Changeset 323 for doc/html/kalman.html

Show
Ignore:
Timestamp:
04/23/09 21:12:23 (16 years ago)
Author:
smidl
Message:

doc

Files:
1 modified

Legend:

Unmodified
Added
Removed
  • doc/html/kalman.html

    r312 r323  
    6565Kalman Filtering</a></h2> 
    6666Kalman filtering is optimal estimation procedure for linear state space model: <p class="formulaDsp"> 
    67 <img class="formulaDsp" alt="\begin{eqnarray} x_t &amp;= &amp;A x_{t-1} + B u_{t} + v_t,\\ y_t &amp;= &amp;C x_{t} + D u_{t} + w_t, \end{eqnarray}" src="form_92.png"> 
     67<img class="formulaDsp" alt="\begin{eqnarray} x_t &amp;= &amp;A x_{t-1} + B u_{t} + v_t,\\ y_t &amp;= &amp;C x_{t} + D u_{t} + w_t, \end{eqnarray}" src="form_100.png"> 
    6868<p> 
    69  where <img class="formulaInl" alt="$ x_t $" src="form_93.png"> is the state, <img class="formulaInl" alt="$ y_t $" src="form_6.png"> is the system output, <img class="formulaInl" alt="$ A, B, C, D$" src="form_94.png"> are state matrices of appropriate dimensions, <img class="formulaInl" alt="$v_t, w_t$" src="form_95.png"> are zero mean Gaussian noises with covariance matrices <img class="formulaInl" alt="$Q, R$" src="form_96.png">, respectively.<p> 
     69 where <img class="formulaInl" alt="$ x_t $" src="form_101.png"> is the state, <img class="formulaInl" alt="$ y_t $" src="form_8.png"> is the system output, <img class="formulaInl" alt="$ A, B, C, D$" src="form_102.png"> are state matrices of appropriate dimensions, <img class="formulaInl" alt="$v_t, w_t$" src="form_103.png"> are zero mean Gaussian noises with covariance matrices <img class="formulaInl" alt="$Q, R$" src="form_104.png">, respectively.<p> 
    7070Both prior and posterior densities on the state are Gaussian, i.e. of the class enorm.<p> 
    7171There is a range of classes that implements this functionality, namely:<ul> 
     
    7474Extended Kalman Filtering</a></h2> 
    7575Extended Kalman filtering arise by linearization of non-linear state space model: <p class="formulaDsp"> 
    76 <img class="formulaDsp" alt="\begin{eqnarray} x_t &amp;= &amp;g( x_{t-1}, u_{t}) + v_t,\\ y_t &amp;= &amp;h( x_{t} , u_{t}) + w_t, \end{eqnarray}" src="form_97.png"> 
     76<img class="formulaDsp" alt="\begin{eqnarray} x_t &amp;= &amp;g( x_{t-1}, u_{t}) + v_t,\\ y_t &amp;= &amp;h( x_{t} , u_{t}) + w_t, \end{eqnarray}" src="form_105.png"> 
    7777<p> 
    78  where <img class="formulaInl" alt="$ g(), h() $" src="form_98.png"> are general non-linear functions which have finite derivatives. Remaining variables have the same meaning as in the Kalman Filter.<p> 
     78 where <img class="formulaInl" alt="$ g(), h() $" src="form_106.png"> are general non-linear functions which have finite derivatives. Remaining variables have the same meaning as in the Kalman Filter.<p> 
    7979In order to use this class, the non-linear functions and their derivatives must be defined as an instance of class <code>diffbifn</code>.<p> 
    8080Two classes are defined:<ul> 
     
    114114} 
    115115</pre></div> </div> 
    116 <hr size="1"><address style="text-align: right;"><small>Generated on Thu Apr 9 14:33:20 2009 for mixpp by&nbsp; 
     116<hr size="1"><address style="text-align: right;"><small>Generated on Thu Apr 23 21:06:43 2009 for mixpp by&nbsp; 
    117117<a href="http://www.doxygen.org/index.html"> 
    118118<img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.8 </small></address>