Changeset 323 for doc/html/tut_arx.html
- Timestamp:
- 04/23/09 21:12:23 (16 years ago)
- Files:
-
- 1 modified
Legend:
- Unmodified
- Added
- Removed
-
doc/html/tut_arx.html
r312 r323 63 63 <h1><a class="anchor" name="tut_arx">Theory of ARX model estimation </a></h1><p> 64 64 The <code>ARX</code> (AutoregRessive with eXogeneous input) model is defined as follows: <p class="formulaDsp"> 65 <img class="formulaDsp" alt="\[ y_t = \theta' \psi_t + \rho e_t \]" src="form_ 99.png">65 <img class="formulaDsp" alt="\[ y_t = \theta' \psi_t + \rho e_t \]" src="form_107.png"> 66 66 <p> 67 where <img class="formulaInl" alt="$y_t$" src="form_ 100.png"> is the system output, <img class="formulaInl" alt="$[\theta,\rho]$" src="form_101.png"> is vector of unknown parameters, <img class="formulaInl" alt="$\psi_t$" src="form_102.png"> is an vector of data-dependent regressors, and noise <img class="formulaInl" alt="$e_t$" src="form_4.png"> is assumed to be Normal distributed <img class="formulaInl" alt="$\mathcal{N}(0,1)$" src="form_103.png">.<p>67 where <img class="formulaInl" alt="$y_t$" src="form_42.png"> is the system output, <img class="formulaInl" alt="$[\theta,\rho]$" src="form_108.png"> is vector of unknown parameters, <img class="formulaInl" alt="$\psi_t$" src="form_109.png"> is an vector of data-dependent regressors, and noise <img class="formulaInl" alt="$e_t$" src="form_6.png"> is assumed to be Normal distributed <img class="formulaInl" alt="$\mathcal{N}(0,1)$" src="form_110.png">.<p> 68 68 Special cases include: <ul> 69 69 <li>estimation of unknown mean and variance of a Gaussian density from independent samples.</li> … … 75 75 <dt>Information matrix </dt> 76 76 <dd>which is a sum of outer products <p class="formulaDsp"> 77 <img class="formulaDsp" alt="\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \]" src="form_1 04.png">77 <img class="formulaDsp" alt="\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \]" src="form_111.png"> 78 78 <p> 79 79 </dd> 80 80 <dt>"Degree of freedom" </dt> 81 81 <dd>which is an accumulator of number of data records <p class="formulaDsp"> 82 <img class="formulaDsp" alt="\[ \nu_t = \sum_{i=0}^{n} 1 \]" src="form_1 05.png">82 <img class="formulaDsp" alt="\[ \nu_t = \sum_{i=0}^{n} 1 \]" src="form_112.png"> 83 83 <p> 84 84 </dd> … … 87 87 On-line estimation</a></h2> 88 88 For online estimation with stationary parameters can be easily achieved by collecting the sufficient statistics described above recursively.<p> 89 Extension to non-stationaly parameters, <img class="formulaInl" alt="$ \theta_t , r_t $" src="form_1 06.png"> can be achieved by operation called forgetting. This is an approximation of Bayesian filtering see [Kulhavy]. The resulting algorithm is defined by manipulation of sufficient statistics: <dl>89 Extension to non-stationaly parameters, <img class="formulaInl" alt="$ \theta_t , r_t $" src="form_113.png"> can be achieved by operation called forgetting. This is an approximation of Bayesian filtering see [Kulhavy]. The resulting algorithm is defined by manipulation of sufficient statistics: <dl> 90 90 <dt>Information matrix </dt> 91 91 <dd>which is a sum of outer products <p class="formulaDsp"> 92 <img class="formulaDsp" alt="\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \]" src="form_1 21.png">92 <img class="formulaDsp" alt="\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \]" src="form_114.png"> 93 93 <p> 94 94 </dd> 95 95 <dt>"Degree of freedom" </dt> 96 96 <dd>which is an accumulator of number of data records <p class="formulaDsp"> 97 <img class="formulaDsp" alt="\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \]" src="form_1 22.png">97 <img class="formulaDsp" alt="\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \]" src="form_115.png"> 98 98 <p> 99 99 </dd> 100 100 </dl> 101 where <img class="formulaInl" alt="$ \phi $" src="form_1 09.png"> is the forgetting factor, typically <img class="formulaInl" alt="$ \phi \in [0,1]$" src="form_110.png"> roughly corresponding to the effective length of the exponential window by relation:<p class="formulaDsp">102 <img class="formulaDsp" alt="\[ \mathrm{win_length} = \frac{1}{1-\phi}\]" src="form_11 1.png">101 where <img class="formulaInl" alt="$ \phi $" src="form_116.png"> is the forgetting factor, typically <img class="formulaInl" alt="$ \phi \in [0,1]$" src="form_117.png"> roughly corresponding to the effective length of the exponential window by relation:<p class="formulaDsp"> 102 <img class="formulaDsp" alt="\[ \mathrm{win_length} = \frac{1}{1-\phi}\]" src="form_118.png"> 103 103 <p> 104 Hence, <img class="formulaInl" alt="$ \phi=0.9 $" src="form_11 2.png"> corresponds to estimation on exponential window of effective length 10 samples.<p>105 Statistics <img class="formulaInl" alt="$ V_0 , \nu_0 $" src="form_1 13.png"> are called alternative statistics, their role is to stabilize estimation. It is easy to show that for zero data, the statistics <img class="formulaInl" alt="$ V_t , \nu_t $" src="form_114.png"> converge to the alternative statistics.<h2><a class="anchor" name="str">104 Hence, <img class="formulaInl" alt="$ \phi=0.9 $" src="form_119.png"> corresponds to estimation on exponential window of effective length 10 samples.<p> 105 Statistics <img class="formulaInl" alt="$ V_0 , \nu_0 $" src="form_120.png"> are called alternative statistics, their role is to stabilize estimation. It is easy to show that for zero data, the statistics <img class="formulaInl" alt="$ V_t , \nu_t $" src="form_121.png"> converge to the alternative statistics.<h2><a class="anchor" name="str"> 106 106 Structure estimation</a></h2> 107 For this model, structure estimation is a form of model selection procedure. Specifically, we compare hypotheses that the data were generated by the full model with hypotheses that some regressors in vector <img class="formulaInl" alt="$\psi$" src="form_1 3.png"> are redundant. The number of possible hypotheses is then the number of all possible combinations of all regressors.<p>108 However, due to property known as nesting in exponential family, these hypotheses can be tested using only the posterior statistics. (This property does no hold for forgetting <img class="formulaInl" alt="$ \phi<1 $" src="form_1 15.png">). Hence, for low dimensional problems, this can be done by a tree search (method <a class="el" href="classbdm_1_1ARX.html#16b02ae03316751664c22d59d90c1e34" title="Brute force structure estimation.">bdm::ARX::structure_est()</a>). Or more sophisticated algorithm [ref Ludvik]<h2><a class="anchor" name="soft">107 For this model, structure estimation is a form of model selection procedure. Specifically, we compare hypotheses that the data were generated by the full model with hypotheses that some regressors in vector <img class="formulaInl" alt="$\psi$" src="form_15.png"> are redundant. The number of possible hypotheses is then the number of all possible combinations of all regressors.<p> 108 However, due to property known as nesting in exponential family, these hypotheses can be tested using only the posterior statistics. (This property does no hold for forgetting <img class="formulaInl" alt="$ \phi<1 $" src="form_122.png">). Hence, for low dimensional problems, this can be done by a tree search (method <a class="el" href="classbdm_1_1ARX.html#16b02ae03316751664c22d59d90c1e34" title="Brute force structure estimation.">bdm::ARX::structure_est()</a>). Or more sophisticated algorithm [ref Ludvik]<h2><a class="anchor" name="soft"> 109 109 Software Image</a></h2> 110 110 Estimation of the ARX model is implemented in class <a class="el" href="classbdm_1_1ARX.html" title="Linear Autoregressive model with Gaussian noise.">bdm::ARX</a>. <ul> … … 123 123 </ul> 124 124 </div> 125 <hr size="1"><address style="text-align: right;"><small>Generated on Thu Apr 9 14:33:202009 for mixpp by 125 <hr size="1"><address style="text-align: right;"><small>Generated on Thu Apr 23 21:06:43 2009 for mixpp by 126 126 <a href="http://www.doxygen.org/index.html"> 127 127 <img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.8 </small></address>