- Timestamp:
- 03/03/08 13:00:32 (17 years ago)
- Location:
- doc/latex
- Files:
-
- 1 added
- 22 modified
Legend:
- Unmodified
- Added
- Removed
-
doc/latex/annotated.tex
r22 r32 3 3 \item\contentsline{section}{{\bf bilinfn} (Class representing function \$f(x,u) = Ax+Bu\$ )}{\pageref{classbilinfn}}{} 4 4 \item\contentsline{section}{{\bf BM} (Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities )}{\pageref{classBM}}{} 5 \item\contentsline{section}{{\bf BMcond} (Conditional Bayesian Filter )}{\pageref{classBMcond}}{} 5 6 \item\contentsline{section}{{\bf constfn} (Class representing function \$f(x) = a\$, here rv is empty )}{\pageref{classconstfn}}{} 6 7 \item\contentsline{section}{{\bf diffbifn} (Class representing a differentiable function of two variables \$f(x,u)\$ )}{\pageref{classdiffbifn}}{} 7 8 \item\contentsline{section}{{\bf DS} (Abstract class for discrete-time sources of data )}{\pageref{classDS}}{} 8 9 \item\contentsline{section}{{\bf eEF} (General conjugate exponential family posterior density )}{\pageref{classeEF}}{} 10 \item\contentsline{section}{{\bf eEmp} (Weighted empirical density )}{\pageref{classeEmp}}{} 11 \item\contentsline{section}{{\bf egamma} (Gamma posterior density )}{\pageref{classegamma}}{} 9 12 \item\contentsline{section}{{\bf EKF$<$ sq\_\-T $>$} (Extended \doxyref{Kalman}{p.}{classKalman} Filter )}{\pageref{classEKF}}{} 13 \item\contentsline{section}{{\bf emix} (Weighted mixture of epdfs with external owned components )}{\pageref{classemix}}{} 10 14 \item\contentsline{section}{{\bf enorm$<$ sq\_\-T $>$} (Gaussian density with positive definite (decomposed) covariance matrix )}{\pageref{classenorm}}{} 11 15 \item\contentsline{section}{{\bf epdf} (Probability density function with numerical statistics, e.g. posterior density )}{\pageref{classepdf}}{} 16 \item\contentsline{section}{{\bf euni} (Uniform distributed density on a rectangular support )}{\pageref{classeuni}}{} 12 17 \item\contentsline{section}{{\bf fnc} (Class representing function \$f(x)\$ of variable \$x\$ represented by {\tt rv} )}{\pageref{classfnc}}{} 13 18 \item\contentsline{section}{{\bf fsqmat} (Fake \doxyref{sqmat}{p.}{classsqmat}. This class maps \doxyref{sqmat}{p.}{classsqmat} operations to operations on full matrix )}{\pageref{classfsqmat}}{} 19 \item\contentsline{section}{{\bf itpp::Gamma\_\-RNG} (Gamma distribution )}{\pageref{classitpp_1_1Gamma__RNG}}{} 14 20 \item\contentsline{section}{{\bf Kalman$<$ sq\_\-T $>$} (\doxyref{Kalman}{p.}{classKalman} filter with covariance matrices in square root form )}{\pageref{classKalman}}{} 15 21 \item\contentsline{section}{{\bf KalmanFull} (Basic \doxyref{Kalman}{p.}{classKalman} filter with full matrices (education purpose only)! Will be deleted soon! )}{\pageref{classKalmanFull}}{} 22 \item\contentsline{section}{{\bf KFcondQR} (\doxyref{Kalman}{p.}{classKalman} Filter with conditional diagonal matrices R and Q )}{\pageref{classKFcondQR}}{} 16 23 \item\contentsline{section}{{\bf linfn} (Class representing function \$f(x) = Ax+B\$ )}{\pageref{classlinfn}}{} 17 24 \item\contentsline{section}{{\bf MemDS} (Class representing off-line data stored in memory )}{\pageref{classMemDS}}{} 25 \item\contentsline{section}{{\bf mgamma} (Gamma random walk )}{\pageref{classmgamma}}{} 26 \item\contentsline{section}{{\bf mlnorm$<$ sq\_\-T $>$} (Normal distributed linear function with linear function of mean value; )}{\pageref{classmlnorm}}{} 18 27 \item\contentsline{section}{{\bf mpdf} (Conditional probability density, e.g. modeling some dependencies )}{\pageref{classmpdf}}{} 19 \item\contentsline{section}{{\bf PF} (A Particle Filter prototype )}{\pageref{classPF}}{} 28 \item\contentsline{section}{{\bf MPF$<$ BM\_\-T $>$} (Marginalized Particle filter )}{\pageref{classMPF}}{} 29 \item\contentsline{section}{{\bf PF} (Trivial particle filter with proposal density equal to parameter evolution model )}{\pageref{classPF}}{} 20 30 \item\contentsline{section}{{\bf RV} (Class representing variables, most often random variables )}{\pageref{classRV}}{} 21 31 \item\contentsline{section}{{\bf sqmat} (Virtual class for representation of double symmetric matrices in square-root form )}{\pageref{classsqmat}}{} 22 \item\contentsline{section}{{\bf TrivialPF} (Trivial particle filter with proposal density that is not conditioned on the data )}{\pageref{classTrivialPF}}{}23 32 \end{CompactList} -
doc/latex/classBM.tex
r28 r32 10 10 \begin{center} 11 11 \leavevmode 12 \includegraphics[width=161pt]{classBM__inherit__graph} 12 \includegraphics[width=142pt]{classBM__inherit__graph} 13 \end{center} 14 \end{figure} 15 Collaboration diagram for BM:\nopagebreak 16 \begin{figure}[H] 17 \begin{center} 18 \leavevmode 19 \includegraphics[width=38pt]{classBM__coll__graph} 13 20 \end{center} 14 21 \end{figure} … … 16 23 \begin{CompactItemize} 17 24 \item 18 {\bf BM} ( )\label{classBM_ef32a12f4f89e4000bf5390ceda762ae}25 {\bf BM} (const {\bf RV} \&rv0)\label{classBM_605d28b426adb677c86a57ddb525132a} 19 26 20 27 \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item … … 24 31 25 32 \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 26 {\bf epdf} $\ast$ {\bf \_\-epdf} ()\label{classBM_a5b8f6c8a872738cfaa30ab010e8c077}33 virtual {\bf epdf} \& {\bf \_\-epdf} ()=0\label{classBM_3dc45554556926bde996a267636abe55} 27 34 28 \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\end{CompactItemize} 29 \subsection*{Public Attributes} 35 \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\item 36 virtual {\bf $\sim$BM} ()\label{classBM_ca0f02b3b4144e0895cc14f7e0374bdd} 37 38 \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\end{CompactItemize} 39 \subsection*{Protected Attributes} 30 40 \begin{CompactItemize} 31 41 \item 42 {\bf RV} {\bf rv}\label{classBM_af00f0612fabe66241dd507188cdbf88} 43 44 \begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item 32 45 double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} 33 46 … … 56 69 57 70 71 Implemented in {\bf Kalman$<$ sq\_\-T $>$} \doxyref{}{p.}{classKalman_7750ffd73f261828a32c18aaeb65c75c}, {\bf EKF$<$ sq\_\-T $>$} \doxyref{}{p.}{classEKF_c79c62c9b3e0b56b3aaa1b6f1d9a7af7}, {\bf PF} \doxyref{}{p.}{classPF_64f636bbd63bea9efd778214e6b631d3}, {\bf MPF$<$ BM\_\-T $>$} \doxyref{}{p.}{classMPF_55daf8e4b6553dd9f47c692de7931623}, and {\bf Kalman$<$ ldmat $>$} \doxyref{}{p.}{classKalman_7750ffd73f261828a32c18aaeb65c75c}. 72 58 73 The documentation for this class was generated from the following file:\begin{CompactItemize} 59 74 \item -
doc/latex/classKalman.tex
r28 r32 10 10 \begin{center} 11 11 \leavevmode 12 \includegraphics[width= 77pt]{classKalman__inherit__graph}12 \includegraphics[width=103pt]{classKalman__inherit__graph} 13 13 \end{center} 14 14 \end{figure} … … 17 17 \begin{center} 18 18 \leavevmode 19 \includegraphics[width= 70pt]{classKalman__coll__graph}19 \includegraphics[width=81pt]{classKalman__coll__graph} 20 20 \end{center} 21 21 \end{figure} … … 23 23 \begin{CompactItemize} 24 24 \item 25 {\bf Kalman} ( int dimx, int dimu, int dimy)\label{classKalman_96958a5ebfa966d892137987f265083a}25 {\bf Kalman} ({\bf RV} rvx0, {\bf RV} rvy0, {\bf RV} rvu0)\label{classKalman_3d56b0a97b8c1e25fdd3b10eef3c2ad3} 26 26 27 27 \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item 28 {\bf Kalman} ( mat A0, mat B0, mat C0, mat D0, sq\_\-T R0, sq\_\-T Q0, sq\_\-T P0, vec mu0)\label{classKalman_83118f4bd2ecbc70b03cfd573088ed6f}28 {\bf Kalman} (const {\bf Kalman}$<$ sq\_\-T $>$ \&K0)\label{classKalman_ce38e31810aea4db45a83ad05eaba009} 29 29 30 \begin{CompactList}\small\item\em Full constructor. \item\end{CompactList}\item 31 void {\bf bayes} (const vec \&dt, bool {\bf evalll}=true)\label{classKalman_e945d9205ca14acbd83ba80ea6f72b8e} 30 \begin{CompactList}\small\item\em Copy constructor. \item\end{CompactList}\item 31 void {\bf set\_\-parameters} (const mat \&A0, const mat \&B0, const mat \&C0, const mat \&D0, const sq\_\-T \&R0, const sq\_\-T \&Q0)\label{classKalman_239b28a0380946f5749b2f8d2807f93a} 32 33 \begin{CompactList}\small\item\em Set parameters with check of relevance. \item\end{CompactList}\item 34 void {\bf set\_\-est} (const vec \&mu0, const sq\_\-T \&P0)\label{classKalman_80bcf29466d9a9dd2b8f74699807d0c0} 35 36 \begin{CompactList}\small\item\em Set estimate values, used e.g. in initialization. \item\end{CompactList}\item 37 void {\bf bayes} (const vec \&dt)\label{classKalman_7750ffd73f261828a32c18aaeb65c75c} 32 38 33 39 \begin{CompactList}\small\item\em Here dt = [yt;ut] of appropriate dimensions. \item\end{CompactList}\item 34 virtual void {\bf bayes} (const vec \&dt)=0 35 \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item 40 {\bf epdf} \& {\bf \_\-epdf} ()\label{classKalman_a213c57aef55b2645e550bed81cfc0d4} 41 42 \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\item 36 43 void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} 37 44 38 \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 39 {\bf epdf} $\ast$ {\bf \_\-epdf} ()\label{classBM_a5b8f6c8a872738cfaa30ab010e8c077} 40 41 \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\end{CompactItemize} 42 \subsection*{Public Attributes} 45 \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\end{CompactItemize} 46 \subsection*{Protected Attributes} 43 47 \begin{CompactItemize} 44 48 \item 45 vec {\bf mu}\label{classKalman_3063a3f58a74cea672ae889971012eed}49 {\bf RV} \textbf{rvy}\label{classKalman_7501230c2fafa3655887d2da23b3184c} 46 50 47 \ begin{CompactList}\small\item\em Mean value of the posterior density. \item\end{CompactList}\item48 sq\_\-T {\bf P}\label{classKalman_188cd5ac1c9e496b1a371eb7c57c97d3}51 \item 52 {\bf RV} \textbf{rvu}\label{classKalman_44a16ffd5ac1e6e39bae34fea9e1e498} 49 53 50 \begin{CompactList}\small\item\em Mean value of the posterior density. \item\end{CompactList}\item51 double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979}52 53 \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item54 bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129}55 56 \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize}57 \subsection*{Protected Attributes}58 \begin{CompactItemize}59 54 \item 60 55 int \textbf{dimx}\label{classKalman_39c8c403b46fa3b8c7da77cb2e3729eb} … … 85 80 86 81 \item 82 {\bf enorm}$<$ sq\_\-T $>$ {\bf est}\label{classKalman_5568c74bac67ae6d3b1061dba60c9424} 83 84 \begin{CompactList}\small\item\em posterior density on \$x\_\-t\$ \item\end{CompactList}\item 85 {\bf enorm}$<$ sq\_\-T $>$ {\bf fy}\label{classKalman_e580ab06483952bd03f2e651763e184f} 86 87 \begin{CompactList}\small\item\em preditive density on \$y\_\-t\$ \item\end{CompactList}\item 87 88 mat \textbf{\_\-K}\label{classKalman_d422f51467c7a06174af2476d2826132} 88 89 89 90 \item 90 vec \textbf{\_\-yp}\label{classKalman_30b7461989185d3d02cf42b8e2a37649}91 vec $\ast$ \textbf{\_\-yp}\label{classKalman_5188eb0329f8561f0b357af329769bf8} 91 92 92 93 \item 93 sq\_\-T \textbf{\_\-Ry}\label{classKalman_477dca07d91ea1a1f41d51bb0229934f}94 sq\_\-T $\ast$ \textbf{\_\-Ry}\label{classKalman_e17dd745daa8a958035a334a56fa4674} 94 95 95 96 \item 96 sq\_\-T \textbf{\_\-iRy}\label{classKalman_15f1a793210750a7e4642fcd948b24c5}97 sq\_\-T $\ast$ \textbf{\_\-iRy}\label{classKalman_fbbdf31365f5a5674099599200ea193b} 97 98 98 \end{CompactItemize}99 \subsection*{Friends}100 \begin{CompactItemize}101 99 \item 102 std::ostream \& \textbf{operator$<$$<$} (std::ostream \&os, const {\bf KalmanFull} \&kf)\label{classKalman_86ba216243ed95bb46d80d88775d16af}100 vec $\ast$ \textbf{\_\-mu}\label{classKalman_d1f669b5b3421a070cc75d77b55ba734} 103 101 104 \end{CompactItemize} 102 \item 103 sq\_\-T $\ast$ \textbf{\_\-P}\label{classKalman_b3388218567128a797e69b109138271d} 104 105 \item 106 sq\_\-T $\ast$ \textbf{\_\-iP}\label{classKalman_b8bb7f870d69993493ba67ce40e7c3e9} 107 108 \item 109 {\bf RV} {\bf rv}\label{classBM_af00f0612fabe66241dd507188cdbf88} 110 111 \begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item 112 double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} 113 114 \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item 115 bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} 116 117 \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize} 105 118 106 119 … … 110 123 \doxyref{Kalman}{p.}{classKalman} filter with covariance matrices in square root form. 111 124 112 \subsection{Member Function Documentation}113 \index{Kalman@{Kalman}!bayes@{bayes}}114 \index{bayes@{bayes}!Kalman@{Kalman}}115 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void BM::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [pure virtual, inherited]}}\label{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf}116 117 118 Incremental Bayes rule.119 120 \begin{Desc}121 \item[Parameters:]122 \begin{description}123 \item[{\em dt}]vector of input data \end{description}124 \end{Desc}125 126 127 125 The documentation for this class was generated from the following file:\begin{CompactItemize} 128 126 \item -
doc/latex/classKalmanFull.tex
r28 r32 6 6 {\tt \#include $<$libKF.h$>$} 7 7 8 Inheritance diagram for KalmanFull:\nopagebreak9 \begin{figure}[H]10 \begin{center}11 \leavevmode12 \includegraphics[width=56pt]{classKalmanFull__inherit__graph}13 \end{center}14 \end{figure}15 Collaboration diagram for KalmanFull:\nopagebreak16 \begin{figure}[H]17 \begin{center}18 \leavevmode19 \includegraphics[width=56pt]{classKalmanFull__coll__graph}20 \end{center}21 \end{figure}22 8 \subsection*{Public Member Functions} 23 9 \begin{CompactItemize} … … 26 12 27 13 \begin{CompactList}\small\item\em Full constructor. \item\end{CompactList}\item 28 void {\bf bayes} (const vec \&dt , bool {\bf evalll}=true)\label{classKalmanFull_048b13739b94c331cda08249b278552b}14 void {\bf bayes} (const vec \&dt)\label{classKalmanFull_13a041cd98ff157703766be275a657bb} 29 15 30 \begin{CompactList}\small\item\em Here dt = [yt;ut] of appropriate dimensions. \item\end{CompactList}\item 31 virtual void {\bf bayes} (const vec \&dt)=0 32 \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item 33 void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} 34 35 \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 36 {\bf epdf} $\ast$ {\bf \_\-epdf} ()\label{classBM_a5b8f6c8a872738cfaa30ab010e8c077} 37 38 \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\end{CompactItemize} 16 \begin{CompactList}\small\item\em Here dt = [yt;ut] of appropriate dimensions. \item\end{CompactList}\end{CompactItemize} 39 17 \subsection*{Public Attributes} 40 18 \begin{CompactItemize} … … 45 23 mat {\bf P}\label{classKalmanFull_b75dc059e84fa8ffc076203b30f926cc} 46 24 47 \begin{CompactList}\small\item\em Variance of the posterior density. \item\end{CompactList}\item 48 double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} 49 50 \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item 51 bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} 52 53 \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize} 25 \begin{CompactList}\small\item\em Variance of the posterior density. \item\end{CompactList}\end{CompactItemize} 54 26 \subsection*{Friends} 55 27 \begin{CompactItemize} … … 63 35 Basic \doxyref{Kalman}{p.}{classKalman} filter with full matrices (education purpose only)! Will be deleted soon! 64 36 65 \subsection{Member Function Documentation}66 \index{KalmanFull@{KalmanFull}!bayes@{bayes}}67 \index{bayes@{bayes}!KalmanFull@{KalmanFull}}68 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void BM::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [pure virtual, inherited]}}\label{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf}69 70 71 Incremental Bayes rule.72 73 \begin{Desc}74 \item[Parameters:]75 \begin{description}76 \item[{\em dt}]vector of input data \end{description}77 \end{Desc}78 79 80 37 The documentation for this class was generated from the following files:\begin{CompactItemize} 81 38 \item -
doc/latex/classPF.tex
r28 r32 1 1 \section{PF Class Reference} 2 2 \label{classPF}\index{PF@{PF}} 3 A Particle Filter prototype.3 Trivial particle filter with proposal density equal to parameter evolution model. 4 4 5 5 … … 10 10 \begin{center} 11 11 \leavevmode 12 \includegraphics[width= 49pt]{classPF__inherit__graph}12 \includegraphics[width=65pt]{classPF__inherit__graph} 13 13 \end{center} 14 14 \end{figure} … … 17 17 \begin{center} 18 18 \leavevmode 19 \includegraphics[width= 38pt]{classPF__coll__graph}19 \includegraphics[width=96pt]{classPF__coll__graph} 20 20 \end{center} 21 21 \end{figure} … … 23 23 \begin{CompactItemize} 24 24 \item 25 ivec {\bf resample} (RESAMPLING\_\-METHOD method=SYSTEMATIC)\label{classPF_a0e26b2f6a5884aca49122f3e4f0cf19} 26 27 \begin{CompactList}\small\item\em Returns indexes of particles that should be resampled. The ordering MUST guarantee inplace replacement. (Important for MPF.). \item\end{CompactList}\item 28 \textbf{PF} (vec w)\label{classPF_c37f95f0c1661c7f1e3fccb31d39de73} 25 \textbf{PF} (const {\bf RV} \&rv0, {\bf mpdf} \&par0, {\bf mpdf} \&obs0, int {\bf n})\label{classPF_e9604b7fc87ff5e61da4de4a04210bfc} 29 26 30 27 \item 31 void \textbf{ bayes} (const vec \&dt, bool evell)\label{classPF_eb06bd7d4325f22f54233967295793b9}28 void \textbf{set\_\-est} (const {\bf epdf} $\ast$\&epdf0)\label{classPF_c5caa2c15604338b773d7a8125e7a1b5} 32 29 33 30 \item 34 v irtual void {\bf bayes} (const vec \&dt)=031 void {\bf bayes} (const vec \&dt) 35 32 \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item 36 33 void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} 37 34 38 35 \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 39 {\bf epdf} $\ast$ {\bf \_\-epdf} ()\label{classBM_a5b8f6c8a872738cfaa30ab010e8c077}36 virtual {\bf epdf} \& {\bf \_\-epdf} ()=0\label{classBM_3dc45554556926bde996a267636abe55} 40 37 41 38 \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\end{CompactItemize} 42 \subsection*{P ublicAttributes}39 \subsection*{Protected Attributes} 43 40 \begin{CompactItemize} 44 41 \item 42 int {\bf n}\label{classPF_2c2f44ed7a4eaa42e07bdb58d503f280} 43 44 \begin{CompactList}\small\item\em number of particles; \item\end{CompactList}\item 45 {\bf eEmp} {\bf ePdf}\label{classPF_a2ac56d1e3ffbb4ff0b3f02e6399deb0} 46 47 \begin{CompactList}\small\item\em posterior density \item\end{CompactList}\item 48 vec \& {\bf w}\label{classPF_a97d12da4d1832c0b0c6ec5877f921f0} 49 50 \begin{CompactList}\small\item\em pointer into {\tt \doxyref{eEmp}{p.}{classeEmp}} \item\end{CompactList}\item 51 Array$<$ vec $>$ \& {\bf samples}\label{classPF_361743a0b5b89de1a29e91d1343b2565} 52 53 \begin{CompactList}\small\item\em pointer into {\tt \doxyref{eEmp}{p.}{classeEmp}} \item\end{CompactList}\item 54 {\bf mpdf} \& {\bf par}\label{classPF_d92ac103f88f8c21e197e90af5695a09} 55 56 \begin{CompactList}\small\item\em Parameter evolution model. \item\end{CompactList}\item 57 {\bf mpdf} \& {\bf obs}\label{classPF_dd0a687a4515333d6809147335854e77} 58 59 \begin{CompactList}\small\item\em Observation model. \item\end{CompactList}\item 60 {\bf RV} {\bf rv}\label{classBM_af00f0612fabe66241dd507188cdbf88} 61 62 \begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item 45 63 double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} 46 64 … … 49 67 50 68 \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize} 51 \subsection*{Protected Attributes}52 \begin{CompactItemize}53 \item54 int \textbf{n}\label{classPF_2c2f44ed7a4eaa42e07bdb58d503f280}55 56 \item57 vec \textbf{w}\label{classPF_f6bc92f7979af4513b06b161497ba868}58 59 \item60 Uniform\_\-RNG \textbf{URNG}\label{classPF_3568ca7c3b3175d98b548f496b4c34dd}61 62 \end{CompactItemize}63 69 64 70 65 71 \subsection{Detailed Description} 66 A Particle Filter prototype.72 Trivial particle filter with proposal density equal to parameter evolution model. 67 73 68 Bayesian Filtering equations hold.74 Posterior density is represented by a weighted empirical density ({\tt \doxyref{eEmp}{p.}{classeEmp}} ). 69 75 70 76 \subsection{Member Function Documentation} 71 77 \index{PF@{PF}!bayes@{bayes}} 72 78 \index{bayes@{bayes}!PF@{PF}} 73 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}v irtual void BM::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [pure virtual, inherited]}}\label{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf}79 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void PF::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [virtual]}}\label{classPF_64f636bbd63bea9efd778214e6b631d3} 74 80 75 81 … … 83 89 84 90 91 Implements {\bf BM} \doxyref{}{p.}{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf}. 92 93 Reimplemented in {\bf MPF$<$ BM\_\-T $>$} \doxyref{}{p.}{classMPF_55daf8e4b6553dd9f47c692de7931623}. 94 85 95 The documentation for this class was generated from the following files:\begin{CompactItemize} 86 96 \item -
doc/latex/classRV.tex
r22 r32 24 24 25 25 \begin{CompactList}\small\item\em Find indexes of another rv in self. \item\end{CompactList}\item 26 {\bf RV} {\bf add} ( {\bf RV} rv2)\label{classRV_f068a86abb5a6e46fcf76c939d2ed2ec}26 {\bf RV} {\bf add} (const {\bf RV} \&rv2)\label{classRV_18fa114b92017f7f80301a4f8d3a6382} 27 27 28 28 \begin{CompactList}\small\item\em Add (concat) another variable to the current one. \item\end{CompactList}\item … … 42 42 43 43 \begin{CompactList}\small\item\em generate a list of indeces, i.e. which \item\end{CompactList}\end{CompactItemize} 44 \subsection*{Protected Attributes} 45 \begin{CompactItemize} 46 \item 47 int {\bf size}\label{classRV_0cae53d262be90a775a99a198e17fa58} 48 49 \begin{CompactList}\small\item\em size = sum of sizes \item\end{CompactList}\item 50 int {\bf len}\label{classRV_0d7b36e2bbccf880c8fcf1e8cc43c1a9} 51 52 \begin{CompactList}\small\item\em len = number of individual rvs \item\end{CompactList}\item 53 ivec \textbf{ids}\label{classRV_1bd7165140f4b880a7f344bbb1c433f9} 54 55 \item 56 ivec \textbf{sizes}\label{classRV_c878aab13f34b420e1eb5b485563682b} 57 58 \item 59 ivec \textbf{times}\label{classRV_646e530c47a2dd38254b778d9f11ac89} 60 61 \item 62 ivec \textbf{obs}\label{classRV_2999743deec9b4cdb7ce51747bc53319} 63 64 \item 65 Array$<$ std::string $>$ \textbf{names}\label{classRV_df5d0030b277a1db2f1fd5fb79152acb} 66 67 \end{CompactItemize} 44 68 \subsection*{Friends} 45 69 \begin{CompactItemize} -
doc/latex/classTrivialPF.tex
r28 r32 35 35 36 36 \begin{CompactList}\small\item\em Returns indexes of particles that should be resampled. The ordering MUST guarantee inplace replacement. (Important for MPF.). \item\end{CompactList}\item 37 v irtual void {\bf bayes} (const vec \&dt)=037 void {\bf bayes} (const vec \&dt) 38 38 \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item 39 39 void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} 40 40 41 41 \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 42 {\bf epdf} $\ast$ {\bf \_\-epdf} ()\label{class BM_a5b8f6c8a872738cfaa30ab010e8c077}42 {\bf epdf} $\ast$ {\bf \_\-epdf} ()\label{classPF_53b7cc5a0709b0d40fb68408437c0aa2} 43 43 44 44 \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\end{CompactItemize} … … 72 72 \index{TrivialPF@{TrivialPF}!bayes@{bayes}} 73 73 \index{bayes@{bayes}!TrivialPF@{TrivialPF}} 74 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}v irtual void BM::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [pure virtual, inherited]}}\label{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf}74 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void PF::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [inline, virtual, inherited]}}\label{classPF_64f636bbd63bea9efd778214e6b631d3} 75 75 76 76 … … 84 84 85 85 86 Implements {\bf BM} \doxyref{}{p.}{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf}. 87 86 88 The documentation for this class was generated from the following files:\begin{CompactItemize} 87 89 \item -
doc/latex/classeEF.tex
r28 r32 10 10 \begin{center} 11 11 \leavevmode 12 \includegraphics[width= 67pt]{classeEF__inherit__graph}12 \includegraphics[width=127pt]{classeEF__inherit__graph} 13 13 \end{center} 14 14 \end{figure} … … 23 23 \begin{CompactItemize} 24 24 \item 25 {\bf eEF} ()\label{classeEF_702e24158366430bc24d57c7f64e1e9e} 26 27 \begin{CompactList}\small\item\em default constructor \item\end{CompactList}\item 28 \textbf{eEF} (const {\bf RV} \&rv)\label{classeEF_7e3c63655e8375c76bf1f421245427a7} 29 30 \item 25 31 virtual void \textbf{tupdate} (double phi, mat \&vbar, double nubar)\label{classeEF_fd88bc35550ec8fe9281d358216d0fcf} 26 32 … … 33 39 virtual double {\bf eval} (const vec \&val)\label{classepdf_f333ceeb88ebc37d81fcd4cea4526bfc} 34 40 35 \begin{CompactList}\small\item\em Compute probability of argument {\tt val}. \item\end{CompactList}\end{CompactItemize} 41 \begin{CompactList}\small\item\em Compute probability of argument {\tt val}. \item\end{CompactList}\item 42 virtual double {\bf evalpdflog} (const vec \&val)\label{classepdf_113c76c61d20e3f2a24ba322a73dfc51} 43 44 \begin{CompactList}\small\item\em Compute log-probability of argument {\tt val}. \item\end{CompactList}\item 45 virtual vec {\bf mean} ()=0\label{classepdf_5b61fae74d370d2216576d598c1a74ef} 46 47 \begin{CompactList}\small\item\em return expected value \item\end{CompactList}\end{CompactItemize} 48 \subsection*{Protected Attributes} 49 \begin{CompactItemize} 50 \item 51 {\bf RV} \textbf{rv}\label{classepdf_74da992e3f5d598da8850b646b79b9d9} 52 53 \end{CompactItemize} 36 54 37 55 … … 51 69 Returns a sample from the density, $x \sim epdf(rv)$ 52 70 53 Implemented in {\bf enorm$<$ sq\_\-T $>$} \doxyref{}{p.}{classenorm_6020bcd89db2c9584bd8871001bd2023} .71 Implemented in {\bf enorm$<$ sq\_\-T $>$} \doxyref{}{p.}{classenorm_6020bcd89db2c9584bd8871001bd2023}, {\bf egamma} \doxyref{}{p.}{classegamma_0a2186a586432c2c3f22d09c5341890f}, {\bf emix} \doxyref{}{p.}{classemix_3eb9a8e12ce1c5c8a3ddb245354b6941}, {\bf euni} \doxyref{}{p.}{classeuni_0f71562e3e919aba823cb7d9d420ad4c}, {\bf eEmp} \doxyref{}{p.}{classeEmp_c9b44099a400579b88aff9f5afaf9c13}, and {\bf enorm$<$ ldmat $>$} \doxyref{}{p.}{classenorm_6020bcd89db2c9584bd8871001bd2023}. 54 72 55 73 The documentation for this class was generated from the following file:\begin{CompactItemize} -
doc/latex/classenorm.tex
r22 r32 10 10 \begin{center} 11 11 \leavevmode 12 \includegraphics[width= 67pt]{classenorm__inherit__graph}12 \includegraphics[width=71pt]{classenorm__inherit__graph} 13 13 \end{center} 14 14 \end{figure} … … 23 23 \begin{CompactItemize} 24 24 \item 25 \textbf{enorm} ({\bf RV} \&rv, vec \&mu, sq\_\-T \&R)\label{classenorm_183891111686898adef0f6ca292e600d} 25 \textbf{enorm} ({\bf RV} \&rv)\label{classenorm_7b5cb487a2570e8109bfdc0df149aa06} 26 27 \item 28 void \textbf{set\_\-parameters} (const vec \&{\bf mu}, const sq\_\-T \&{\bf R})\label{classenorm_1394a65caa6e00d42e00cc99b12227af} 26 29 27 30 \item … … 32 35 33 36 \item 34 void {\bf tupdate} ()\label{classenorm_2a1a522504c7788dfd7fb733157ee39e}35 36 \begin{CompactList}\small\item\em tupdate used in KF \item\end{CompactList}\item37 double {\bf dupdate} ()\label{classenorm_d1b0faf61260de09cf63bf823add5b32}38 39 \begin{CompactList}\small\item\em dupdate used in KF \item\end{CompactList}\item40 37 vec {\bf sample} () 41 38 \begin{CompactList}\small\item\em Returns the required moment of the \doxyref{epdf}{p.}{classepdf}. \item\end{CompactList}\item … … 45 42 double {\bf eval} (const vec \&val)\label{classenorm_93107f05a8e9b34b64853767200121a4} 46 43 47 \begin{CompactList}\small\item\em Compute probability of argument {\tt val}. \item\end{CompactList}\end{CompactItemize} 48 \subsection*{Public Attributes} 44 \begin{CompactList}\small\item\em Compute probability of argument {\tt val}. \item\end{CompactList}\item 45 double {\bf evalpdflog} (const vec \&val)\label{classenorm_9517594915e897584eaebbb057ed8881} 46 47 \begin{CompactList}\small\item\em Compute log-probability of argument {\tt val}. \item\end{CompactList}\item 48 vec {\bf mean} ()\label{classenorm_191c1220c3ddd0c5f54e78f19b57ebd5} 49 50 \begin{CompactList}\small\item\em return expected value \item\end{CompactList}\item 51 vec $\ast$ {\bf \_\-mu} ()\label{classenorm_3be0cb541ec9b88e5aa3f60307bbc753} 52 53 \begin{CompactList}\small\item\em returns a pointer to the internal mean value. Use with Care! \item\end{CompactList}\item 54 void {\bf \_\-R} (sq\_\-T $\ast$\&pR, sq\_\-T $\ast$\&piR)\label{classenorm_8725c534863c4fc2bddef0edfb95a740} 55 56 \begin{CompactList}\small\item\em returns pointers to the internal variance and its inverse. Use with Care! \item\end{CompactList}\item 57 void {\bf \_\-cached} (bool what)\label{classenorm_c9ca4f2ca42568e40ca146168e7f3247} 58 59 \begin{CompactList}\small\item\em set cache as inconsistent \item\end{CompactList}\end{CompactItemize} 60 \subsection*{Protected Attributes} 49 61 \begin{CompactItemize} 50 62 \item 51 Normal\_\-RNG \textbf{RNG}\label{classenorm_a4de82a0d7ba9eaf31206318ae35d0d5} 63 vec {\bf mu}\label{classenorm_71fde0d54bba147e00f612577f95ad20} 64 65 \begin{CompactList}\small\item\em mean value \item\end{CompactList}\item 66 sq\_\-T {\bf R}\label{classenorm_4ccc8d8514d644ef1c98d8ab023748a1} 67 68 \begin{CompactList}\small\item\em Covariance matrix in decomposed form. \item\end{CompactList}\item 69 sq\_\-T {\bf \_\-iR}\label{classenorm_82f39ac49911d7097f4bfe385deba355} 70 71 \begin{CompactList}\small\item\em Cache: \_\-iR = inv(R);. \item\end{CompactList}\item 72 bool {\bf cached}\label{classenorm_ae12db77283a96e0f14a3eae93dc3bf1} 73 74 \begin{CompactList}\small\item\em indicator if {\tt \_\-iR} is chached \item\end{CompactList}\item 75 int {\bf dim}\label{classenorm_6938fc390a19cdaf6ad4503fcbaada4e} 76 77 \begin{CompactList}\small\item\em dimension (redundant from rv.count() for easier coding ) \item\end{CompactList}\item 78 {\bf RV} \textbf{rv}\label{classepdf_74da992e3f5d598da8850b646b79b9d9} 52 79 53 80 \end{CompactItemize} -
doc/latex/classepdf.tex
r22 r32 10 10 \begin{center} 11 11 \leavevmode 12 \includegraphics[width= 67pt]{classepdf__inherit__graph}12 \includegraphics[width=179pt]{classepdf__inherit__graph} 13 13 \end{center} 14 14 \end{figure} … … 23 23 \begin{CompactItemize} 24 24 \item 25 {\bf epdf} ()\label{classepdf_d8eb760037b3bad5a0d64081606697cd} 26 27 \begin{CompactList}\small\item\em default constructor \item\end{CompactList}\item 28 {\bf epdf} (const {\bf RV} \&rv0)\label{classepdf_c95b1a27a8dd9507bb9a5a3cb2809c7a} 29 30 \begin{CompactList}\small\item\em default constructor \item\end{CompactList}\item 25 31 virtual vec {\bf sample} ()=0 26 32 \begin{CompactList}\small\item\em Returns the required moment of the \doxyref{epdf}{p.}{classepdf}. \item\end{CompactList}\item 27 33 virtual double {\bf eval} (const vec \&val)\label{classepdf_f333ceeb88ebc37d81fcd4cea4526bfc} 28 34 29 \begin{CompactList}\small\item\em Compute probability of argument {\tt val}. \item\end{CompactList}\end{CompactItemize} 35 \begin{CompactList}\small\item\em Compute probability of argument {\tt val}. \item\end{CompactList}\item 36 virtual double {\bf evalpdflog} (const vec \&val)\label{classepdf_113c76c61d20e3f2a24ba322a73dfc51} 37 38 \begin{CompactList}\small\item\em Compute log-probability of argument {\tt val}. \item\end{CompactList}\item 39 virtual vec {\bf mean} ()=0\label{classepdf_5b61fae74d370d2216576d598c1a74ef} 40 41 \begin{CompactList}\small\item\em return expected value \item\end{CompactList}\item 42 virtual {\bf $\sim$epdf} ()\label{classepdf_0a322dd106f04c0a2915e3d4f4227396} 43 44 \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\end{CompactItemize} 45 \subsection*{Protected Attributes} 46 \begin{CompactItemize} 47 \item 48 {\bf RV} \textbf{rv}\label{classepdf_74da992e3f5d598da8850b646b79b9d9} 49 50 \end{CompactItemize} 30 51 31 52 … … 43 64 Returns a sample from the density, $x \sim epdf(rv)$ 44 65 45 Implemented in {\bf enorm$<$ sq\_\-T $>$} \doxyref{}{p.}{classenorm_6020bcd89db2c9584bd8871001bd2023} .66 Implemented in {\bf enorm$<$ sq\_\-T $>$} \doxyref{}{p.}{classenorm_6020bcd89db2c9584bd8871001bd2023}, {\bf egamma} \doxyref{}{p.}{classegamma_0a2186a586432c2c3f22d09c5341890f}, {\bf emix} \doxyref{}{p.}{classemix_3eb9a8e12ce1c5c8a3ddb245354b6941}, {\bf euni} \doxyref{}{p.}{classeuni_0f71562e3e919aba823cb7d9d420ad4c}, {\bf eEmp} \doxyref{}{p.}{classeEmp_c9b44099a400579b88aff9f5afaf9c13}, and {\bf enorm$<$ ldmat $>$} \doxyref{}{p.}{classenorm_6020bcd89db2c9584bd8871001bd2023}. 46 67 47 68 The documentation for this class was generated from the following file:\begin{CompactItemize} -
doc/latex/classfnc.tex
r28 r32 21 21 int {\bf \_\-dimy} () const \label{classfnc_a8891973d0ca48ce38e1886df45ca298} 22 22 23 \begin{CompactList}\small\item\em access function \item\end{CompactList}\end{CompactItemize} 23 \begin{CompactList}\small\item\em access function \item\end{CompactList}\item 24 virtual {\bf $\sim$fnc} ()\label{classfnc_17164c202f6feee3d708b8caab6306ab} 25 26 \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\end{CompactItemize} 24 27 \subsection*{Protected Attributes} 25 28 \begin{CompactItemize} -
doc/latex/classfsqmat.tex
r28 r32 28 28 29 29 \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item 30 void {\bf mult\_\-sym} (const mat \&C , bool trans=false)30 void {\bf mult\_\-sym} (const mat \&C) 31 31 \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \item\end{CompactList}\item 32 void \textbf{mult\_\-sym} (const mat \&C, {\bf fsqmat} \&U, bool trans=false)\label{classfsqmat_ccf5ad8fb038f82e9d2201c0606b65fa} 32 void {\bf mult\_\-sym\_\-t} (const mat \&C) 33 \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$. \item\end{CompactList}\item 34 void \textbf{mult\_\-sym} (const mat \&C, {\bf fsqmat} \&U)\label{classfsqmat_cfea3618d426e2b8232f09aa0070266f} 35 36 \item 37 void \textbf{mult\_\-sym\_\-t} (const mat \&C, {\bf fsqmat} \&U)\label{classfsqmat_7ca865c68989d22903efe97045cb6c9a} 33 38 34 39 \item … … 36 41 37 42 \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item 43 {\bf fsqmat} ()\label{classfsqmat_79e3f73e0ccd663c7f7e08083d272940} 44 45 \begin{CompactList}\small\item\em Default initialization. \item\end{CompactList}\item 46 {\bf fsqmat} (const int dim0)\label{classfsqmat_40eae99305e7c7240fa95cfec125b06f} 47 48 \begin{CompactList}\small\item\em Default initialization with proper size. \item\end{CompactList}\item 38 49 {\bf fsqmat} (const mat \&M)\label{classfsqmat_1929fbc9fe375f1d67f979d0d302336f} 39 50 40 51 \begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item 52 virtual {\bf $\sim$fsqmat} ()\label{classfsqmat_2a8f104e4befbc2aa90d8b11edfedb2e} 53 54 \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item 41 55 virtual void {\bf inv} ({\bf fsqmat} \&Inv) 42 56 \begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item 43 double {\bf logdet} () \label{classfsqmat_bf212272ec195ad2706e2bf4d8e7c9b3}57 double {\bf logdet} () const \label{classfsqmat_eb0d1358f536e4453b5f99d0418ca1e5} 44 58 45 59 \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item 46 double {\bf qform} ( vec \&v)\label{classfsqmat_6d047b9f7a27dfc093303a13cc9b1fba}60 double {\bf qform} (const vec \&v)\label{classfsqmat_1eec8762a2299d83c7b7cd6bf6cbc1ad} 47 61 48 62 \begin{CompactList}\small\item\em Evaluates quadratic form \$x= v'$\ast$V$\ast$v\$;. \item\end{CompactList}\item 49 vec {\bf sqrt\_\-mult} ( vec \&v)63 vec {\bf sqrt\_\-mult} (const vec \&v) 50 64 \begin{CompactList}\small\item\em Multiplies square root of \$V\$ by vector \$x\$. \item\end{CompactList}\item 51 65 {\bf fsqmat} \& \textbf{operator+=} (const {\bf fsqmat} \&A)\label{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de} … … 73 87 74 88 \end{CompactItemize} 89 \subsection*{Friends} 90 \begin{CompactItemize} 91 \item 92 std::ostream \& \textbf{operator$<$$<$} (std::ostream \&os, const {\bf fsqmat} \&sq)\label{classfsqmat_e06aba54d61e807b41bd68b5ee6ac22f} 93 94 \end{CompactItemize} 75 95 76 96 … … 95 115 Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_b223484796661f2dadb5607a86ce0581}.\index{fsqmat@{fsqmat}!mult_sym@{mult\_\-sym}} 96 116 \index{mult_sym@{mult\_\-sym}!fsqmat@{fsqmat}} 97 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym (const mat \& {\em C} , bool {\em trans} = {\tt false})\hspace{0.3cm}{\tt [virtual]}}\label{classfsqmat_acc5d2d0a243f1de6d0106065f01f518}117 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt [virtual]}}\label{classfsqmat_5530d2756b5d991de755e6121c9a452e} 98 118 99 119 … … 103 123 \item[Parameters:] 104 124 \begin{description} 105 \item[{\em C}]multiplying matrix, \ item[{\em trans}]if true, product \$V = C'$\ast$V$\ast$C\$ will be computed instead; \end{description}125 \item[{\em C}]multiplying matrix, \end{description} 106 126 \end{Desc} 107 127 108 128 109 Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_faa3bc90be142adde9cf74f573c70157}.\index{fsqmat@{fsqmat}!inv@{inv}} 129 Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_60fbbfa9e483b8187c135f787ee53afa}.\index{fsqmat@{fsqmat}!mult_sym_t@{mult\_\-sym\_\-t}} 130 \index{mult_sym_t@{mult\_\-sym\_\-t}!fsqmat@{fsqmat}} 131 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt [virtual]}}\label{classfsqmat_92052a8adc2054b63e42d1373d145c89} 132 133 134 Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$. 135 136 \begin{Desc} 137 \item[Parameters:] 138 \begin{description} 139 \item[{\em C}]multiplying matrix, \end{description} 140 \end{Desc} 141 142 143 Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_6909e906da17725b1b80f3cae7cf3325}.\index{fsqmat@{fsqmat}!inv@{inv}} 110 144 \index{inv@{inv}!fsqmat@{fsqmat}} 111 145 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}void fsqmat::inv ({\bf fsqmat} \& {\em Inv})\hspace{0.3cm}{\tt [virtual]}}\label{classfsqmat_9fa853e1ca28f2a1a1c43377e798ecb1} … … 121 155 \index{fsqmat@{fsqmat}!sqrt_mult@{sqrt\_\-mult}} 122 156 \index{sqrt_mult@{sqrt\_\-mult}!fsqmat@{fsqmat}} 123 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}vec fsqmat::sqrt\_\-mult ( vec \& {\em v})\hspace{0.3cm}{\tt [inline, virtual]}}\label{classfsqmat_6648dd4291b809cce14e8497d0433ad3}157 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}vec fsqmat::sqrt\_\-mult (const vec \& {\em v})\hspace{0.3cm}{\tt [inline, virtual]}}\label{classfsqmat_2288389e2d47bd9df112815ef570c5c9} 124 158 125 159 … … 128 162 Used e.g. in generating normal samples. 129 163 130 Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_ b5236c8a050199e1a9d338b0da1a08d2}.164 Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_975ddc7e8035d8d4e6cbd52dd99c248c}. 131 165 132 166 The documentation for this class was generated from the following files:\begin{CompactItemize} -
doc/latex/classmpdf.tex
r19 r32 17 17 \begin{center} 18 18 \leavevmode 19 \includegraphics[width= 43pt]{classmpdf__coll__graph}19 \includegraphics[width=60pt]{classmpdf__coll__graph} 20 20 \end{center} 21 21 \end{figure} … … 25 25 virtual vec {\bf samplecond} (vec \&cond, double lik) 26 26 \begin{CompactList}\small\item\em Returns the required moment of the \doxyref{epdf}{p.}{classepdf}. \item\end{CompactList}\item 27 virtual void \textbf{condition} ( vec \&cond)\label{classmpdf_cfb3dffef7c03598622e414668bb0588}27 virtual void \textbf{condition} (const vec \&cond)\label{classmpdf_0f95a0cc6ab40611f46804682446ed83} 28 28 29 \end{CompactItemize} 29 \item 30 virtual double \textbf{evalcond} (const vec \&dt, const vec \&cond)\label{classmpdf_80b738ece5bd4f8c4edaee4b38906f91} 31 32 \item 33 virtual {\bf $\sim$mpdf} ()\label{classmpdf_6788be9f3a888796499c5293a318fcfb} 34 35 \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\item 36 {\bf mpdf} (const {\bf RV} \&rv0, const {\bf RV} \&rvc0)\label{classmpdf_581ecf362185d37c08bb31cb9d046d6f} 37 38 \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\end{CompactItemize} 39 \subsection*{Protected Attributes} 40 \begin{CompactItemize} 41 \item 42 {\bf RV} {\bf rv}\label{classmpdf_f6687c07ff07d47812dd565368ca59eb} 43 44 \begin{CompactList}\small\item\em modeled random variable \item\end{CompactList}\item 45 {\bf RV} {\bf rvc}\label{classmpdf_acb7dda792b3cd5576f39fa3129abbab} 46 47 \begin{CompactList}\small\item\em random variable in condition \item\end{CompactList}\item 48 {\bf epdf} $\ast$ {\bf ep}\label{classmpdf_7aa894208a32f3487827df6d5054424c} 49 50 \begin{CompactList}\small\item\em pointer to internal \doxyref{epdf}{p.}{classepdf} \item\end{CompactList}\end{CompactItemize} 30 51 31 52 … … 41 62 Returns the required moment of the \doxyref{epdf}{p.}{classepdf}. 42 63 43 Returns a sample from the density conditioned on {\tt cond}, \$x \doxyref{epdf}{p.}{classepdf}(rv$|$cond)\$ 64 Returns a sample from the density conditioned on {\tt cond}, \$x \doxyref{epdf}{p.}{classepdf}(rv$|$cond)\$. \begin{Desc} 65 \item[Parameters:] 66 \begin{description} 67 \item[{\em lik}]is a return value of likelihood of the sample. \end{description} 68 \end{Desc} 69 44 70 45 71 The documentation for this class was generated from the following file:\begin{CompactItemize} -
doc/latex/classsqmat.tex
r22 r32 21 21 22 22 \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item 23 virtual void {\bf mult\_\-sym} (const mat \&C , bool trans=true)=023 virtual void {\bf mult\_\-sym} (const mat \&C)=0 24 24 \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \item\end{CompactList}\item 25 virtual double {\bf logdet} ()=0\label{classsqmat_5c852819589f74cdaefbd648c0ce8547} 25 virtual void {\bf mult\_\-sym\_\-t} (const mat \&C)=0 26 \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$. \item\end{CompactList}\item 27 virtual double {\bf logdet} () const =0\label{classsqmat_0a772b396750eeeed85d69fa72478b45} 26 28 27 29 \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item 28 virtual vec {\bf sqrt\_\-mult} ( vec \&v)=030 virtual vec {\bf sqrt\_\-mult} (const vec \&v)=0 29 31 \begin{CompactList}\small\item\em Multiplies square root of \$V\$ by vector \$x\$. \item\end{CompactList}\item 30 virtual double {\bf qform} ( vec \&v)=0\label{classsqmat_44e079468bc8bfccf634dc85b32ba6be}32 virtual double {\bf qform} (const vec \&v)=0\label{classsqmat_90f97cdf9de08ead4f0648419b3aa4ce} 31 33 32 34 \begin{CompactList}\small\item\em Evaluates quadratic form \$x= v'$\ast$V$\ast$v\$;. \item\end{CompactList}\item … … 39 41 int {\bf rows} () const \label{classsqmat_071e80ced9cc3b8cbb360fa7462eb646} 40 42 41 \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\end{CompactItemize} 43 \begin{CompactList}\small\item\em Reimplementing common functions of mat: \doxyref{cols()}{p.}{classsqmat_ecc2e2540f95a04f4449842588170f5b}. \item\end{CompactList}\item 44 virtual {\bf $\sim$sqmat} ()\label{classsqmat_0481f2067bb32aaea7e6d4f27e46b656} 45 46 \begin{CompactList}\small\item\em Destructor for future use;. \item\end{CompactList}\end{CompactItemize} 42 47 \subsection*{Protected Attributes} 43 48 \begin{CompactItemize} … … 68 73 Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_b36530e155667fe9f1bd58394e50c65a}.\index{sqmat@{sqmat}!mult_sym@{mult\_\-sym}} 69 74 \index{mult_sym@{mult\_\-sym}!sqmat@{sqmat}} 70 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym (const mat \& {\em C} , bool {\em trans} = {\tt true})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_faa3bc90be142adde9cf74f573c70157}75 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym (const mat \& {\em C})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_60fbbfa9e483b8187c135f787ee53afa} 71 76 72 77 … … 76 81 \item[Parameters:] 77 82 \begin{description} 78 \item[{\em C}]multiplying matrix, \ item[{\em trans}]if true, product \$V = C'$\ast$V$\ast$C\$ will be computed instead; \end{description}83 \item[{\em C}]multiplying matrix, \end{description} 79 84 \end{Desc} 80 85 81 86 82 Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_acc5d2d0a243f1de6d0106065f01f518}.\index{sqmat@{sqmat}!sqrt_mult@{sqrt\_\-mult}} 87 Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_5530d2756b5d991de755e6121c9a452e}.\index{sqmat@{sqmat}!mult_sym_t@{mult\_\-sym\_\-t}} 88 \index{mult_sym_t@{mult\_\-sym\_\-t}!sqmat@{sqmat}} 89 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void sqmat::mult\_\-sym\_\-t (const mat \& {\em C})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_6909e906da17725b1b80f3cae7cf3325} 90 91 92 Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$. 93 94 \begin{Desc} 95 \item[Parameters:] 96 \begin{description} 97 \item[{\em C}]multiplying matrix, \end{description} 98 \end{Desc} 99 100 101 Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_92052a8adc2054b63e42d1373d145c89}.\index{sqmat@{sqmat}!sqrt_mult@{sqrt\_\-mult}} 83 102 \index{sqrt_mult@{sqrt\_\-mult}!sqmat@{sqmat}} 84 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual vec sqmat::sqrt\_\-mult ( vec \& {\em v})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_b5236c8a050199e1a9d338b0da1a08d2}103 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual vec sqmat::sqrt\_\-mult (const vec \& {\em v})\hspace{0.3cm}{\tt [pure virtual]}}\label{classsqmat_975ddc7e8035d8d4e6cbd52dd99c248c} 85 104 86 105 … … 89 108 Used e.g. in generating normal samples. 90 109 91 Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_ 6648dd4291b809cce14e8497d0433ad3}.110 Implemented in {\bf fsqmat} \doxyref{}{p.}{classfsqmat_2288389e2d47bd9df112815ef570c5c9}. 92 111 93 112 The documentation for this class was generated from the following file:\begin{CompactItemize} -
doc/latex/doxygen.sty
r28 r32 11 11 \rhead[\fancyplain{}{\bfseries\leftmark}] 12 12 {\fancyplain{}{\bfseries\thepage}} 13 \rfoot[\fancyplain{}{\bfseries\scriptsize Generated on Mon Feb 18 21:48:39 2008 for mixpp by Doxygen }]{}14 \lfoot[]{\fancyplain{}{\bfseries\scriptsize Generated on Mon Feb 18 21:48:39 2008 for mixpp by Doxygen }}13 \rfoot[\fancyplain{}{\bfseries\scriptsize Generated on Thu Feb 28 16:54:39 2008 for mixpp by Doxygen }]{} 14 \lfoot[]{\fancyplain{}{\bfseries\scriptsize Generated on Thu Feb 28 16:54:39 2008 for mixpp by Doxygen }} 15 15 \cfoot{} 16 16 \newenvironment{Code} -
doc/latex/hierarchy.tex
r22 r32 4 4 \begin{CompactList} 5 5 \item \contentsline{section}{Kalman$<$ sq\_\-T $>$}{\pageref{classKalman}}{} 6 \item \contentsline{section}{Kalman$<$ fsqmat $>$}{\pageref{classKalman}}{}6 \item \contentsline{section}{Kalman$<$ ldmat $>$}{\pageref{classKalman}}{} 7 7 \begin{CompactList} 8 8 \item \contentsline{section}{EKF$<$ sq\_\-T $>$}{\pageref{classEKF}}{} 9 \item \contentsline{section}{KFcondQR}{\pageref{classKFcondQR}}{} 9 10 \end{CompactList} 10 \item \contentsline{section}{KalmanFull}{\pageref{classKalmanFull}}{}11 11 \item \contentsline{section}{PF}{\pageref{classPF}}{} 12 12 \begin{CompactList} 13 \item \contentsline{section}{ TrivialPF}{\pageref{classTrivialPF}}{}13 \item \contentsline{section}{MPF$<$ BM\_\-T $>$}{\pageref{classMPF}}{} 14 14 \end{CompactList} 15 \end{CompactList} 16 \item \contentsline{section}{BMcond}{\pageref{classBMcond}}{} 17 \begin{CompactList} 18 \item \contentsline{section}{KFcondQR}{\pageref{classKFcondQR}}{} 15 19 \end{CompactList} 16 20 \item \contentsline{section}{DS}{\pageref{classDS}}{} … … 22 26 \item \contentsline{section}{eEF}{\pageref{classeEF}}{} 23 27 \begin{CompactList} 28 \item \contentsline{section}{egamma}{\pageref{classegamma}}{} 24 29 \item \contentsline{section}{enorm$<$ sq\_\-T $>$}{\pageref{classenorm}}{} 30 \item \contentsline{section}{enorm$<$ ldmat $>$}{\pageref{classenorm}}{} 25 31 \end{CompactList} 32 \item \contentsline{section}{eEmp}{\pageref{classeEmp}}{} 33 \item \contentsline{section}{emix}{\pageref{classemix}}{} 34 \item \contentsline{section}{euni}{\pageref{classeuni}}{} 26 35 \end{CompactList} 27 36 \item \contentsline{section}{fnc}{\pageref{classfnc}}{} … … 34 43 \item \contentsline{section}{linfn}{\pageref{classlinfn}}{} 35 44 \end{CompactList} 45 \item \contentsline{section}{itpp::Gamma\_\-RNG}{\pageref{classitpp_1_1Gamma__RNG}}{} 46 \item \contentsline{section}{KalmanFull}{\pageref{classKalmanFull}}{} 47 \item \contentsline{section}{mgamma}{\pageref{classmgamma}}{} 48 \item \contentsline{section}{mlnorm$<$ sq\_\-T $>$}{\pageref{classmlnorm}}{} 36 49 \item \contentsline{section}{mpdf}{\pageref{classmpdf}}{} 37 50 \item \contentsline{section}{RV}{\pageref{classRV}}{} -
doc/latex/libBM_8h.tex
r22 r32 19 19 \begin{center} 20 20 \leavevmode 21 \includegraphics[width= 361pt]{libBM_8h__dep__incl}21 \includegraphics[width=272pt]{libBM_8h__dep__incl} 22 22 \end{center} 23 23 \end{figure} … … 29 29 class {\bf fnc} 30 30 \begin{CompactList}\small\item\em Class representing function \$f(x)\$ of variable \$x\$ represented by {\tt rv}. \item\end{CompactList}\item 31 class {\bf BM}32 \begin{CompactList}\small\item\em Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities. \item\end{CompactList}\item33 31 class {\bf epdf} 34 32 \begin{CompactList}\small\item\em Probability density function with numerical statistics, e.g. posterior density. \item\end{CompactList}\item … … 36 34 \begin{CompactList}\small\item\em Conditional probability density, e.g. modeling some dependencies. \item\end{CompactList}\item 37 35 class {\bf DS} 38 \begin{CompactList}\small\item\em Abstract class for discrete-time sources of data. \item\end{CompactList}\end{CompactItemize} 36 \begin{CompactList}\small\item\em Abstract class for discrete-time sources of data. \item\end{CompactList}\item 37 class {\bf BM} 38 \begin{CompactList}\small\item\em Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities. \item\end{CompactList}\item 39 class {\bf BMcond} 40 \begin{CompactList}\small\item\em Conditional Bayesian Filter. \item\end{CompactList}\end{CompactItemize} 39 41 40 42 -
doc/latex/libDC_8h.tex
r19 r32 19 19 \begin{center} 20 20 \leavevmode 21 \includegraphics[width= 276pt]{libDC_8h__dep__incl}21 \includegraphics[width=191pt]{libDC_8h__dep__incl} 22 22 \end{center} 23 23 \end{figure} -
doc/latex/libEF_8h.tex
r22 r32 6 6 {\tt \#include \char`\"{}../math/libDC.h\char`\"{}}\par 7 7 {\tt \#include \char`\"{}libBM.h\char`\"{}}\par 8 {\tt \#include \char`\"{}../itpp\_\-ext.h\char`\"{}}\par 8 9 9 10 … … 12 13 \begin{center} 13 14 \leavevmode 14 \includegraphics[width=116pt]{libEF_8h__incl} 15 \includegraphics[width=157pt]{libEF_8h__incl} 16 \end{center} 17 \end{figure} 18 19 20 This graph shows which files directly or indirectly include this file:\nopagebreak 21 \begin{figure}[H] 22 \begin{center} 23 \leavevmode 24 \includegraphics[width=191pt]{libEF_8h__dep__incl} 15 25 \end{center} 16 26 \end{figure} … … 24 34 class {\bf enorm$<$ sq\_\-T $>$} 25 35 \begin{CompactList}\small\item\em Gaussian density with positive definite (decomposed) covariance matrix. \item\end{CompactList}\item 26 class \textbf{mlnorm$<$ sq\_\-T $>$} 36 class {\bf egamma} 37 \begin{CompactList}\small\item\em Gamma posterior density. \item\end{CompactList}\item 38 class {\bf emix} 39 \begin{CompactList}\small\item\em Weighted mixture of epdfs with external owned components. \item\end{CompactList}\item 40 class {\bf euni} 41 \begin{CompactList}\small\item\em Uniform distributed density on a rectangular support. \item\end{CompactList}\item 42 class {\bf mlnorm$<$ sq\_\-T $>$} 43 \begin{CompactList}\small\item\em Normal distributed linear function with linear function of mean value;. \item\end{CompactList}\item 44 class {\bf mgamma} 45 \begin{CompactList}\small\item\em Gamma random walk. \item\end{CompactList}\item 46 class {\bf eEmp} 47 \begin{CompactList}\small\item\em Weighted empirical density. \item\end{CompactList}\end{CompactItemize} 48 \subsection*{Enumerations} 49 \begin{CompactItemize} 50 \item 51 enum {\bf RESAMPLING\_\-METHOD} \{ \textbf{MULTINOMIAL} = 0, 52 \textbf{STRATIFIED} = 1, 53 \textbf{SYSTEMATIC} = 3 54 \} 55 \begin{CompactList}\small\item\em Switch between various resampling methods. \item\end{CompactList}\end{CompactItemize} 56 \subsection*{Variables} 57 \begin{CompactItemize} 58 \item 59 Uniform\_\-RNG {\bf UniRNG}\label{libEF_8h_2ae7dcdfebede774dd1b1f16cad10dd9} 60 61 \begin{CompactList}\small\item\em Global Uniform\_\-RNG. \item\end{CompactList}\item 62 Normal\_\-RNG \textbf{NorRNG}\label{libEF_8h_395c5925c8792aef3be4c360e91526c0} 63 64 \item 65 {\bf Gamma\_\-RNG} \textbf{GamRNG}\label{libEF_8h_884a8348c92a49725b78e2b6ab0bb802} 66 27 67 \end{CompactItemize} 28 68 -
doc/latex/libKF_8h.tex
r22 r32 5 5 {\tt \#include $<$itpp/itbase.h$>$}\par 6 6 {\tt \#include \char`\"{}../stat/libFN.h\char`\"{}}\par 7 {\tt \#include \char`\"{}../ math/libDC.h\char`\"{}}\par7 {\tt \#include \char`\"{}../stat/libEF.h\char`\"{}}\par 8 8 9 9 … … 12 12 \begin{center} 13 13 \leavevmode 14 \includegraphics[width= 134pt]{libKF_8h__incl}14 \includegraphics[width=203pt]{libKF_8h__incl} 15 15 \end{center} 16 16 \end{figure} … … 23 23 \begin{CompactList}\small\item\em \doxyref{Kalman}{p.}{classKalman} filter with covariance matrices in square root form. \item\end{CompactList}\item 24 24 class {\bf EKF$<$ sq\_\-T $>$} 25 \begin{CompactList}\small\item\em Extended \doxyref{Kalman}{p.}{classKalman} Filter. \item\end{CompactList}\end{CompactItemize} 25 \begin{CompactList}\small\item\em Extended \doxyref{Kalman}{p.}{classKalman} Filter. \item\end{CompactList}\item 26 class {\bf KFcondQR} 27 \begin{CompactList}\small\item\em \doxyref{Kalman}{p.}{classKalman} Filter with conditional diagonal matrices R and Q. \item\end{CompactList}\end{CompactItemize} 26 28 27 29 -
doc/latex/libPF_8h.tex
r19 r32 4 4 5 5 {\tt \#include $<$itpp/itbase.h$>$}\par 6 {\tt \#include \char`\"{}../stat/lib BM.h\char`\"{}}\par6 {\tt \#include \char`\"{}../stat/libEF.h\char`\"{}}\par 7 7 {\tt \#include \char`\"{}../math/libDC.h\char`\"{}}\par 8 8 … … 12 12 \begin{center} 13 13 \leavevmode 14 \includegraphics[width=1 35pt]{libPF_8h__incl}14 \includegraphics[width=182pt]{libPF_8h__incl} 15 15 \end{center} 16 16 \end{figure} … … 19 19 \item 20 20 class {\bf PF} 21 \begin{CompactList}\small\item\em A Particle Filter prototype. \item\end{CompactList}\item 22 class {\bf TrivialPF} 23 \begin{CompactList}\small\item\em Trivial particle filter with proposal density that is not conditioned on the data. \item\end{CompactList}\item 24 class \textbf{MPF} 25 \end{CompactItemize} 26 \subsection*{Enumerations} 27 \begin{CompactItemize} 28 \item 29 enum \textbf{RESAMPLING\_\-METHOD} \{ \textbf{MULTINOMIAL} = 0, 30 \textbf{STRATIFIED} = 1, 31 \textbf{SYSTEMATIC} = 3 32 \} 33 \end{CompactItemize} 21 \begin{CompactList}\small\item\em Trivial particle filter with proposal density equal to parameter evolution model. \item\end{CompactList}\item 22 class {\bf MPF$<$ BM\_\-T $>$} 23 \begin{CompactList}\small\item\em Marginalized Particle filter. \item\end{CompactList}\end{CompactItemize} 34 24 35 25 -
doc/latex/refman.tex
r28 r32 21 21 {\large Generated by Doxygen 1.5.3}\\ 22 22 \vspace*{0.5cm} 23 {\small Mon Feb 18 21:48:39 2008}\\23 {\small Thu Feb 28 16:54:39 2008}\\ 24 24 \end{center} 25 25 \end{titlepage} … … 40 40 \input{classbilinfn} 41 41 \include{classBM} 42 \include{classBMcond} 42 43 \include{classconstfn} 43 44 \include{classdiffbifn} 44 45 \include{classDS} 45 46 \include{classeEF} 47 \include{classeEmp} 48 \include{classegamma} 46 49 \include{classEKF} 50 \include{classemix} 47 51 \include{classenorm} 48 52 \include{classepdf} 53 \include{classeuni} 49 54 \include{classfnc} 50 55 \include{classfsqmat} 56 \include{classitpp_1_1Gamma__RNG} 51 57 \include{classKalman} 52 58 \include{classKalmanFull} 59 \include{classKFcondQR} 53 60 \include{classlinfn} 54 61 \include{classMemDS} 62 \include{classmgamma} 63 \include{classmlnorm} 55 64 \include{classmpdf} 65 \include{classMPF} 56 66 \include{classPF} 57 67 \include{classRV} 58 68 \include{classsqmat} 59 \include{classTrivialPF}60 69 \chapter{mixpp File Documentation} 61 70 \input{libKF_8h}