor.">Kalman</a> (<span class="keyword">const</span> <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman<sq_T></a> &K0); |
| 70 | <a name="l00081"></a>00081 <span class="keywordtype">void</span> <a class="code" href="classKalman.html#239b28a0380946f5749b2f8d2807f93a" title="Set parameters with check of relevance.">set_parameters</a> (<span class="keyword">const</span> mat &A0,<span class="keyword">const</span> mat &B0,<span class="keyword">const</span> mat &C0,<span class="keyword">const</span> mat &D0,<span class="keyword">const</span> sq_T &R0,<span class="keyword">const</span> sq_T &Q0); |
| 71 | <a name="l00083"></a><a class="code" href="classKalman.html#80bcf29466d9a9dd2b8f74699807d0c0">00083</a> <span class="keywordtype">void</span> <a class="code" href="classKalman.html#80bcf29466d9a9dd2b8f74699807d0c0" title="Set estimate values, used e.g. in initialization.">set_est</a>(<span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &P0 ){<a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>.set_parameters(mu0,P0);}; |
| 72 | <a name="l00085"></a>00085 <span class="keywordtype">void</span> <a class="code" href="classKalman.html#7750ffd73f261828a32c18aaeb65c75c" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a>(<span class="keyword">const</span> vec &dt); |
| 73 | <a name="l00086"></a><a class="code" href="classKalman.html#a213c57aef55b2645e550bed81cfc0d4">00086</a> <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& <a class="code" href="classKalman.html#a213c57aef55b2645e550bed81cfc0d4" title="Returns a pointer to the epdf representing posterior density on parameters. Use with...">_epdf</a>(){<span class="keywordflow">return</span> <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>;} |
| 74 | <a name="l00087"></a>00087 <span class="comment">// friend std::ostream &operator<< ( std::ostream &os, const Kalman<sq_T> &kf );</span> |
| 75 | <a name="l00088"></a>00088 |
| 76 | <a name="l00090"></a>00090 }; |
| 77 | <a name="l00091"></a>00091 |
| 78 | <a name="l00097"></a>00097 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 79 | <a name="l00098"></a><a class="code" href="classEKF.html">00098</a> <span class="keyword">class </span><a class="code" href="classEKF.html" title="Extended Kalman Filter.">EKF</a> : <span class="keyword">public</span> <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><ldmat> { |
| 80 | <a name="l00100"></a>00100 <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* pfxu; |
| 81 | <a name="l00102"></a>00102 <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* phxu; |
| 82 | <a name="l00103"></a>00103 <span class="keyword">public</span>: |
| 83 | <a name="l00105"></a>00105 <a class="code" href="classEKF.html#ea4f3254cacf0a92d2a820b1201d049e" title="Default constructor.">EKF</a> (<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvy, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvu); |
| 84 | <a name="l00106"></a>00106 <span class="keywordtype">void</span> set_parameters(<a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* pfxu, <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* phxu, <span class="keyword">const</span> sq_T Q0, <span class="keyword">const</span> sq_T R0); |
| 85 | <a name="l00108"></a>00108 <span class="keywordtype">void</span> <a class="code" href="classEKF.html#c79c62c9b3e0b56b3aaa1b6f1d9a7af7" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a>(<span class="keyword">const</span> vec &dt); |
| 86 | <a name="l00109"></a>00109 }; |
| 87 | <a name="l00110"></a>00110 |
| 88 | <a name="l00114"></a><a class="code" href="classKFcondQR.html">00114</a> <span class="keyword">class </span><a class="code" href="classKFcondQR.html" title="Kalman Filter with conditional diagonal matrices R and Q.">KFcondQR</a> : <span class="keyword">public</span> <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><ldmat>, <span class="keyword">public</span> <a class="code" href="classBMcond.html" title="Conditional Bayesian Filter.">BMcond</a> { |
| 89 | <a name="l00115"></a>00115 <span class="comment">//protected:</span> |
| 90 | <a name="l00116"></a>00116 <span class="keyword">public</span>: |
| 91 | <a name="l00117"></a>00117 <a class="code" href="classKFcondQR.html" title="Kalman Filter with conditional diagonal matrices R and Q.">KFcondQR</a>(<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvy, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvu): <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman<ldmat></a>(rvx, rvy,rvu){}; |
| 92 | <a name="l00118"></a>00118 <span class="keywordtype">void</span> <a class="code" href="classKFcondQR.html#c9ecf292a85327aa6309c9fd70ceb606" title="Substitute val for rvc.">condition</a>(<span class="keyword">const</span> vec &RQ); |
| 93 | <a name="l00119"></a>00119 }; |
| 94 | <a name="l00120"></a>00120 |
| 95 | <a name="l00122"></a>00122 |
| 96 | <a name="l00123"></a>00123 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 97 | <a name="l00124"></a><a class="code" href="classKalman.html#ce38e31810aea4db45a83ad05eaba009">00124</a> <a class="code" href="classKalman.html#3d56b0a97b8c1e25fdd3b10eef3c2ad3" title="Default constructor.">Kalman<sq_T>::Kalman</a>(<span class="keyword">const</span> <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman<sq_T></a> &K0): <a class="code" href="classBM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a>(K0.rv),rvy(K0.rvy),rvu(K0.rvu), |
| 98 | <a name="l00125"></a>00125 dimx(rv.count()), dimy(rvy.count()),dimu(rvu.count()), |
| 99 | <a name="l00126"></a>00126 A(dimx,dimx), B(dimx,dimu), C(dimy,dimx), D(dimy,dimu),est(rv), fy(rvy){ |
| 100 | <a name="l00127"></a>00127 this-><a class="code" href="classKalman.html#239b28a0380946f5749b2f8d2807f93a" title="Set parameters with check of relevance.">set_parameters</a>(K0.<a class="code" href="classKalman.html#5e02efe86ee91e9c74b93b425fe060b9">A</a>, K0.<a class="code" href="classKalman.html#dc87704284a6c0bca13bf51f4345a50a">B</a>, K0.<a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13">C</a>, K0.<a class="code" href="classKalman.html#d69f774ba3335c970c1c5b1d182f4dd1">D</a>, K0.<a class="code" href="classKalman.html#11d171dc0e0ab111c56a70f98b97b3ec">R</a>, K0.<a class="code" href="classKalman.html#9b69015c800eb93f3ee49da23a6f55d9">Q</a>); |
| 101 | <a name="l00128"></a>00128 <span class="comment">//reset copy values in pointers</span> |
| 102 | <a name="l00129"></a>00129 *_mu = *K0.<a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734">_mu</a>; |
| 103 | <a name="l00130"></a>00130 *_P = *K0.<a class="code" href="classKalman.html#b3388218567128a797e69b109138271d">_P</a>; |
| 104 | <a name="l00131"></a>00131 *_iP = *K0.<a class="code" href="classKalman.html#b8bb7f870d69993493ba67ce40e7c3e9">_iP</a>; |
| 105 | <a name="l00132"></a>00132 *_yp = *K0.<a class="code" href="classKalman.html#5188eb0329f8561f0b357af329769bf8">_yp</a>; |
| 106 | <a name="l00133"></a>00133 *_iRy = *K0.<a class="code" href="classKalman.html#fbbdf31365f5a5674099599200ea193b">_iRy</a>; |
| 107 | <a name="l00134"></a>00134 *_Ry = *K0.<a class="code" href="classKalman.html#e17dd745daa8a958035a334a56fa4674">_Ry</a>; |
115 | | <a name="l00136"></a>00136 <span class="comment">//Fixme should we assign cache??</span> |
116 | | <a name="l00137"></a>00137 _iRy = eye(dimy); <span class="comment">// needed in inv(_iRy)</span> |
117 | | <a name="l00138"></a>00138 _Ry = eye(dimy); <span class="comment">// needed in inv(_iRy)</span> |
118 | | <a name="l00139"></a>00139 } |
119 | | <a name="l00140"></a>00140 |
120 | | <a name="l00141"></a>00141 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
121 | | <a name="l00142"></a><a class="code" href="classKalman.html#e945d9205ca14acbd83ba80ea6f72b8e">00142</a> <span class="keywordtype">void</span> <a class="code" href="classKalman.html#e945d9205ca14acbd83ba80ea6f72b8e" title="Here dt = [yt;ut] of appropriate dimensions.">Kalman<sq_T>::bayes</a>( <span class="keyword">const</span> vec &dt , <span class="keywordtype">bool</span> <a class="code" href="classBM.html#bf6fb59b30141074f8ee1e2f43d03129" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) { |
122 | | <a name="l00143"></a>00143 it_assert_debug( dt.length()==( dimy+dimu ),<span class="stringliteral">"KalmanFull::bayes wrong size of dt"</span> ); |
123 | | <a name="l00144"></a>00144 |
124 | | <a name="l00145"></a>00145 vec u = dt.get( dimy,dimy+dimu-1 ); |
125 | | <a name="l00146"></a>00146 vec y = dt.get( 0,dimy-1 ); |
126 | | <a name="l00147"></a>00147 <span class="comment">//Time update</span> |
127 | | <a name="l00148"></a>00148 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> = A*<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> + B*u; |
128 | | <a name="l00149"></a>00149 <span class="comment">//P = A*P*A.transpose() + Q; in sq_T</span> |
129 | | <a name="l00150"></a>00150 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.mult_sym( A ); |
130 | | <a name="l00151"></a>00151 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>+=Q; |
131 | | <a name="l00152"></a>00152 |
132 | | <a name="l00153"></a>00153 <span class="comment">//Data update</span> |
133 | | <a name="l00154"></a>00154 <span class="comment">//_Ry = C*P*C.transpose() + R; in sq_T</span> |
134 | | <a name="l00155"></a>00155 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.mult_sym( C, _Ry); |
135 | | <a name="l00156"></a>00156 _Ry+=R; |
136 | | <a name="l00157"></a>00157 |
137 | | <a name="l00158"></a>00158 mat Pfull = <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.to_mat(); |
138 | | <a name="l00159"></a>00159 |
139 | | <a name="l00160"></a>00160 _Ry.inv( _iRy ); <span class="comment">// result is in _iRy;</span> |
140 | | <a name="l00161"></a>00161 _K = Pfull*C.transpose()*(_iRy.to_mat()); |
141 | | <a name="l00162"></a>00162 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a> -= _K*C*Pfull; <span class="comment">// P = P -KCP;</span> |
142 | | <a name="l00163"></a>00163 _yp = y-C*<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>-D*u; <span class="comment">//y prediction</span> |
143 | | <a name="l00164"></a>00164 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> += _K*( _yp ); |
144 | | <a name="l00165"></a>00165 |
145 | | <a name="l00166"></a>00166 <span class="keywordflow">if</span> (evalll==<span class="keyword">true</span>) { |
146 | | <a name="l00167"></a>00167 <a class="code" href="classBM.html#5623fef6572a08c2b53b8c87b82dc979" title="Logarithm of marginalized data likelihood.">ll</a>+= -0.5*(_Ry.cols()*0.79817986835811504957 \ |
147 | | <a name="l00168"></a>00168 +_Ry.logdet() +_iRy.qform(_yp)); |
148 | | <a name="l00169"></a>00169 } |
149 | | <a name="l00170"></a>00170 }; |
150 | | <a name="l00171"></a>00171 |
151 | | <a name="l00172"></a>00172 <span class="comment">//TODO why not const pointer??</span> |
152 | | <a name="l00173"></a>00173 |
153 | | <a name="l00174"></a>00174 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
154 | | <a name="l00175"></a><a class="code" href="classEKF.html#003687c6cf2a01be90a00e2c99e3863e">00175</a> <a class="code" href="classEKF.html#003687c6cf2a01be90a00e2c99e3863e" title="Default constructor.">EKF<sq_T>::EKF</a>( <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* pfxu0, <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* phxu0, sq_T Q0, sq_T R0, vec mu0, mat P0): pfxu(pfxu0), phxu(phxu0), <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><<a class="code" href="classfsqmat.html" title="Fake sqmat. This class maps sqmat operations to operations on full matrix.">fsqmat</a>>(pfxu0->_dimx(),pfxu0->_dimu(),phxu0->_dimy()) { |
155 | | <a name="l00176"></a>00176 |
156 | | <a name="l00177"></a>00177 <span class="comment">//initialize matrices A C, later, these will be only updated!</span> |
157 | | <a name="l00178"></a>00178 pfxu-><a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,zeros(dimu),A,<span class="keyword">true</span>); |
158 | | <a name="l00179"></a>00179 pfxu-><a class="code" href="classdiffbifn.html#1978bafd7909d15c139a08c495c24aa0" title="Evaluates and writes result into A .">dfdu_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,zeros(dimu),B,<span class="keyword">true</span>); |
159 | | <a name="l00180"></a>00180 phxu-><a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,zeros(dimu),C,<span class="keyword">true</span>); |
160 | | <a name="l00181"></a>00181 phxu-><a class="code" href="classdiffbifn.html#1978bafd7909d15c139a08c495c24aa0" title="Evaluates and writes result into A .">dfdu_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,zeros(dimu),D,<span class="keyword">true</span>); |
161 | | <a name="l00182"></a>00182 |
162 | | <a name="l00183"></a>00183 |
163 | | <a name="l00184"></a>00184 R = R0; |
164 | | <a name="l00185"></a>00185 Q = Q0; |
165 | | <a name="l00186"></a>00186 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> = mu0; |
166 | | <a name="l00187"></a>00187 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a> = P0; |
167 | | <a name="l00188"></a>00188 |
168 | | <a name="l00189"></a>00189 <span class="keyword">using</span> std::cout; |
169 | | <a name="l00190"></a>00190 cout<<A<<std::endl; |
170 | | <a name="l00191"></a>00191 cout<<B<<std::endl; |
171 | | <a name="l00192"></a>00192 cout<<C<<std::endl; |
172 | | <a name="l00193"></a>00193 cout<<D<<std::endl; |
173 | | <a name="l00194"></a>00194 |
174 | | <a name="l00195"></a>00195 } |
175 | | <a name="l00196"></a>00196 |
176 | | <a name="l00197"></a>00197 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
177 | | <a name="l00198"></a><a class="code" href="classEKF.html#fb0a08463f14e5584344ea2df99fe747">00198</a> <span class="keywordtype">void</span> <a class="code" href="classEKF.html#fb0a08463f14e5584344ea2df99fe747" title="Here dt = [yt;ut] of appropriate dimensions.">EKF<sq_T>::bayes</a>( <span class="keyword">const</span> vec &dt , <span class="keywordtype">bool</span> <a class="code" href="classBM.html#bf6fb59b30141074f8ee1e2f43d03129" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) { |
178 | | <a name="l00199"></a>00199 it_assert_debug( dt.length()==( dimy+dimu ),<span class="stringliteral">"KalmanFull::bayes wrong size of dt"</span> ); |
179 | | <a name="l00200"></a>00200 |
180 | | <a name="l00201"></a>00201 vec u = dt.get( dimy,dimy+dimu-1 ); |
181 | | <a name="l00202"></a>00202 vec y = dt.get( 0,dimy-1 ); |
182 | | <a name="l00203"></a>00203 <span class="comment">//Time update</span> |
183 | | <a name="l00204"></a>00204 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> = pfxu-><a class="code" href="classdiffbifn.html#ad7673e16aa1a046b131b24c731c4632" title="Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ).">eval</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>, u); |
184 | | <a name="l00205"></a>00205 pfxu-><a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,u,A,<span class="keyword">false</span>); <span class="comment">//update A by a derivative of fx</span> |
185 | | <a name="l00206"></a>00206 |
186 | | <a name="l00207"></a>00207 <span class="comment">//P = A*P*A.transpose() + Q; in sq_T</span> |
187 | | <a name="l00208"></a>00208 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.<a class="code" href="classfsqmat.html#acc5d2d0a243f1de6d0106065f01f518" title="Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C&#39;$.">mult_sym</a>( A ); |
188 | | <a name="l00209"></a>00209 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>+=Q; |
189 | | <a name="l00210"></a>00210 |
190 | | <a name="l00211"></a>00211 <span class="comment">//Data update</span> |
191 | | <a name="l00212"></a>00212 phxu-><a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,u,C,<span class="keyword">false</span>); <span class="comment">//update C by a derivative hx</span> |
192 | | <a name="l00213"></a>00213 <span class="comment">//_Ry = C*P*C.transpose() + R; in sq_T</span> |
193 | | <a name="l00214"></a>00214 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.<a class="code" href="classfsqmat.html#acc5d2d0a243f1de6d0106065f01f518" title="Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C&#39;$.">mult_sym</a>( C, _Ry); |
194 | | <a name="l00215"></a>00215 _Ry+=R; |
195 | | <a name="l00216"></a>00216 |
196 | | <a name="l00217"></a>00217 mat Pfull = <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a>.<a class="code" href="classfsqmat.html#cedf4f048309056f4262c930914dfda8" title="Conversion to full matrix.">to_mat</a>(); |
197 | | <a name="l00218"></a>00218 |
198 | | <a name="l00219"></a>00219 _Ry.<a class="code" href="classfsqmat.html#9fa853e1ca28f2a1a1c43377e798ecb1" title="Matrix inversion preserving the chosen form.">inv</a>( _iRy ); <span class="comment">// result is in _iRy;</span> |
199 | | <a name="l00220"></a>00220 _K = Pfull*C.transpose()*(_iRy.<a class="code" href="classfsqmat.html#cedf4f048309056f4262c930914dfda8" title="Conversion to full matrix.">to_mat</a>()); |
200 | | <a name="l00221"></a>00221 <a class="code" href="classKalman.html#188cd5ac1c9e496b1a371eb7c57c97d3" title="Mean value of the posterior density.">P</a> -= _K*C*Pfull; <span class="comment">// P = P -KCP;</span> |
201 | | <a name="l00222"></a>00222 _yp = y-phxu-><a class="code" href="classdiffbifn.html#ad7673e16aa1a046b131b24c731c4632" title="Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ).">eval</a>(<a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a>,u); <span class="comment">//y prediction</span> |
202 | | <a name="l00223"></a>00223 <a class="code" href="classKalman.html#3063a3f58a74cea672ae889971012eed" title="Mean value of the posterior density.">mu</a> += _K*( _yp ); |
203 | | <a name="l00224"></a>00224 |
204 | | <a name="l00225"></a>00225 <span class="keywordflow">if</span> (evalll==<span class="keyword">true</span>) { |
205 | | <a name="l00226"></a>00226 <a class="code" href="classBM.html#5623fef6572a08c2b53b8c87b82dc979" title="Logarithm of marginalized data likelihood.">ll</a>+= -0.5*(_Ry.<a class="code" href="classsqmat.html#ecc2e2540f95a04f4449842588170f5b" title="Reimplementing common functions of mat: cols().">cols</a>()*0.79817986835811504957 \ |
206 | | <a name="l00227"></a>00227 +_Ry.<a class="code" href="classfsqmat.html#bf212272ec195ad2706e2bf4d8e7c9b3" title="Logarithm of a determinant.">logdet</a>() +_iRy.<a class="code" href="classfsqmat.html#6d047b9f7a27dfc093303a13cc9b1fba" title="Evaluates quadratic form $x= v&#39;*V*v$;.">qform</a>(_yp)); |
207 | | <a name="l00228"></a>00228 } |
208 | | <a name="l00229"></a>00229 }; |
209 | | <a name="l00230"></a>00230 |
210 | | <a name="l00231"></a>00231 |
211 | | <a name="l00232"></a>00232 <span class="preprocessor">#endif // KF_H</span> |
212 | | <a name="l00233"></a>00233 <span class="preprocessor"></span> |
213 | | <a name="l00234"></a>00234 |
214 | | </pre></div><hr size="1"><address style="text-align: right;"><small>Generated on Mon Feb 18 21:48:39 2008 for mixpp by |
| 109 | <a name="l00136"></a>00136 } |
| 110 | <a name="l00137"></a>00137 |
| 111 | <a name="l00138"></a>00138 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 112 | <a name="l00139"></a><a class="code" href="classKalman.html#3d56b0a97b8c1e25fdd3b10eef3c2ad3">00139</a> <a class="code" href="classKalman.html#3d56b0a97b8c1e25fdd3b10eef3c2ad3" title="Default constructor.">Kalman<sq_T>::Kalman</a>(<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvy0, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvu0): <a class="code" href="classBM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a>(rvx),rvy(rvy0),rvu(rvu0), |
| 113 | <a name="l00140"></a>00140 dimx(rvx.count()), dimy(rvy.count()),dimu(rvu.count()), |
| 114 | <a name="l00141"></a>00141 A(dimx,dimx), B(dimx,dimu), C(dimy,dimx), D(dimy,dimu),<a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>(rvx), <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>(rvy){ |
| 115 | <a name="l00142"></a>00142 <span class="comment">//assign cache</span> |
| 116 | <a name="l00143"></a>00143 <span class="comment">//est</span> |
| 117 | <a name="l00144"></a>00144 _mu = <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>._mu(); |
| 118 | <a name="l00145"></a>00145 <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>._R(_P,_iP); |
| 119 | <a name="l00146"></a>00146 |
| 120 | <a name="l00147"></a>00147 <span class="comment">//fy</span> |
| 121 | <a name="l00148"></a>00148 _yp = <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>._mu(); |
| 122 | <a name="l00149"></a>00149 <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>._R(_Ry,_iRy); |
| 123 | <a name="l00150"></a>00150 }; |
| 124 | <a name="l00151"></a>00151 |
| 125 | <a name="l00152"></a>00152 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 126 | <a name="l00153"></a><a class="code" href="classKalman.html#239b28a0380946f5749b2f8d2807f93a">00153</a> <span class="keywordtype">void</span> <a class="code" href="classKalman.html#239b28a0380946f5749b2f8d2807f93a" title="Set parameters with check of relevance.">Kalman<sq_T>::set_parameters</a>(<span class="keyword">const</span> mat &A0,<span class="keyword">const</span> mat &B0, <span class="keyword">const</span> mat &C0, <span class="keyword">const</span> mat &D0, <span class="keyword">const</span> sq_T &R0, <span class="keyword">const</span> sq_T &Q0) { |
| 127 | <a name="l00154"></a>00154 it_assert_debug( A0.cols()==dimx, <span class="stringliteral">"Kalman: A is not square"</span> ); |
| 128 | <a name="l00155"></a>00155 it_assert_debug( B0.rows()==dimx, <span class="stringliteral">"Kalman: B is not compatible"</span> ); |
| 129 | <a name="l00156"></a>00156 it_assert_debug( C0.cols()==dimx, <span class="stringliteral">"Kalman: C is not square"</span> ); |
| 130 | <a name="l00157"></a>00157 it_assert_debug(( D0.rows()==dimy ) || ( D0.cols()==dimu ), <span class="stringliteral">"Kalman: D is not compatible"</span> ); |
| 131 | <a name="l00158"></a>00158 it_assert_debug(( R0.cols()==dimy ) || ( R0.rows()==dimy ), <span class="stringliteral">"Kalman: R is not compatible"</span> ); |
| 132 | <a name="l00159"></a>00159 it_assert_debug(( Q0.cols()==dimx ) || ( Q0.rows()==dimx ), <span class="stringliteral">"Kalman: Q is not compatible"</span> ); |
| 133 | <a name="l00160"></a>00160 |
| 134 | <a name="l00161"></a>00161 A = A0; |
| 135 | <a name="l00162"></a>00162 B = B0; |
| 136 | <a name="l00163"></a>00163 C = C0; |
| 137 | <a name="l00164"></a>00164 D = D0; |
| 138 | <a name="l00165"></a>00165 R = R0; |
| 139 | <a name="l00166"></a>00166 Q = Q0; |
| 140 | <a name="l00167"></a>00167 } |
| 141 | <a name="l00168"></a>00168 |
| 142 | <a name="l00169"></a>00169 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 143 | <a name="l00170"></a><a class="code" href="classKalman.html#7750ffd73f261828a32c18aaeb65c75c">00170</a> <span class="keywordtype">void</span> <a class="code" href="classKalman.html#7750ffd73f261828a32c18aaeb65c75c" title="Here dt = [yt;ut] of appropriate dimensions.">Kalman<sq_T>::bayes</a>( <span class="keyword">const</span> vec &dt) { |
| 144 | <a name="l00171"></a>00171 it_assert_debug( dt.length()==( dimy+dimu ),<span class="stringliteral">"KalmanFull::bayes wrong size of dt"</span> ); |
| 145 | <a name="l00172"></a>00172 |
| 146 | <a name="l00173"></a>00173 vec u = dt.get( dimy,dimy+dimu-1 ); |
| 147 | <a name="l00174"></a>00174 vec y = dt.get( 0,dimy-1 ); |
| 148 | <a name="l00175"></a>00175 <span class="comment">//Time update</span> |
| 149 | <a name="l00176"></a>00176 *_mu = A*(*_mu) + B*u; |
| 150 | <a name="l00177"></a>00177 <span class="comment">//P = A*P*A.transpose() + Q; in sq_T</span> |
| 151 | <a name="l00178"></a>00178 _P->mult_sym( A ); |
| 152 | <a name="l00179"></a>00179 (*_P)+=Q; |
| 153 | <a name="l00180"></a>00180 |
| 154 | <a name="l00181"></a>00181 <span class="comment">//Data update</span> |
| 155 | <a name="l00182"></a>00182 <span class="comment">//_Ry = C*P*C.transpose() + R; in sq_T</span> |
| 156 | <a name="l00183"></a>00183 _P->mult_sym( C, *_Ry); |
| 157 | <a name="l00184"></a>00184 (*_Ry)+=R; |
| 158 | <a name="l00185"></a>00185 |
| 159 | <a name="l00186"></a>00186 mat Pfull = _P->to_mat(); |
| 160 | <a name="l00187"></a>00187 |
| 161 | <a name="l00188"></a>00188 _Ry->inv( *_iRy ); <span class="comment">// result is in _iRy;</span> |
| 162 | <a name="l00189"></a>00189 _K = Pfull*C.transpose()*(_iRy->to_mat()); |
| 163 | <a name="l00190"></a>00190 |
| 164 | <a name="l00191"></a>00191 sq_T pom((<span class="keywordtype">int</span>)Pfull.rows()); |
| 165 | <a name="l00192"></a>00192 _iRy->mult_sym_t(C*Pfull,pom); |
| 166 | <a name="l00193"></a>00193 (*_P) -= pom; <span class="comment">// P = P -PC'iRy*CP;</span> |
| 167 | <a name="l00194"></a>00194 (*_yp) = C*(*_mu)+D*u; <span class="comment">//y prediction</span> |
| 168 | <a name="l00195"></a>00195 (*_mu) += _K*( y-(*_yp) ); |
| 169 | <a name="l00196"></a>00196 |
| 170 | <a name="l00197"></a>00197 <span class="keywordflow">if</span> (<a class="code" href="classBM.html#bf6fb59b30141074f8ee1e2f43d03129" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>==<span class="keyword">true</span>) { |
| 171 | <a name="l00198"></a>00198 <a class="code" href="classBM.html#5623fef6572a08c2b53b8c87b82dc979" title="Logarithm of marginalized data likelihood.">ll</a>+=<a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>.evalpdflog(*_yp); |
| 172 | <a name="l00199"></a>00199 } |
| 173 | <a name="l00200"></a>00200 }; |
| 174 | <a name="l00201"></a>00201 |
| 175 | <a name="l00202"></a>00202 <span class="comment">//TODO why not const pointer??</span> |
| 176 | <a name="l00203"></a>00203 |
| 177 | <a name="l00204"></a>00204 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 178 | <a name="l00205"></a><a class="code" href="classEKF.html#ea4f3254cacf0a92d2a820b1201d049e">00205</a> <a class="code" href="classEKF.html#ea4f3254cacf0a92d2a820b1201d049e" title="Default constructor.">EKF<sq_T>::EKF</a>(<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx0, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvy0, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvu0): <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a><ldmat>(rvx0,rvy0,rvu0){} |
| 179 | <a name="l00206"></a>00206 |
| 180 | <a name="l00207"></a>00207 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 181 | <a name="l00208"></a>00208 <span class="keywordtype">void</span> <a class="code" href="classEKF.html" title="Extended Kalman Filter.">EKF<sq_T>::set_parameters</a>(<a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* pfxu0, <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* phxu0,<span class="keyword">const</span> sq_T Q0,<span class="keyword">const</span> sq_T R0) { |
| 182 | <a name="l00209"></a>00209 pfxu = pfxu0; |
| 183 | <a name="l00210"></a>00210 phxu = phxu0; |
| 184 | <a name="l00211"></a>00211 |
| 185 | <a name="l00212"></a>00212 <span class="comment">//initialize matrices A C, later, these will be only updated!</span> |
| 186 | <a name="l00213"></a>00213 pfxu-><a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(*_mu,zeros(dimu),A,<span class="keyword">true</span>); |
| 187 | <a name="l00214"></a>00214 pfxu-><a class="code" href="classdiffbifn.html#1978bafd7909d15c139a08c495c24aa0" title="Evaluates and writes result into A .">dfdu_cond</a>(*_mu,zeros(dimu),B,<span class="keyword">true</span>); |
| 188 | <a name="l00215"></a>00215 phxu-><a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(*_mu,zeros(dimu),C,<span class="keyword">true</span>); |
| 189 | <a name="l00216"></a>00216 phxu-><a class="code" href="classdiffbifn.html#1978bafd7909d15c139a08c495c24aa0" title="Evaluates and writes result into A .">dfdu_cond</a>(*_mu,zeros(dimu),D,<span class="keyword">true</span>); |
| 190 | <a name="l00217"></a>00217 |
| 191 | <a name="l00218"></a>00218 R = R0; |
| 192 | <a name="l00219"></a>00219 Q = Q0; |
| 193 | <a name="l00220"></a>00220 |
| 194 | <a name="l00221"></a>00221 <span class="keyword">using</span> std::cout; |
| 195 | <a name="l00222"></a>00222 cout<<A<<std::endl; |
| 196 | <a name="l00223"></a>00223 cout<<B<<std::endl; |
| 197 | <a name="l00224"></a>00224 cout<<C<<std::endl; |
| 198 | <a name="l00225"></a>00225 cout<<D<<std::endl; |
| 199 | <a name="l00226"></a>00226 |
| 200 | <a name="l00227"></a>00227 } |
| 201 | <a name="l00228"></a>00228 |
| 202 | <a name="l00229"></a>00229 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 203 | <a name="l00230"></a><a class="code" href="classEKF.html#c79c62c9b3e0b56b3aaa1b6f1d9a7af7">00230</a> <span class="keywordtype">void</span> <a class="code" href="classEKF.html#c79c62c9b3e0b56b3aaa1b6f1d9a7af7" title="Here dt = [yt;ut] of appropriate dimensions.">EKF<sq_T>::bayes</a>( <span class="keyword">const</span> vec &dt) { |
| 204 | <a name="l00231"></a>00231 it_assert_debug( dt.length()==( dimy+dimu ),<span class="stringliteral">"KalmanFull::bayes wrong size of dt"</span> ); |
| 205 | <a name="l00232"></a>00232 |
| 206 | <a name="l00233"></a>00233 vec u = dt.get( dimy,dimy+dimu-1 ); |
| 207 | <a name="l00234"></a>00234 vec y = dt.get( 0,dimy-1 ); |
| 208 | <a name="l00235"></a>00235 <span class="comment">//Time update</span> |
| 209 | <a name="l00236"></a>00236 *_mu = pfxu-><a class="code" href="classdiffbifn.html#ad7673e16aa1a046b131b24c731c4632" title="Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ).">eval</a>(*_mu, u); |
| 210 | <a name="l00237"></a>00237 pfxu-><a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(*_mu,u,A,<span class="keyword">false</span>); <span class="comment">//update A by a derivative of fx</span> |
| 211 | <a name="l00238"></a>00238 |
| 212 | <a name="l00239"></a>00239 <span class="comment">//P = A*P*A.transpose() + Q; in sq_T</span> |
| 213 | <a name="l00240"></a>00240 _P->mult_sym( A ); |
| 214 | <a name="l00241"></a>00241 (*_P)+=Q; |
| 215 | <a name="l00242"></a>00242 |
| 216 | <a name="l00243"></a>00243 <span class="comment">//Data update</span> |
| 217 | <a name="l00244"></a>00244 phxu-><a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates and writes result into A .">dfdx_cond</a>(*_mu,u,C,<span class="keyword">false</span>); <span class="comment">//update C by a derivative hx</span> |
| 218 | <a name="l00245"></a>00245 <span class="comment">//_Ry = C*P*C.transpose() + R; in sq_T</span> |
| 219 | <a name="l00246"></a>00246 _P->mult_sym( C, *_Ry); |
| 220 | <a name="l00247"></a>00247 (*_Ry)+=R; |
| 221 | <a name="l00248"></a>00248 |
| 222 | <a name="l00249"></a>00249 mat Pfull = _P->to_mat(); |
| 223 | <a name="l00250"></a>00250 |
| 224 | <a name="l00251"></a>00251 _Ry->inv( *_iRy ); <span class="comment">// result is in _iRy;</span> |
| 225 | <a name="l00252"></a>00252 _K = Pfull*C.transpose()*(_iRy->to_mat()); |
| 226 | <a name="l00253"></a>00253 |
| 227 | <a name="l00254"></a>00254 sq_T pom((<span class="keywordtype">int</span>)Pfull.rows()); |
| 228 | <a name="l00255"></a>00255 _iRy->mult_sym_t(C*Pfull,pom); |
| 229 | <a name="l00256"></a>00256 (*_P) -= pom; <span class="comment">// P = P -PC'iRy*CP;</span> |
| 230 | <a name="l00257"></a>00257 *_yp = phxu-><a class="code" href="classdiffbifn.html#ad7673e16aa1a046b131b24c731c4632" title="Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ).">eval</a>(*_mu,u); <span class="comment">//y prediction</span> |
| 231 | <a name="l00258"></a>00258 (*_mu) += _K*( y-*_yp ); |
| 232 | <a name="l00259"></a>00259 |
| 233 | <a name="l00260"></a>00260 <span class="keywordflow">if</span> (<a class="code" href="classBM.html#bf6fb59b30141074f8ee1e2f43d03129" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>==<span class="keyword">true</span>) {<a class="code" href="classBM.html#5623fef6572a08c2b53b8c87b82dc979" title="Logarithm of marginalized data likelihood.">ll</a>+=<a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>.<a class="code" href="classenorm.html#9517594915e897584eaebbb057ed8881" title="Compute log-probability of argument val.">evalpdflog</a>(y);} |
| 234 | <a name="l00261"></a>00261 }; |
| 235 | <a name="l00262"></a>00262 |
| 236 | <a name="l00263"></a>00263 |
| 237 | <a name="l00264"></a>00264 <span class="preprocessor">#endif // KF_H</span> |
| 238 | <a name="l00265"></a>00265 <span class="preprocessor"></span> |
| 239 | <a name="l00266"></a>00266 |
| 240 | </pre></div><hr size="1"><address style="text-align: right;"><small>Generated on Thu Feb 28 16:54:39 2008 for mixpp by |