Changeset 32 for doc/latex/classKalman.tex
- Timestamp:
- 03/03/08 13:00:32 (17 years ago)
- Files:
-
- 1 modified
Legend:
- Unmodified
- Added
- Removed
-
doc/latex/classKalman.tex
r28 r32 10 10 \begin{center} 11 11 \leavevmode 12 \includegraphics[width= 77pt]{classKalman__inherit__graph}12 \includegraphics[width=103pt]{classKalman__inherit__graph} 13 13 \end{center} 14 14 \end{figure} … … 17 17 \begin{center} 18 18 \leavevmode 19 \includegraphics[width= 70pt]{classKalman__coll__graph}19 \includegraphics[width=81pt]{classKalman__coll__graph} 20 20 \end{center} 21 21 \end{figure} … … 23 23 \begin{CompactItemize} 24 24 \item 25 {\bf Kalman} ( int dimx, int dimu, int dimy)\label{classKalman_96958a5ebfa966d892137987f265083a}25 {\bf Kalman} ({\bf RV} rvx0, {\bf RV} rvy0, {\bf RV} rvu0)\label{classKalman_3d56b0a97b8c1e25fdd3b10eef3c2ad3} 26 26 27 27 \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item 28 {\bf Kalman} ( mat A0, mat B0, mat C0, mat D0, sq\_\-T R0, sq\_\-T Q0, sq\_\-T P0, vec mu0)\label{classKalman_83118f4bd2ecbc70b03cfd573088ed6f}28 {\bf Kalman} (const {\bf Kalman}$<$ sq\_\-T $>$ \&K0)\label{classKalman_ce38e31810aea4db45a83ad05eaba009} 29 29 30 \begin{CompactList}\small\item\em Full constructor. \item\end{CompactList}\item 31 void {\bf bayes} (const vec \&dt, bool {\bf evalll}=true)\label{classKalman_e945d9205ca14acbd83ba80ea6f72b8e} 30 \begin{CompactList}\small\item\em Copy constructor. \item\end{CompactList}\item 31 void {\bf set\_\-parameters} (const mat \&A0, const mat \&B0, const mat \&C0, const mat \&D0, const sq\_\-T \&R0, const sq\_\-T \&Q0)\label{classKalman_239b28a0380946f5749b2f8d2807f93a} 32 33 \begin{CompactList}\small\item\em Set parameters with check of relevance. \item\end{CompactList}\item 34 void {\bf set\_\-est} (const vec \&mu0, const sq\_\-T \&P0)\label{classKalman_80bcf29466d9a9dd2b8f74699807d0c0} 35 36 \begin{CompactList}\small\item\em Set estimate values, used e.g. in initialization. \item\end{CompactList}\item 37 void {\bf bayes} (const vec \&dt)\label{classKalman_7750ffd73f261828a32c18aaeb65c75c} 32 38 33 39 \begin{CompactList}\small\item\em Here dt = [yt;ut] of appropriate dimensions. \item\end{CompactList}\item 34 virtual void {\bf bayes} (const vec \&dt)=0 35 \begin{CompactList}\small\item\em Incremental Bayes rule. \item\end{CompactList}\item 40 {\bf epdf} \& {\bf \_\-epdf} ()\label{classKalman_a213c57aef55b2645e550bed81cfc0d4} 41 42 \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\item 36 43 void {\bf bayes} (mat Dt)\label{classBM_87b07867fd4c133aa89a18543f68d9f9} 37 44 38 \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\item 39 {\bf epdf} $\ast$ {\bf \_\-epdf} ()\label{classBM_a5b8f6c8a872738cfaa30ab010e8c077} 40 41 \begin{CompactList}\small\item\em Returns a pointer to the \doxyref{epdf}{p.}{classepdf} representing posterior density on parameters. Use with care! \item\end{CompactList}\end{CompactItemize} 42 \subsection*{Public Attributes} 45 \begin{CompactList}\small\item\em Batch Bayes rule (columns of Dt are observations). \item\end{CompactList}\end{CompactItemize} 46 \subsection*{Protected Attributes} 43 47 \begin{CompactItemize} 44 48 \item 45 vec {\bf mu}\label{classKalman_3063a3f58a74cea672ae889971012eed}49 {\bf RV} \textbf{rvy}\label{classKalman_7501230c2fafa3655887d2da23b3184c} 46 50 47 \ begin{CompactList}\small\item\em Mean value of the posterior density. \item\end{CompactList}\item48 sq\_\-T {\bf P}\label{classKalman_188cd5ac1c9e496b1a371eb7c57c97d3}51 \item 52 {\bf RV} \textbf{rvu}\label{classKalman_44a16ffd5ac1e6e39bae34fea9e1e498} 49 53 50 \begin{CompactList}\small\item\em Mean value of the posterior density. \item\end{CompactList}\item51 double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979}52 53 \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item54 bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129}55 56 \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize}57 \subsection*{Protected Attributes}58 \begin{CompactItemize}59 54 \item 60 55 int \textbf{dimx}\label{classKalman_39c8c403b46fa3b8c7da77cb2e3729eb} … … 85 80 86 81 \item 82 {\bf enorm}$<$ sq\_\-T $>$ {\bf est}\label{classKalman_5568c74bac67ae6d3b1061dba60c9424} 83 84 \begin{CompactList}\small\item\em posterior density on \$x\_\-t\$ \item\end{CompactList}\item 85 {\bf enorm}$<$ sq\_\-T $>$ {\bf fy}\label{classKalman_e580ab06483952bd03f2e651763e184f} 86 87 \begin{CompactList}\small\item\em preditive density on \$y\_\-t\$ \item\end{CompactList}\item 87 88 mat \textbf{\_\-K}\label{classKalman_d422f51467c7a06174af2476d2826132} 88 89 89 90 \item 90 vec \textbf{\_\-yp}\label{classKalman_30b7461989185d3d02cf42b8e2a37649}91 vec $\ast$ \textbf{\_\-yp}\label{classKalman_5188eb0329f8561f0b357af329769bf8} 91 92 92 93 \item 93 sq\_\-T \textbf{\_\-Ry}\label{classKalman_477dca07d91ea1a1f41d51bb0229934f}94 sq\_\-T $\ast$ \textbf{\_\-Ry}\label{classKalman_e17dd745daa8a958035a334a56fa4674} 94 95 95 96 \item 96 sq\_\-T \textbf{\_\-iRy}\label{classKalman_15f1a793210750a7e4642fcd948b24c5}97 sq\_\-T $\ast$ \textbf{\_\-iRy}\label{classKalman_fbbdf31365f5a5674099599200ea193b} 97 98 98 \end{CompactItemize}99 \subsection*{Friends}100 \begin{CompactItemize}101 99 \item 102 std::ostream \& \textbf{operator$<$$<$} (std::ostream \&os, const {\bf KalmanFull} \&kf)\label{classKalman_86ba216243ed95bb46d80d88775d16af}100 vec $\ast$ \textbf{\_\-mu}\label{classKalman_d1f669b5b3421a070cc75d77b55ba734} 103 101 104 \end{CompactItemize} 102 \item 103 sq\_\-T $\ast$ \textbf{\_\-P}\label{classKalman_b3388218567128a797e69b109138271d} 104 105 \item 106 sq\_\-T $\ast$ \textbf{\_\-iP}\label{classKalman_b8bb7f870d69993493ba67ce40e7c3e9} 107 108 \item 109 {\bf RV} {\bf rv}\label{classBM_af00f0612fabe66241dd507188cdbf88} 110 111 \begin{CompactList}\small\item\em Random variable of the posterior. \item\end{CompactList}\item 112 double {\bf ll}\label{classBM_5623fef6572a08c2b53b8c87b82dc979} 113 114 \begin{CompactList}\small\item\em Logarithm of marginalized data likelihood. \item\end{CompactList}\item 115 bool {\bf evalll}\label{classBM_bf6fb59b30141074f8ee1e2f43d03129} 116 117 \begin{CompactList}\small\item\em If true, the filter will compute likelihood of the data record and store it in {\tt ll} . Set to false if you want to save time. \item\end{CompactList}\end{CompactItemize} 105 118 106 119 … … 110 123 \doxyref{Kalman}{p.}{classKalman} filter with covariance matrices in square root form. 111 124 112 \subsection{Member Function Documentation}113 \index{Kalman@{Kalman}!bayes@{bayes}}114 \index{bayes@{bayes}!Kalman@{Kalman}}115 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}virtual void BM::bayes (const vec \& {\em dt})\hspace{0.3cm}{\tt [pure virtual, inherited]}}\label{classBM_a892eff438aab2dd1a9e2efcb7fb5bdf}116 117 118 Incremental Bayes rule.119 120 \begin{Desc}121 \item[Parameters:]122 \begin{description}123 \item[{\em dt}]vector of input data \end{description}124 \end{Desc}125 126 127 125 The documentation for this class was generated from the following file:\begin{CompactItemize} 128 126 \item