Show
Ignore:
Timestamp:
03/05/08 16:01:56 (17 years ago)
Author:
smidl
Message:

Oprava PF a MPF + jejich implementace pro pmsm system

Files:
1 modified

Legend:

Unmodified
Added
Removed
  • doc/html/libKF_8h-source.html

    r32 r33  
    2525<a name="l00021"></a>00021 <span class="keyword">using namespace </span>itpp; 
    2626<a name="l00022"></a>00022  
    27 <a name="l00026"></a><a class="code" href="classKalmanFull.html">00026</a> <span class="keyword">class </span><a class="code" href="classKalmanFull.html" title="Basic Kalman filter with full matrices (education purpose only)! Will be deleted...">KalmanFull</a> {  
    28 <a name="l00027"></a>00027         <span class="keywordtype">int</span> dimx, dimy, dimu; 
    29 <a name="l00028"></a>00028         mat A, B, C, D, R, Q; 
    30 <a name="l00029"></a>00029          
    31 <a name="l00030"></a>00030         <span class="comment">//cache </span> 
    32 <a name="l00031"></a>00031         mat _Pp, _Ry, _iRy, _K; 
    33 <a name="l00032"></a>00032 <span class="keyword">public</span>: 
    34 <a name="l00033"></a>00033         <span class="comment">//posterior </span> 
    35 <a name="l00035"></a><a class="code" href="classKalmanFull.html#fb5aec635e2720cc5ac31bc01c18a68a">00035</a> <span class="comment"></span>        vec <a class="code" href="classKalmanFull.html#fb5aec635e2720cc5ac31bc01c18a68a" title="Mean value of the posterior density.">mu</a>; 
    36 <a name="l00037"></a><a class="code" href="classKalmanFull.html#b75dc059e84fa8ffc076203b30f926cc">00037</a>         mat <a class="code" href="classKalmanFull.html#b75dc059e84fa8ffc076203b30f926cc" title="Variance of the posterior density.">P</a>; 
    37 <a name="l00038"></a>00038  
    38 <a name="l00039"></a>00039 <span class="keyword">public</span>: 
    39 <a name="l00041"></a>00041         <a class="code" href="classKalmanFull.html#7197ab6e7380790006394eabd3b97043" title="Full constructor.">KalmanFull</a> ( mat A, mat B, mat C, mat D, mat R, mat Q, mat P0, vec mu0); 
    40 <a name="l00043"></a>00043         <span class="keywordtype">void</span> <a class="code" href="classKalmanFull.html#13a041cd98ff157703766be275a657bb" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a>(<span class="keyword">const</span> vec &amp;dt);  
    41 <a name="l00044"></a>00044  
    42 <a name="l00045"></a>00045         <span class="keyword">friend</span> std::ostream &amp;operator&lt;&lt; ( std::ostream &amp;os, <span class="keyword">const</span> <a class="code" href="classKalmanFull.html" title="Basic Kalman filter with full matrices (education purpose only)! Will be deleted...">KalmanFull</a> &amp;kf ); 
    43 <a name="l00046"></a>00046  
    44 <a name="l00047"></a>00047 }; 
    45 <a name="l00048"></a>00048  
     27<a name="l00027"></a><a class="code" href="classKalmanFull.html">00027</a> <span class="keyword">class </span><a class="code" href="classKalmanFull.html" title="Basic Kalman filter with full matrices (education purpose only)! Will be deleted...">KalmanFull</a> { 
     28<a name="l00028"></a>00028         <span class="keywordtype">int</span> dimx, dimy, dimu; 
     29<a name="l00029"></a>00029         mat A, B, C, D, R, Q; 
     30<a name="l00030"></a>00030  
     31<a name="l00031"></a>00031         <span class="comment">//cache</span> 
     32<a name="l00032"></a>00032         mat _Pp, _Ry, _iRy, _K; 
     33<a name="l00033"></a>00033 <span class="keyword">public</span>: 
     34<a name="l00034"></a>00034         <span class="comment">//posterior</span> 
     35<a name="l00036"></a><a class="code" href="classKalmanFull.html#fb5aec635e2720cc5ac31bc01c18a68a">00036</a> <span class="comment"></span>        vec <a class="code" href="classKalmanFull.html#fb5aec635e2720cc5ac31bc01c18a68a" title="Mean value of the posterior density.">mu</a>; 
     36<a name="l00038"></a><a class="code" href="classKalmanFull.html#b75dc059e84fa8ffc076203b30f926cc">00038</a>         mat <a class="code" href="classKalmanFull.html#b75dc059e84fa8ffc076203b30f926cc" title="Variance of the posterior density.">P</a>; 
     37<a name="l00039"></a>00039  
     38<a name="l00040"></a>00040 <span class="keyword">public</span>: 
     39<a name="l00042"></a>00042         <a class="code" href="classKalmanFull.html#7197ab6e7380790006394eabd3b97043" title="Full constructor.">KalmanFull</a> ( mat A, mat B, mat C, mat D, mat R, mat Q, mat P0, vec mu0 ); 
     40<a name="l00044"></a>00044         <span class="keywordtype">void</span> <a class="code" href="classKalmanFull.html#13a041cd98ff157703766be275a657bb" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a> ( <span class="keyword">const</span> vec &amp;dt ); 
     41<a name="l00046"></a>00046         <span class="keyword">friend</span> std::ostream &amp;<a class="code" href="classKalmanFull.html#86ba216243ed95bb46d80d88775d16af" title="print elements of KF">operator&lt;&lt; </a>( std::ostream &amp;os, <span class="keyword">const</span> <a class="code" href="classKalmanFull.html" title="Basic Kalman filter with full matrices (education purpose only)! Will be deleted...">KalmanFull</a> &amp;kf ); 
     42<a name="l00047"></a>00047  
     43<a name="l00048"></a>00048 }; 
    4644<a name="l00049"></a>00049  
    47 <a name="l00053"></a>00053 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    48 <a name="l00054"></a><a class="code" href="classKalman.html">00054</a> <span class="keyword">class </span><a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a> : <span class="keyword">public</span> <a class="code" href="classBM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a> {  
    49 <a name="l00055"></a>00055 <span class="keyword">protected</span>: 
    50 <a name="l00056"></a>00056         <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvy; 
    51 <a name="l00057"></a>00057         <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvu; 
    52 <a name="l00058"></a>00058         <span class="keywordtype">int</span> dimx, dimy, dimu; 
    53 <a name="l00059"></a>00059         mat A, B, C, D; 
    54 <a name="l00060"></a>00060         sq_T R, Q; 
    55 <a name="l00061"></a>00061          
    56 <a name="l00063"></a><a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424">00063</a>         <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a> <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>; 
    57 <a name="l00065"></a><a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f">00065</a>         <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a> <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>; 
    58 <a name="l00066"></a>00066          
    59 <a name="l00067"></a>00067         mat _K; 
    60 <a name="l00068"></a>00068         <span class="comment">//cache of fy</span> 
    61 <a name="l00069"></a>00069         vec* _yp;  
    62 <a name="l00070"></a>00070         sq_T* _Ry,*_iRy; 
    63 <a name="l00071"></a>00071         <span class="comment">//cache of est</span> 
    64 <a name="l00072"></a>00072         vec* _mu; 
    65 <a name="l00073"></a>00073         sq_T* _P, *_iP; 
    66 <a name="l00074"></a>00074          
    67 <a name="l00075"></a>00075 <span class="keyword">public</span>: 
    68 <a name="l00077"></a>00077         <a class="code" href="classKalman.html#3d56b0a97b8c1e25fdd3b10eef3c2ad3" title="Default constructor.">Kalman</a> (<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx0, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvy0, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvu0); 
    69 <a name="l00079"></a>00079         <a class="code" href="classKalman.html#3d56b0a97b8c1e25fdd3b10eef3c2ad3" title="Default constructor.">Kalman</a> (<span class="keyword">const</span> <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman&lt;sq_T&gt;</a> &amp;K0); 
    70 <a name="l00081"></a>00081         <span class="keywordtype">void</span> <a class="code" href="classKalman.html#239b28a0380946f5749b2f8d2807f93a" title="Set parameters with check of relevance.">set_parameters</a> (<span class="keyword">const</span> mat &amp;A0,<span class="keyword">const</span> mat &amp;B0,<span class="keyword">const</span> mat &amp;C0,<span class="keyword">const</span> mat &amp;D0,<span class="keyword">const</span> sq_T &amp;R0,<span class="keyword">const</span> sq_T &amp;Q0); 
    71 <a name="l00083"></a><a class="code" href="classKalman.html#80bcf29466d9a9dd2b8f74699807d0c0">00083</a>         <span class="keywordtype">void</span> <a class="code" href="classKalman.html#80bcf29466d9a9dd2b8f74699807d0c0" title="Set estimate values, used e.g. in initialization.">set_est</a>(<span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;P0 ){<a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>.set_parameters(mu0,P0);}; 
    72 <a name="l00085"></a>00085         <span class="keywordtype">void</span> <a class="code" href="classKalman.html#7750ffd73f261828a32c18aaeb65c75c" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a>(<span class="keyword">const</span> vec &amp;dt);  
    73 <a name="l00086"></a><a class="code" href="classKalman.html#a213c57aef55b2645e550bed81cfc0d4">00086</a>         <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>&amp; <a class="code" href="classKalman.html#a213c57aef55b2645e550bed81cfc0d4" title="Returns a pointer to the epdf representing posterior density on parameters. Use with...">_epdf</a>(){<span class="keywordflow">return</span> <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>;} 
    74 <a name="l00087"></a>00087 <span class="comment">//      friend std::ostream &amp;operator&lt;&lt; ( std::ostream &amp;os, const Kalman&lt;sq_T&gt; &amp;kf );</span> 
    75 <a name="l00088"></a>00088  
    76 <a name="l00090"></a>00090 }; 
    77 <a name="l00091"></a>00091  
    78 <a name="l00097"></a>00097 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    79 <a name="l00098"></a><a class="code" href="classEKF.html">00098</a> <span class="keyword">class </span><a class="code" href="classEKF.html" title="Extended Kalman Filter.">EKF</a> : <span class="keyword">public</span> <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a>&lt;ldmat&gt; { 
    80 <a name="l00100"></a>00100         <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* pfxu; 
    81 <a name="l00102"></a>00102         <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* phxu; 
    82 <a name="l00103"></a>00103 <span class="keyword">public</span>:  
    83 <a name="l00105"></a>00105         <a class="code" href="classEKF.html#ea4f3254cacf0a92d2a820b1201d049e" title="Default constructor.">EKF</a> (<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvy, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvu); 
    84 <a name="l00106"></a>00106         <span class="keywordtype">void</span> set_parameters(<a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* pfxu, <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* phxu, <span class="keyword">const</span> sq_T Q0, <span class="keyword">const</span> sq_T R0); 
    85 <a name="l00108"></a>00108         <span class="keywordtype">void</span> <a class="code" href="classEKF.html#c79c62c9b3e0b56b3aaa1b6f1d9a7af7" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a>(<span class="keyword">const</span> vec &amp;dt);       
    86 <a name="l00109"></a>00109 }; 
    87 <a name="l00110"></a>00110  
    88 <a name="l00114"></a><a class="code" href="classKFcondQR.html">00114</a> <span class="keyword">class </span><a class="code" href="classKFcondQR.html" title="Kalman Filter with conditional diagonal matrices R and Q.">KFcondQR</a> : <span class="keyword">public</span> <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a>&lt;ldmat&gt;, <span class="keyword">public</span> <a class="code" href="classBMcond.html" title="Conditional Bayesian Filter.">BMcond</a> { 
    89 <a name="l00115"></a>00115 <span class="comment">//protected:</span> 
    90 <a name="l00116"></a>00116 <span class="keyword">public</span>: 
    91 <a name="l00117"></a>00117 <a class="code" href="classKFcondQR.html" title="Kalman Filter with conditional diagonal matrices R and Q.">KFcondQR</a>(<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvy, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvu): <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman&lt;ldmat&gt;</a>(rvx, rvy,rvu){}; 
    92 <a name="l00118"></a>00118 <span class="keywordtype">void</span> <a class="code" href="classKFcondQR.html#c9ecf292a85327aa6309c9fd70ceb606" title="Substitute val for rvc.">condition</a>(<span class="keyword">const</span> vec &amp;RQ); 
    93 <a name="l00119"></a>00119 }; 
    94 <a name="l00120"></a>00120  
    95 <a name="l00122"></a>00122  
    96 <a name="l00123"></a>00123 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    97 <a name="l00124"></a><a class="code" href="classKalman.html#ce38e31810aea4db45a83ad05eaba009">00124</a> <a class="code" href="classKalman.html#3d56b0a97b8c1e25fdd3b10eef3c2ad3" title="Default constructor.">Kalman&lt;sq_T&gt;::Kalman</a>(<span class="keyword">const</span> <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman&lt;sq_T&gt;</a> &amp;K0): <a class="code" href="classBM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a>(K0.rv),rvy(K0.rvy),rvu(K0.rvu), 
    98 <a name="l00125"></a>00125 dimx(rv.count()), dimy(rvy.count()),dimu(rvu.count()),  
    99 <a name="l00126"></a>00126  A(dimx,dimx), B(dimx,dimu), C(dimy,dimx), D(dimy,dimu),est(rv), fy(rvy){ 
    100 <a name="l00127"></a>00127 this-&gt;<a class="code" href="classKalman.html#239b28a0380946f5749b2f8d2807f93a" title="Set parameters with check of relevance.">set_parameters</a>(K0.<a class="code" href="classKalman.html#5e02efe86ee91e9c74b93b425fe060b9">A</a>, K0.<a class="code" href="classKalman.html#dc87704284a6c0bca13bf51f4345a50a">B</a>, K0.<a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13">C</a>, K0.<a class="code" href="classKalman.html#d69f774ba3335c970c1c5b1d182f4dd1">D</a>, K0.<a class="code" href="classKalman.html#11d171dc0e0ab111c56a70f98b97b3ec">R</a>, K0.<a class="code" href="classKalman.html#9b69015c800eb93f3ee49da23a6f55d9">Q</a>); 
    101 <a name="l00128"></a>00128 <span class="comment">//reset copy values in pointers</span> 
    102 <a name="l00129"></a>00129 *_mu = *K0.<a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734">_mu</a>; 
    103 <a name="l00130"></a>00130 *_P = *K0.<a class="code" href="classKalman.html#b3388218567128a797e69b109138271d">_P</a>; 
    104 <a name="l00131"></a>00131 *_iP = *K0.<a class="code" href="classKalman.html#b8bb7f870d69993493ba67ce40e7c3e9">_iP</a>; 
    105 <a name="l00132"></a>00132 *_yp = *K0.<a class="code" href="classKalman.html#5188eb0329f8561f0b357af329769bf8">_yp</a>; 
    106 <a name="l00133"></a>00133 *_iRy = *K0.<a class="code" href="classKalman.html#fbbdf31365f5a5674099599200ea193b">_iRy</a>; 
    107 <a name="l00134"></a>00134 *_Ry = *K0.<a class="code" href="classKalman.html#e17dd745daa8a958035a334a56fa4674">_Ry</a>; 
    108 <a name="l00135"></a>00135  
    109 <a name="l00136"></a>00136 } 
    110 <a name="l00137"></a>00137  
    111 <a name="l00138"></a>00138 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    112 <a name="l00139"></a><a class="code" href="classKalman.html#3d56b0a97b8c1e25fdd3b10eef3c2ad3">00139</a> <a class="code" href="classKalman.html#3d56b0a97b8c1e25fdd3b10eef3c2ad3" title="Default constructor.">Kalman&lt;sq_T&gt;::Kalman</a>(<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvy0, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvu0): <a class="code" href="classBM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a>(rvx),rvy(rvy0),rvu(rvu0), 
    113 <a name="l00140"></a>00140 dimx(rvx.count()), dimy(rvy.count()),dimu(rvu.count()),  
    114 <a name="l00141"></a>00141  A(dimx,dimx), B(dimx,dimu), C(dimy,dimx), D(dimy,dimu),<a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>(rvx), <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>(rvy){ 
    115 <a name="l00142"></a>00142 <span class="comment">//assign cache</span> 
    116 <a name="l00143"></a>00143 <span class="comment">//est</span> 
    117 <a name="l00144"></a>00144 _mu = <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>._mu(); 
    118 <a name="l00145"></a>00145 <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>._R(_P,_iP); 
     45<a name="l00050"></a>00050  
     46<a name="l00058"></a>00058 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     47<a name="l00059"></a>00059  
     48<a name="l00060"></a><a class="code" href="classKalman.html">00060</a> <span class="keyword">class </span><a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a> : <span class="keyword">public</span> <a class="code" href="classBM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a> { 
     49<a name="l00061"></a>00061 <span class="keyword">protected</span>: 
     50<a name="l00063"></a><a class="code" href="classKalman.html#7501230c2fafa3655887d2da23b3184c">00063</a>         <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classKalman.html#7501230c2fafa3655887d2da23b3184c" title="Indetifier of output rv.">rvy</a>; 
     51<a name="l00065"></a><a class="code" href="classKalman.html#44a16ffd5ac1e6e39bae34fea9e1e498">00065</a>         <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classKalman.html#44a16ffd5ac1e6e39bae34fea9e1e498" title="Indetifier of exogeneous rv.">rvu</a>; 
     52<a name="l00067"></a><a class="code" href="classKalman.html#39c8c403b46fa3b8c7da77cb2e3729eb">00067</a>         <span class="keywordtype">int</span> <a class="code" href="classKalman.html#39c8c403b46fa3b8c7da77cb2e3729eb" title="cache of rv.count()">dimx</a>; 
     53<a name="l00069"></a><a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a">00069</a>         <span class="keywordtype">int</span> <a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a>; 
     54<a name="l00071"></a><a class="code" href="classKalman.html#b0153795a1444b6968a86409c778d9ce">00071</a>         <span class="keywordtype">int</span> <a class="code" href="classKalman.html#b0153795a1444b6968a86409c778d9ce" title="cache of rvu.count()">dimu</a>; 
     55<a name="l00073"></a><a class="code" href="classKalman.html#5e02efe86ee91e9c74b93b425fe060b9">00073</a>         mat <a class="code" href="classKalman.html#5e02efe86ee91e9c74b93b425fe060b9" title="Matrix A.">A</a>; 
     56<a name="l00075"></a><a class="code" href="classKalman.html#dc87704284a6c0bca13bf51f4345a50a">00075</a>         mat <a class="code" href="classKalman.html#dc87704284a6c0bca13bf51f4345a50a" title="Matrix B.">B</a>;  
     57<a name="l00077"></a><a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13">00077</a>         mat <a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13" title="Matrix C.">C</a>; 
     58<a name="l00079"></a><a class="code" href="classKalman.html#d69f774ba3335c970c1c5b1d182f4dd1">00079</a>         mat <a class="code" href="classKalman.html#d69f774ba3335c970c1c5b1d182f4dd1" title="Matrix D.">D</a>; 
     59<a name="l00081"></a><a class="code" href="classKalman.html#9b69015c800eb93f3ee49da23a6f55d9">00081</a>         sq_T <a class="code" href="classKalman.html#9b69015c800eb93f3ee49da23a6f55d9" title="Matrix Q in square-root form.">Q</a>; 
     60<a name="l00083"></a><a class="code" href="classKalman.html#11d171dc0e0ab111c56a70f98b97b3ec">00083</a>         sq_T <a class="code" href="classKalman.html#11d171dc0e0ab111c56a70f98b97b3ec" title="Matrix R in square-root form.">R</a>; 
     61<a name="l00084"></a>00084  
     62<a name="l00086"></a><a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424">00086</a>         <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a> <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>; 
     63<a name="l00088"></a><a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f">00088</a>         <a class="code" href="classenorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a> <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>; 
     64<a name="l00089"></a>00089  
     65<a name="l00091"></a><a class="code" href="classKalman.html#d422f51467c7a06174af2476d2826132">00091</a>         mat <a class="code" href="classKalman.html#d422f51467c7a06174af2476d2826132" title="placeholder for Kalman gain">_K</a>; 
     66<a name="l00093"></a><a class="code" href="classKalman.html#5188eb0329f8561f0b357af329769bf8">00093</a>         vec* <a class="code" href="classKalman.html#5188eb0329f8561f0b357af329769bf8" title="cache of fy.mu">_yp</a>; 
     67<a name="l00095"></a><a class="code" href="classKalman.html#e17dd745daa8a958035a334a56fa4674">00095</a>         sq_T* <a class="code" href="classKalman.html#e17dd745daa8a958035a334a56fa4674" title="cache of fy.R">_Ry</a>; 
     68<a name="l00097"></a><a class="code" href="classKalman.html#8a35bd14afa5a2d9bbd23ad333bec874">00097</a>         sq_T* <a class="code" href="classKalman.html#8a35bd14afa5a2d9bbd23ad333bec874" title="cache of fy.iR">_iRy</a>; 
     69<a name="l00099"></a><a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734">00099</a>         vec* <a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734" title="cache of est.mu">_mu</a>; 
     70<a name="l00101"></a><a class="code" href="classKalman.html#b3388218567128a797e69b109138271d">00101</a>         sq_T* <a class="code" href="classKalman.html#b3388218567128a797e69b109138271d" title="cache of est.R">_P</a>; 
     71<a name="l00103"></a><a class="code" href="classKalman.html#13fec2c93d8a132201e28b70270acf5c">00103</a>         sq_T* <a class="code" href="classKalman.html#13fec2c93d8a132201e28b70270acf5c" title="cache of est.iR">_iP</a>; 
     72<a name="l00104"></a>00104  
     73<a name="l00105"></a>00105 <span class="keyword">public</span>: 
     74<a name="l00107"></a>00107         <a class="code" href="classKalman.html#3d56b0a97b8c1e25fdd3b10eef3c2ad3" title="Default constructor.">Kalman</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx0, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvy0, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvu0 ); 
     75<a name="l00109"></a>00109         <a class="code" href="classKalman.html#3d56b0a97b8c1e25fdd3b10eef3c2ad3" title="Default constructor.">Kalman</a> ( <span class="keyword">const</span> <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman&lt;sq_T&gt;</a> &amp;K0 ); 
     76<a name="l00111"></a>00111         <span class="keywordtype">void</span> <a class="code" href="classKalman.html#239b28a0380946f5749b2f8d2807f93a" title="Set parameters with check of relevance.">set_parameters</a> ( <span class="keyword">const</span> mat &amp;A0,<span class="keyword">const</span> mat &amp;B0,<span class="keyword">const</span> mat &amp;C0,<span class="keyword">const</span> mat &amp;D0,<span class="keyword">const</span> sq_T &amp;R0,<span class="keyword">const</span> sq_T &amp;Q0 ); 
     77<a name="l00113"></a><a class="code" href="classKalman.html#80bcf29466d9a9dd2b8f74699807d0c0">00113</a>         <span class="keywordtype">void</span> <a class="code" href="classKalman.html#80bcf29466d9a9dd2b8f74699807d0c0" title="Set estimate values, used e.g. in initialization.">set_est</a> ( <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;P0 ) { 
     78<a name="l00114"></a>00114                 sq_T pom(<a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a>); 
     79<a name="l00115"></a>00115                 <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>.set_parameters ( mu0,P0 ); 
     80<a name="l00116"></a>00116                 P0.mult_sym(<a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13" title="Matrix C.">C</a>,pom); 
     81<a name="l00117"></a>00117                 <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>.set_parameters ( <a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13" title="Matrix C.">C</a>*mu0, pom ); 
     82<a name="l00118"></a>00118         }; 
     83<a name="l00119"></a>00119  
     84<a name="l00121"></a>00121         <span class="keywordtype">void</span> <a class="code" href="classKalman.html#7750ffd73f261828a32c18aaeb65c75c" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a> ( <span class="keyword">const</span> vec &amp;dt ); 
     85<a name="l00123"></a><a class="code" href="classKalman.html#a213c57aef55b2645e550bed81cfc0d4">00123</a>         <a class="code" href="classepdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>&amp; <a class="code" href="classKalman.html#a213c57aef55b2645e550bed81cfc0d4" title="access function">_epdf</a>() {<span class="keywordflow">return</span> <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>;} 
     86<a name="l00124"></a>00124 }; 
     87<a name="l00125"></a>00125  
     88<a name="l00131"></a>00131 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     89<a name="l00132"></a>00132  
     90<a name="l00133"></a><a class="code" href="classEKF.html">00133</a> <span class="keyword">class </span><a class="code" href="classEKF.html" title="Extended Kalman Filter.">EKF</a> : <span class="keyword">public</span> <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a>&lt;ldmat&gt; { 
     91<a name="l00135"></a>00135         <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* pfxu; 
     92<a name="l00137"></a>00137         <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* phxu; 
     93<a name="l00138"></a>00138 <span class="keyword">public</span>: 
     94<a name="l00140"></a>00140         <a class="code" href="classEKF.html#ea4f3254cacf0a92d2a820b1201d049e" title="Default constructor.">EKF</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classKalman.html#7501230c2fafa3655887d2da23b3184c" title="Indetifier of output rv.">rvy</a>, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classKalman.html#44a16ffd5ac1e6e39bae34fea9e1e498" title="Indetifier of exogeneous rv.">rvu</a> ); 
     95<a name="l00142"></a>00142         <span class="keywordtype">void</span> <a class="code" href="classEKF.html#28d058ae4d24d992d2f055419a06ee66" title="Set nonlinear functions for mean values and covariance matrices.">set_parameters</a> ( <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* pfxu, <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* phxu, <span class="keyword">const</span> sq_T Q0, <span class="keyword">const</span> sq_T R0 ); 
     96<a name="l00144"></a>00144         <span class="keywordtype">void</span> <a class="code" href="classEKF.html#c79c62c9b3e0b56b3aaa1b6f1d9a7af7" title="Here dt = [yt;ut] of appropriate dimensions.">bayes</a> ( <span class="keyword">const</span> vec &amp;dt ); 
     97<a name="l00145"></a>00145 }; 
    11998<a name="l00146"></a>00146  
    120 <a name="l00147"></a>00147 <span class="comment">//fy</span> 
    121 <a name="l00148"></a>00148 _yp = <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>._mu(); 
    122 <a name="l00149"></a>00149 <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>._R(_Ry,_iRy); 
    123 <a name="l00150"></a>00150 }; 
    124 <a name="l00151"></a>00151  
    125 <a name="l00152"></a>00152 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    126 <a name="l00153"></a><a class="code" href="classKalman.html#239b28a0380946f5749b2f8d2807f93a">00153</a> <span class="keywordtype">void</span> <a class="code" href="classKalman.html#239b28a0380946f5749b2f8d2807f93a" title="Set parameters with check of relevance.">Kalman&lt;sq_T&gt;::set_parameters</a>(<span class="keyword">const</span> mat &amp;A0,<span class="keyword">const</span>  mat &amp;B0, <span class="keyword">const</span> mat &amp;C0, <span class="keyword">const</span> mat &amp;D0, <span class="keyword">const</span> sq_T &amp;R0, <span class="keyword">const</span> sq_T &amp;Q0) { 
    127 <a name="l00154"></a>00154         it_assert_debug( A0.cols()==dimx, <span class="stringliteral">"Kalman: A is not square"</span> ); 
    128 <a name="l00155"></a>00155         it_assert_debug( B0.rows()==dimx, <span class="stringliteral">"Kalman: B is not compatible"</span> ); 
    129 <a name="l00156"></a>00156         it_assert_debug( C0.cols()==dimx, <span class="stringliteral">"Kalman: C is not square"</span> ); 
    130 <a name="l00157"></a>00157         it_assert_debug(( D0.rows()==dimy ) || ( D0.cols()==dimu ),     <span class="stringliteral">"Kalman: D is not compatible"</span> ); 
    131 <a name="l00158"></a>00158         it_assert_debug(( R0.cols()==dimy ) || ( R0.rows()==dimy ), <span class="stringliteral">"Kalman: R is not compatible"</span> ); 
    132 <a name="l00159"></a>00159         it_assert_debug(( Q0.cols()==dimx ) || ( Q0.rows()==dimx ), <span class="stringliteral">"Kalman: Q is not compatible"</span> ); 
    133 <a name="l00160"></a>00160  
    134 <a name="l00161"></a>00161         A = A0; 
    135 <a name="l00162"></a>00162         B = B0; 
    136 <a name="l00163"></a>00163         C = C0; 
    137 <a name="l00164"></a>00164         D = D0; 
    138 <a name="l00165"></a>00165         R = R0; 
    139 <a name="l00166"></a>00166         Q = Q0;  
    140 <a name="l00167"></a>00167 } 
    141 <a name="l00168"></a>00168  
    142 <a name="l00169"></a>00169 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    143 <a name="l00170"></a><a class="code" href="classKalman.html#7750ffd73f261828a32c18aaeb65c75c">00170</a> <span class="keywordtype">void</span> <a class="code" href="classKalman.html#7750ffd73f261828a32c18aaeb65c75c" title="Here dt = [yt;ut] of appropriate dimensions.">Kalman&lt;sq_T&gt;::bayes</a>( <span class="keyword">const</span> vec &amp;dt) { 
    144 <a name="l00171"></a>00171         it_assert_debug( dt.length()==( dimy+dimu ),<span class="stringliteral">"KalmanFull::bayes wrong size of dt"</span> ); 
     99<a name="l00151"></a><a class="code" href="classKFcondQR.html">00151</a> <span class="keyword">class </span><a class="code" href="classKFcondQR.html" title="Kalman Filter with conditional diagonal matrices R and Q.">KFcondQR</a> : <span class="keyword">public</span> <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a>&lt;ldmat&gt;, <span class="keyword">public</span> <a class="code" href="classBMcond.html" title="Conditional Bayesian Filter.">BMcond</a> { 
     100<a name="l00152"></a>00152 <span class="comment">//protected:</span> 
     101<a name="l00153"></a>00153 <span class="keyword">public</span>: 
     102<a name="l00155"></a><a class="code" href="classKFcondQR.html#3f3968f92c7bbe4b0902d5e14ecc1cb4">00155</a>         <a class="code" href="classKFcondQR.html#3f3968f92c7bbe4b0902d5e14ecc1cb4" title="Default constructor.">KFcondQR</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classKalman.html#7501230c2fafa3655887d2da23b3184c" title="Indetifier of output rv.">rvy</a>, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classKalman.html#44a16ffd5ac1e6e39bae34fea9e1e498" title="Indetifier of exogeneous rv.">rvu</a>, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvRQ ) : <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a>&lt;<a class="code" href="classldmat.html" title="Matrix stored in LD form, (typically known as UD).">ldmat</a>&gt; ( rvx, rvy,rvu ),<a class="code" href="classBMcond.html" title="Conditional Bayesian Filter.">BMcond</a> ( rvRQ ) {}; 
     103<a name="l00156"></a>00156  
     104<a name="l00157"></a>00157         <span class="keywordtype">void</span> <a class="code" href="classKFcondQR.html#c9ecf292a85327aa6309c9fd70ceb606" title="Substitute val for rvc.">condition</a> ( <span class="keyword">const</span> vec &amp;RQ ); 
     105<a name="l00158"></a>00158 }; 
     106<a name="l00159"></a>00159  
     107<a name="l00164"></a><a class="code" href="classKFcondR.html">00164</a> <span class="keyword">class </span><a class="code" href="classKFcondR.html" title="Kalman Filter with conditional diagonal matrices R and Q.">KFcondR</a> : <span class="keyword">public</span> <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a>&lt;ldmat&gt;, <span class="keyword">public</span> <a class="code" href="classBMcond.html" title="Conditional Bayesian Filter.">BMcond</a> { 
     108<a name="l00165"></a>00165 <span class="comment">//protected:</span> 
     109<a name="l00166"></a>00166 <span class="keyword">public</span>: 
     110<a name="l00168"></a><a class="code" href="classKFcondR.html#d2acbb8e66c7ee592b1a9da5b429a69e">00168</a>         <a class="code" href="classKFcondR.html#d2acbb8e66c7ee592b1a9da5b429a69e" title="Default constructor.">KFcondR</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classKalman.html#7501230c2fafa3655887d2da23b3184c" title="Indetifier of output rv.">rvy</a>, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> <a class="code" href="classKalman.html#44a16ffd5ac1e6e39bae34fea9e1e498" title="Indetifier of exogeneous rv.">rvu</a>, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvR ) : <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a>&lt;<a class="code" href="classldmat.html" title="Matrix stored in LD form, (typically known as UD).">ldmat</a>&gt; ( rvx, rvy,rvu ),<a class="code" href="classBMcond.html" title="Conditional Bayesian Filter.">BMcond</a> ( rvR ) {}; 
     111<a name="l00169"></a>00169  
     112<a name="l00170"></a>00170         <span class="keywordtype">void</span> <a class="code" href="classKFcondR.html#8c0721e47879bb8840d829db7a174a7f" title="Substitute val for rvc.">condition</a> ( <span class="keyword">const</span> vec &amp;<a class="code" href="classKalman.html#11d171dc0e0ab111c56a70f98b97b3ec" title="Matrix R in square-root form.">R</a> ); 
     113<a name="l00171"></a>00171 }; 
    145114<a name="l00172"></a>00172  
    146 <a name="l00173"></a>00173         vec u = dt.get( dimy,dimy+dimu-1 ); 
    147 <a name="l00174"></a>00174         vec y = dt.get( 0,dimy-1 ); 
    148 <a name="l00175"></a>00175         <span class="comment">//Time update</span> 
    149 <a name="l00176"></a>00176         *_mu = A*(*_mu) + B*u; 
    150 <a name="l00177"></a>00177         <span class="comment">//P  = A*P*A.transpose() + Q; in sq_T</span> 
    151 <a name="l00178"></a>00178         _P-&gt;mult_sym( A ); 
    152 <a name="l00179"></a>00179         (*_P)+=Q; 
    153 <a name="l00180"></a>00180  
    154 <a name="l00181"></a>00181         <span class="comment">//Data update</span> 
    155 <a name="l00182"></a>00182         <span class="comment">//_Ry = C*P*C.transpose() + R; in sq_T</span> 
    156 <a name="l00183"></a>00183         _P-&gt;mult_sym( C, *_Ry); 
    157 <a name="l00184"></a>00184         (*_Ry)+=R; 
     115<a name="l00174"></a>00174  
     116<a name="l00175"></a>00175 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     117<a name="l00176"></a><a class="code" href="classKalman.html#ce38e31810aea4db45a83ad05eaba009">00176</a> <a class="code" href="classKalman.html#3d56b0a97b8c1e25fdd3b10eef3c2ad3" title="Default constructor.">Kalman&lt;sq_T&gt;::Kalman</a> ( <span class="keyword">const</span> <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman&lt;sq_T&gt;</a> &amp;K0 ) : <a class="code" href="classBM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a> ( K0.rv ),rvy ( K0.rvy ),rvu ( K0.rvu ), 
     118<a name="l00177"></a>00177                 dimx ( rv.count() ), dimy ( rvy.count() ),dimu ( rvu.count() ), 
     119<a name="l00178"></a>00178                 A ( dimx,dimx ), B ( dimx,dimu ), C ( dimy,dimx ), D ( dimy,dimu ),est ( rv ), fy ( rvy ) { 
     120<a name="l00179"></a>00179  
     121<a name="l00180"></a>00180         this-&gt;<a class="code" href="classKalman.html#239b28a0380946f5749b2f8d2807f93a" title="Set parameters with check of relevance.">set_parameters</a> ( K0.<a class="code" href="classKalman.html#5e02efe86ee91e9c74b93b425fe060b9" title="Matrix A.">A</a>, K0.<a class="code" href="classKalman.html#dc87704284a6c0bca13bf51f4345a50a" title="Matrix B.">B</a>, K0.<a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13" title="Matrix C.">C</a>, K0.<a class="code" href="classKalman.html#d69f774ba3335c970c1c5b1d182f4dd1" title="Matrix D.">D</a>, K0.<a class="code" href="classKalman.html#11d171dc0e0ab111c56a70f98b97b3ec" title="Matrix R in square-root form.">R</a>, K0.<a class="code" href="classKalman.html#9b69015c800eb93f3ee49da23a6f55d9" title="Matrix Q in square-root form.">Q</a> ); 
     122<a name="l00181"></a>00181  
     123<a name="l00182"></a>00182 <span class="comment">//establish pointers</span> 
     124<a name="l00183"></a>00183         <a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734" title="cache of est.mu">_mu</a> = <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>._mu(); 
     125<a name="l00184"></a>00184         <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>._R ( <a class="code" href="classKalman.html#b3388218567128a797e69b109138271d" title="cache of est.R">_P</a>,<a class="code" href="classKalman.html#13fec2c93d8a132201e28b70270acf5c" title="cache of est.iR">_iP</a> ); 
    158126<a name="l00185"></a>00185  
    159 <a name="l00186"></a>00186         mat Pfull = _P-&gt;to_mat(); 
    160 <a name="l00187"></a>00187          
    161 <a name="l00188"></a>00188         _Ry-&gt;inv( *_iRy ); <span class="comment">// result is in _iRy;</span> 
    162 <a name="l00189"></a>00189         _K = Pfull*C.transpose()*(_iRy-&gt;to_mat()); 
    163 <a name="l00190"></a>00190          
    164 <a name="l00191"></a>00191         sq_T pom((<span class="keywordtype">int</span>)Pfull.rows()); 
    165 <a name="l00192"></a>00192         _iRy-&gt;mult_sym_t(C*Pfull,pom); 
    166 <a name="l00193"></a>00193         (*_P) -= pom; <span class="comment">// P = P -PC'iRy*CP;</span> 
    167 <a name="l00194"></a>00194         (*_yp) = C*(*_mu)+D*u; <span class="comment">//y prediction</span> 
    168 <a name="l00195"></a>00195         (*_mu) += _K*( y-(*_yp) ); 
    169 <a name="l00196"></a>00196          
    170 <a name="l00197"></a>00197         <span class="keywordflow">if</span> (<a class="code" href="classBM.html#bf6fb59b30141074f8ee1e2f43d03129" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>==<span class="keyword">true</span>) { 
    171 <a name="l00198"></a>00198                 <a class="code" href="classBM.html#5623fef6572a08c2b53b8c87b82dc979" title="Logarithm of marginalized data likelihood.">ll</a>+=<a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>.evalpdflog(*_yp); 
    172 <a name="l00199"></a>00199         } 
    173 <a name="l00200"></a>00200 }; 
    174 <a name="l00201"></a>00201  
    175 <a name="l00202"></a>00202 <span class="comment">//TODO why not const pointer??</span> 
    176 <a name="l00203"></a>00203  
    177 <a name="l00204"></a>00204 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    178 <a name="l00205"></a><a class="code" href="classEKF.html#ea4f3254cacf0a92d2a820b1201d049e">00205</a> <a class="code" href="classEKF.html#ea4f3254cacf0a92d2a820b1201d049e" title="Default constructor.">EKF&lt;sq_T&gt;::EKF</a>(<a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx0, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvy0, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvu0): <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a>&lt;ldmat&gt;(rvx0,rvy0,rvu0){} 
    179 <a name="l00206"></a>00206  
    180 <a name="l00207"></a>00207 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    181 <a name="l00208"></a>00208 <span class="keywordtype">void</span> <a class="code" href="classEKF.html" title="Extended Kalman Filter.">EKF&lt;sq_T&gt;::set_parameters</a>(<a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* pfxu0,  <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* phxu0,<span class="keyword">const</span> sq_T Q0,<span class="keyword">const</span> sq_T R0) { 
    182 <a name="l00209"></a>00209                 pfxu = pfxu0; 
    183 <a name="l00210"></a>00210                 phxu = phxu0; 
    184 <a name="l00211"></a>00211                  
    185 <a name="l00212"></a>00212                 <span class="comment">//initialize matrices A C, later, these will be only updated!</span> 
    186 <a name="l00213"></a>00213                 pfxu-&gt;<a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates  and writes result into A .">dfdx_cond</a>(*_mu,zeros(dimu),A,<span class="keyword">true</span>); 
    187 <a name="l00214"></a>00214                 pfxu-&gt;<a class="code" href="classdiffbifn.html#1978bafd7909d15c139a08c495c24aa0" title="Evaluates  and writes result into A .">dfdu_cond</a>(*_mu,zeros(dimu),B,<span class="keyword">true</span>); 
    188 <a name="l00215"></a>00215                 phxu-&gt;<a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates  and writes result into A .">dfdx_cond</a>(*_mu,zeros(dimu),C,<span class="keyword">true</span>); 
    189 <a name="l00216"></a>00216                 phxu-&gt;<a class="code" href="classdiffbifn.html#1978bafd7909d15c139a08c495c24aa0" title="Evaluates  and writes result into A .">dfdu_cond</a>(*_mu,zeros(dimu),D,<span class="keyword">true</span>); 
    190 <a name="l00217"></a>00217  
    191 <a name="l00218"></a>00218                 R = R0; 
    192 <a name="l00219"></a>00219                 Q = Q0; 
    193 <a name="l00220"></a>00220  
    194 <a name="l00221"></a>00221         <span class="keyword">using</span> std::cout; 
    195 <a name="l00222"></a>00222         cout&lt;&lt;A&lt;&lt;std::endl; 
    196 <a name="l00223"></a>00223         cout&lt;&lt;B&lt;&lt;std::endl; 
    197 <a name="l00224"></a>00224         cout&lt;&lt;C&lt;&lt;std::endl; 
    198 <a name="l00225"></a>00225         cout&lt;&lt;D&lt;&lt;std::endl; 
    199 <a name="l00226"></a>00226  
    200 <a name="l00227"></a>00227 } 
    201 <a name="l00228"></a>00228  
    202 <a name="l00229"></a>00229 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    203 <a name="l00230"></a><a class="code" href="classEKF.html#c79c62c9b3e0b56b3aaa1b6f1d9a7af7">00230</a> <span class="keywordtype">void</span> <a class="code" href="classEKF.html#c79c62c9b3e0b56b3aaa1b6f1d9a7af7" title="Here dt = [yt;ut] of appropriate dimensions.">EKF&lt;sq_T&gt;::bayes</a>( <span class="keyword">const</span> vec &amp;dt) { 
    204 <a name="l00231"></a>00231         it_assert_debug( dt.length()==( dimy+dimu ),<span class="stringliteral">"KalmanFull::bayes wrong size of dt"</span> ); 
     127<a name="l00186"></a>00186 <span class="comment">//fy</span> 
     128<a name="l00187"></a>00187         <a class="code" href="classKalman.html#5188eb0329f8561f0b357af329769bf8" title="cache of fy.mu">_yp</a> = <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>._mu(); 
     129<a name="l00188"></a>00188         <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>._R ( <a class="code" href="classKalman.html#e17dd745daa8a958035a334a56fa4674" title="cache of fy.R">_Ry</a>,<a class="code" href="classKalman.html#8a35bd14afa5a2d9bbd23ad333bec874" title="cache of fy.iR">_iRy</a> ); 
     130<a name="l00189"></a>00189  
     131<a name="l00190"></a>00190 <span class="comment">//reset copy values in pointers</span> 
     132<a name="l00191"></a>00191         *<a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734" title="cache of est.mu">_mu</a> = *K0.<a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734" title="cache of est.mu">_mu</a>; 
     133<a name="l00192"></a>00192         *<a class="code" href="classKalman.html#b3388218567128a797e69b109138271d" title="cache of est.R">_P</a> = *K0.<a class="code" href="classKalman.html#b3388218567128a797e69b109138271d" title="cache of est.R">_P</a>; 
     134<a name="l00193"></a>00193         *<a class="code" href="classKalman.html#13fec2c93d8a132201e28b70270acf5c" title="cache of est.iR">_iP</a> = *K0.<a class="code" href="classKalman.html#13fec2c93d8a132201e28b70270acf5c" title="cache of est.iR">_iP</a>; 
     135<a name="l00194"></a>00194         *<a class="code" href="classKalman.html#5188eb0329f8561f0b357af329769bf8" title="cache of fy.mu">_yp</a> = *K0.<a class="code" href="classKalman.html#5188eb0329f8561f0b357af329769bf8" title="cache of fy.mu">_yp</a>; 
     136<a name="l00195"></a>00195         *<a class="code" href="classKalman.html#8a35bd14afa5a2d9bbd23ad333bec874" title="cache of fy.iR">_iRy</a> = *K0.<a class="code" href="classKalman.html#8a35bd14afa5a2d9bbd23ad333bec874" title="cache of fy.iR">_iRy</a>; 
     137<a name="l00196"></a>00196         *<a class="code" href="classKalman.html#e17dd745daa8a958035a334a56fa4674" title="cache of fy.R">_Ry</a> = *K0.<a class="code" href="classKalman.html#e17dd745daa8a958035a334a56fa4674" title="cache of fy.R">_Ry</a>; 
     138<a name="l00197"></a>00197  
     139<a name="l00198"></a>00198 } 
     140<a name="l00199"></a>00199  
     141<a name="l00200"></a>00200 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     142<a name="l00201"></a><a class="code" href="classKalman.html#3d56b0a97b8c1e25fdd3b10eef3c2ad3">00201</a> <a class="code" href="classKalman.html#3d56b0a97b8c1e25fdd3b10eef3c2ad3" title="Default constructor.">Kalman&lt;sq_T&gt;::Kalman</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvy0, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvu0 ) : <a class="code" href="classBM.html" title="Bayesian Model of the world, i.e. all uncertainty is modeled by probabilities.">BM</a> ( rvx ),<a class="code" href="classKalman.html#7501230c2fafa3655887d2da23b3184c" title="Indetifier of output rv.">rvy</a> ( rvy0 ),<a class="code" href="classKalman.html#44a16ffd5ac1e6e39bae34fea9e1e498" title="Indetifier of exogeneous rv.">rvu</a> ( rvu0 ), 
     143<a name="l00202"></a>00202                 <a class="code" href="classKalman.html#39c8c403b46fa3b8c7da77cb2e3729eb" title="cache of rv.count()">dimx</a> ( rvx.count() ), <a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a> ( <a class="code" href="classKalman.html#7501230c2fafa3655887d2da23b3184c" title="Indetifier of output rv.">rvy</a>.count() ),<a class="code" href="classKalman.html#b0153795a1444b6968a86409c778d9ce" title="cache of rvu.count()">dimu</a> ( <a class="code" href="classKalman.html#44a16ffd5ac1e6e39bae34fea9e1e498" title="Indetifier of exogeneous rv.">rvu</a>.count() ), 
     144<a name="l00203"></a>00203                 <a class="code" href="classKalman.html#5e02efe86ee91e9c74b93b425fe060b9" title="Matrix A.">A</a> ( <a class="code" href="classKalman.html#39c8c403b46fa3b8c7da77cb2e3729eb" title="cache of rv.count()">dimx</a>,<a class="code" href="classKalman.html#39c8c403b46fa3b8c7da77cb2e3729eb" title="cache of rv.count()">dimx</a> ), <a class="code" href="classKalman.html#dc87704284a6c0bca13bf51f4345a50a" title="Matrix B.">B</a> ( <a class="code" href="classKalman.html#39c8c403b46fa3b8c7da77cb2e3729eb" title="cache of rv.count()">dimx</a>,<a class="code" href="classKalman.html#b0153795a1444b6968a86409c778d9ce" title="cache of rvu.count()">dimu</a> ), <a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13" title="Matrix C.">C</a> ( <a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a>,<a class="code" href="classKalman.html#39c8c403b46fa3b8c7da77cb2e3729eb" title="cache of rv.count()">dimx</a> ), <a class="code" href="classKalman.html#d69f774ba3335c970c1c5b1d182f4dd1" title="Matrix D.">D</a> ( <a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a>,<a class="code" href="classKalman.html#b0153795a1444b6968a86409c778d9ce" title="cache of rvu.count()">dimu</a> ), 
     145<a name="l00204"></a>00204                 <a class="code" href="classKalman.html#9b69015c800eb93f3ee49da23a6f55d9" title="Matrix Q in square-root form.">Q</a>(<a class="code" href="classKalman.html#39c8c403b46fa3b8c7da77cb2e3729eb" title="cache of rv.count()">dimx</a>), <a class="code" href="classKalman.html#11d171dc0e0ab111c56a70f98b97b3ec" title="Matrix R in square-root form.">R</a> (<a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a>), 
     146<a name="l00205"></a>00205                 <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a> ( rvx ), <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a> ( <a class="code" href="classKalman.html#7501230c2fafa3655887d2da23b3184c" title="Indetifier of output rv.">rvy</a> ) { 
     147<a name="l00206"></a>00206 <span class="comment">//assign cache</span> 
     148<a name="l00207"></a>00207 <span class="comment">//est</span> 
     149<a name="l00208"></a>00208         <a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734" title="cache of est.mu">_mu</a> = <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>._mu(); 
     150<a name="l00209"></a>00209         <a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>._R ( <a class="code" href="classKalman.html#b3388218567128a797e69b109138271d" title="cache of est.R">_P</a>,<a class="code" href="classKalman.html#13fec2c93d8a132201e28b70270acf5c" title="cache of est.iR">_iP</a> ); 
     151<a name="l00210"></a>00210  
     152<a name="l00211"></a>00211 <span class="comment">//fy</span> 
     153<a name="l00212"></a>00212         <a class="code" href="classKalman.html#5188eb0329f8561f0b357af329769bf8" title="cache of fy.mu">_yp</a> = <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>._mu(); 
     154<a name="l00213"></a>00213         <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>._R ( <a class="code" href="classKalman.html#e17dd745daa8a958035a334a56fa4674" title="cache of fy.R">_Ry</a>,<a class="code" href="classKalman.html#8a35bd14afa5a2d9bbd23ad333bec874" title="cache of fy.iR">_iRy</a> ); 
     155<a name="l00214"></a>00214 }; 
     156<a name="l00215"></a>00215  
     157<a name="l00216"></a>00216 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     158<a name="l00217"></a><a class="code" href="classKalman.html#239b28a0380946f5749b2f8d2807f93a">00217</a> <span class="keywordtype">void</span> <a class="code" href="classKalman.html#239b28a0380946f5749b2f8d2807f93a" title="Set parameters with check of relevance.">Kalman&lt;sq_T&gt;::set_parameters</a> ( <span class="keyword">const</span> mat &amp;A0,<span class="keyword">const</span>  mat &amp;B0, <span class="keyword">const</span> mat &amp;C0, <span class="keyword">const</span> mat &amp;D0, <span class="keyword">const</span> sq_T &amp;R0, <span class="keyword">const</span> sq_T &amp;Q0 ) { 
     159<a name="l00218"></a>00218         it_assert_debug ( A0.cols() ==<a class="code" href="classKalman.html#39c8c403b46fa3b8c7da77cb2e3729eb" title="cache of rv.count()">dimx</a>, <span class="stringliteral">"Kalman: A is not square"</span> ); 
     160<a name="l00219"></a>00219         it_assert_debug ( B0.rows() ==<a class="code" href="classKalman.html#39c8c403b46fa3b8c7da77cb2e3729eb" title="cache of rv.count()">dimx</a>, <span class="stringliteral">"Kalman: B is not compatible"</span> ); 
     161<a name="l00220"></a>00220         it_assert_debug ( C0.cols() ==<a class="code" href="classKalman.html#39c8c403b46fa3b8c7da77cb2e3729eb" title="cache of rv.count()">dimx</a>, <span class="stringliteral">"Kalman: C is not square"</span> ); 
     162<a name="l00221"></a>00221         it_assert_debug ( ( D0.rows() ==<a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a> ) || ( D0.cols() ==<a class="code" href="classKalman.html#b0153795a1444b6968a86409c778d9ce" title="cache of rvu.count()">dimu</a> ), <span class="stringliteral">"Kalman: D is not compatible"</span> ); 
     163<a name="l00222"></a>00222         it_assert_debug ( ( R0.cols() ==<a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a> ) || ( R0.rows() ==<a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a> ), <span class="stringliteral">"Kalman: R is not compatible"</span> ); 
     164<a name="l00223"></a>00223         it_assert_debug ( ( Q0.cols() ==<a class="code" href="classKalman.html#39c8c403b46fa3b8c7da77cb2e3729eb" title="cache of rv.count()">dimx</a> ) || ( Q0.rows() ==<a class="code" href="classKalman.html#39c8c403b46fa3b8c7da77cb2e3729eb" title="cache of rv.count()">dimx</a> ), <span class="stringliteral">"Kalman: Q is not compatible"</span> ); 
     165<a name="l00224"></a>00224  
     166<a name="l00225"></a>00225         <a class="code" href="classKalman.html#5e02efe86ee91e9c74b93b425fe060b9" title="Matrix A.">A</a> = A0; 
     167<a name="l00226"></a>00226         <a class="code" href="classKalman.html#dc87704284a6c0bca13bf51f4345a50a" title="Matrix B.">B</a> = B0; 
     168<a name="l00227"></a>00227         <a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13" title="Matrix C.">C</a> = C0; 
     169<a name="l00228"></a>00228         <a class="code" href="classKalman.html#d69f774ba3335c970c1c5b1d182f4dd1" title="Matrix D.">D</a> = D0; 
     170<a name="l00229"></a>00229         <a class="code" href="classKalman.html#11d171dc0e0ab111c56a70f98b97b3ec" title="Matrix R in square-root form.">R</a> = R0; 
     171<a name="l00230"></a>00230         <a class="code" href="classKalman.html#9b69015c800eb93f3ee49da23a6f55d9" title="Matrix Q in square-root form.">Q</a> = Q0; 
     172<a name="l00231"></a>00231 } 
    205173<a name="l00232"></a>00232  
    206 <a name="l00233"></a>00233         vec u = dt.get( dimy,dimy+dimu-1 ); 
    207 <a name="l00234"></a>00234         vec y = dt.get( 0,dimy-1 ); 
    208 <a name="l00235"></a>00235         <span class="comment">//Time update</span> 
    209 <a name="l00236"></a>00236         *_mu = pfxu-&gt;<a class="code" href="classdiffbifn.html#ad7673e16aa1a046b131b24c731c4632" title="Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ).">eval</a>(*_mu, u); 
    210 <a name="l00237"></a>00237         pfxu-&gt;<a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates  and writes result into A .">dfdx_cond</a>(*_mu,u,A,<span class="keyword">false</span>); <span class="comment">//update A by a derivative of fx</span> 
    211 <a name="l00238"></a>00238          
    212 <a name="l00239"></a>00239         <span class="comment">//P  = A*P*A.transpose() + Q; in sq_T</span> 
    213 <a name="l00240"></a>00240         _P-&gt;mult_sym( A ); 
    214 <a name="l00241"></a>00241         (*_P)+=Q; 
    215 <a name="l00242"></a>00242  
    216 <a name="l00243"></a>00243         <span class="comment">//Data update</span> 
    217 <a name="l00244"></a>00244         phxu-&gt;<a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates  and writes result into A .">dfdx_cond</a>(*_mu,u,C,<span class="keyword">false</span>); <span class="comment">//update C by a derivative hx</span> 
    218 <a name="l00245"></a>00245         <span class="comment">//_Ry = C*P*C.transpose() + R; in sq_T</span> 
    219 <a name="l00246"></a>00246         _P-&gt;mult_sym( C, *_Ry); 
    220 <a name="l00247"></a>00247         (*_Ry)+=R; 
    221 <a name="l00248"></a>00248  
    222 <a name="l00249"></a>00249         mat Pfull = _P-&gt;to_mat(); 
    223 <a name="l00250"></a>00250          
    224 <a name="l00251"></a>00251         _Ry-&gt;inv( *_iRy ); <span class="comment">// result is in _iRy;</span> 
    225 <a name="l00252"></a>00252         _K = Pfull*C.transpose()*(_iRy-&gt;to_mat()); 
    226 <a name="l00253"></a>00253          
    227 <a name="l00254"></a>00254         sq_T pom((<span class="keywordtype">int</span>)Pfull.rows()); 
    228 <a name="l00255"></a>00255         _iRy-&gt;mult_sym_t(C*Pfull,pom); 
    229 <a name="l00256"></a>00256         (*_P) -= pom; <span class="comment">// P = P -PC'iRy*CP;</span> 
    230 <a name="l00257"></a>00257         *_yp = phxu-&gt;<a class="code" href="classdiffbifn.html#ad7673e16aa1a046b131b24c731c4632" title="Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ).">eval</a>(*_mu,u); <span class="comment">//y prediction</span> 
    231 <a name="l00258"></a>00258         (*_mu) += _K*( y-*_yp ); 
    232 <a name="l00259"></a>00259          
    233 <a name="l00260"></a>00260         <span class="keywordflow">if</span> (<a class="code" href="classBM.html#bf6fb59b30141074f8ee1e2f43d03129" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>==<span class="keyword">true</span>) {<a class="code" href="classBM.html#5623fef6572a08c2b53b8c87b82dc979" title="Logarithm of marginalized data likelihood.">ll</a>+=<a class="code" href="classKalman.html#5568c74bac67ae6d3b1061dba60c9424" title="posterior density on $x_t$">est</a>.<a class="code" href="classenorm.html#9517594915e897584eaebbb057ed8881" title="Compute log-probability of argument val.">evalpdflog</a>(y);} 
    234 <a name="l00261"></a>00261 }; 
     174<a name="l00233"></a>00233 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     175<a name="l00234"></a><a class="code" href="classKalman.html#7750ffd73f261828a32c18aaeb65c75c">00234</a> <span class="keywordtype">void</span> <a class="code" href="classKalman.html#7750ffd73f261828a32c18aaeb65c75c" title="Here dt = [yt;ut] of appropriate dimensions.">Kalman&lt;sq_T&gt;::bayes</a> ( <span class="keyword">const</span> vec &amp;dt ) { 
     176<a name="l00235"></a>00235         it_assert_debug ( dt.length() == ( <a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a>+<a class="code" href="classKalman.html#b0153795a1444b6968a86409c778d9ce" title="cache of rvu.count()">dimu</a> ),<span class="stringliteral">"KalmanFull::bayes wrong size of dt"</span> ); 
     177<a name="l00236"></a>00236  
     178<a name="l00237"></a>00237         vec u = dt.get ( <a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a>,<a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a>+<a class="code" href="classKalman.html#b0153795a1444b6968a86409c778d9ce" title="cache of rvu.count()">dimu</a>-1 ); 
     179<a name="l00238"></a>00238         vec y = dt.get ( 0,<a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a>-1 ); 
     180<a name="l00239"></a>00239         <span class="comment">//Time update</span> 
     181<a name="l00240"></a>00240         *<a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734" title="cache of est.mu">_mu</a> = <a class="code" href="classKalman.html#5e02efe86ee91e9c74b93b425fe060b9" title="Matrix A.">A</a>* ( *_mu ) + <a class="code" href="classKalman.html#dc87704284a6c0bca13bf51f4345a50a" title="Matrix B.">B</a>*u; 
     182<a name="l00241"></a>00241         <span class="comment">//P  = A*P*A.transpose() + Q; in sq_T</span> 
     183<a name="l00242"></a>00242         <a class="code" href="classKalman.html#b3388218567128a797e69b109138271d" title="cache of est.R">_P</a>-&gt;mult_sym ( <a class="code" href="classKalman.html#5e02efe86ee91e9c74b93b425fe060b9" title="Matrix A.">A</a> ); 
     184<a name="l00243"></a>00243         ( *_P ) +=<a class="code" href="classKalman.html#9b69015c800eb93f3ee49da23a6f55d9" title="Matrix Q in square-root form.">Q</a>; 
     185<a name="l00244"></a>00244  
     186<a name="l00245"></a>00245         <span class="comment">//Data update</span> 
     187<a name="l00246"></a>00246         <span class="comment">//_Ry = C*P*C.transpose() + R; in sq_T</span> 
     188<a name="l00247"></a>00247         <a class="code" href="classKalman.html#b3388218567128a797e69b109138271d" title="cache of est.R">_P</a>-&gt;mult_sym ( <a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13" title="Matrix C.">C</a>, *<a class="code" href="classKalman.html#e17dd745daa8a958035a334a56fa4674" title="cache of fy.R">_Ry</a> ); 
     189<a name="l00248"></a>00248         ( *_Ry ) +=<a class="code" href="classKalman.html#11d171dc0e0ab111c56a70f98b97b3ec" title="Matrix R in square-root form.">R</a>; 
     190<a name="l00249"></a>00249  
     191<a name="l00250"></a>00250         mat Pfull = <a class="code" href="classKalman.html#b3388218567128a797e69b109138271d" title="cache of est.R">_P</a>-&gt;to_mat(); 
     192<a name="l00251"></a>00251  
     193<a name="l00252"></a>00252         <a class="code" href="classKalman.html#e17dd745daa8a958035a334a56fa4674" title="cache of fy.R">_Ry</a>-&gt;inv ( *<a class="code" href="classKalman.html#8a35bd14afa5a2d9bbd23ad333bec874" title="cache of fy.iR">_iRy</a> ); <span class="comment">// result is in _iRy;</span> 
     194<a name="l00253"></a>00253         <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>._cached ( <span class="keyword">true</span> ); 
     195<a name="l00254"></a>00254         <a class="code" href="classKalman.html#d422f51467c7a06174af2476d2826132" title="placeholder for Kalman gain">_K</a> = Pfull*<a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13" title="Matrix C.">C</a>.transpose() * ( <a class="code" href="classKalman.html#8a35bd14afa5a2d9bbd23ad333bec874" title="cache of fy.iR">_iRy</a>-&gt;to_mat() ); 
     196<a name="l00255"></a>00255  
     197<a name="l00256"></a>00256         sq_T pom ( ( <span class="keywordtype">int</span> ) Pfull.rows() ); 
     198<a name="l00257"></a>00257         <a class="code" href="classKalman.html#8a35bd14afa5a2d9bbd23ad333bec874" title="cache of fy.iR">_iRy</a>-&gt;mult_sym_t ( <a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13" title="Matrix C.">C</a>*Pfull,pom ); 
     199<a name="l00258"></a>00258         ( *_P ) -= pom; <span class="comment">// P = P -PC'iRy*CP;</span> 
     200<a name="l00259"></a>00259         ( *_yp ) = <a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13" title="Matrix C.">C</a>* ( *_mu ) +<a class="code" href="classKalman.html#d69f774ba3335c970c1c5b1d182f4dd1" title="Matrix D.">D</a>*u; <span class="comment">//y prediction</span> 
     201<a name="l00260"></a>00260         ( *_mu ) += <a class="code" href="classKalman.html#d422f51467c7a06174af2476d2826132" title="placeholder for Kalman gain">_K</a>* ( y- ( *_yp ) ); 
     202<a name="l00261"></a>00261  
    235203<a name="l00262"></a>00262  
    236 <a name="l00263"></a>00263  
    237 <a name="l00264"></a>00264 <span class="preprocessor">#endif // KF_H</span> 
    238 <a name="l00265"></a>00265 <span class="preprocessor"></span> 
     204<a name="l00263"></a>00263         <span class="keywordflow">if</span> ( <a class="code" href="classBM.html#bf6fb59b30141074f8ee1e2f43d03129" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>==<span class="keyword">true</span> ) { <span class="comment">//likelihood of observation y</span> 
     205<a name="l00264"></a>00264                 <a class="code" href="classBM.html#5623fef6572a08c2b53b8c87b82dc979" title="Logarithm of marginalized data likelihood.">ll</a>=<a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>.evalpdflog ( y ); 
     206<a name="l00265"></a>00265         } 
    239207<a name="l00266"></a>00266  
    240 </pre></div><hr size="1"><address style="text-align: right;"><small>Generated on Thu Feb 28 16:54:39 2008 for mixpp by&nbsp; 
     208<a name="l00267"></a>00267 <span class="comment">//cout &lt;&lt; "y: " &lt;&lt; y-(*_yp) &lt;&lt;" R: " &lt;&lt; _Ry-&gt;to_mat() &lt;&lt; " iR: " &lt;&lt; _iRy-&gt;to_mat() &lt;&lt; " ll: " &lt;&lt; ll &lt;&lt;endl;</span> 
     209<a name="l00268"></a>00268  
     210<a name="l00269"></a>00269 }; 
     211<a name="l00270"></a>00270  
     212<a name="l00271"></a>00271 <span class="comment">//TODO why not const pointer??</span> 
     213<a name="l00272"></a>00272  
     214<a name="l00273"></a>00273 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     215<a name="l00274"></a><a class="code" href="classEKF.html#ea4f3254cacf0a92d2a820b1201d049e">00274</a> <a class="code" href="classEKF.html#ea4f3254cacf0a92d2a820b1201d049e" title="Default constructor.">EKF&lt;sq_T&gt;::EKF</a> ( <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvx0, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvy0, <a class="code" href="classRV.html" title="Class representing variables, most often random variables.">RV</a> rvu0 ) : <a class="code" href="classKalman.html" title="Kalman filter with covariance matrices in square root form.">Kalman</a>&lt;<a class="code" href="classldmat.html" title="Matrix stored in LD form, (typically known as UD).">ldmat</a>&gt; ( rvx0,rvy0,rvu0 ) {} 
     216<a name="l00275"></a>00275  
     217<a name="l00276"></a>00276 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     218<a name="l00277"></a><a class="code" href="classEKF.html#28d058ae4d24d992d2f055419a06ee66">00277</a> <span class="keywordtype">void</span> <a class="code" href="classEKF.html#28d058ae4d24d992d2f055419a06ee66" title="Set nonlinear functions for mean values and covariance matrices.">EKF&lt;sq_T&gt;::set_parameters</a> ( <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* pfxu0,  <a class="code" href="classdiffbifn.html" title="Class representing a differentiable function of two variables $f(x,u)$.">diffbifn</a>* phxu0,<span class="keyword">const</span> sq_T Q0,<span class="keyword">const</span> sq_T R0 ) { 
     219<a name="l00278"></a>00278         pfxu = pfxu0; 
     220<a name="l00279"></a>00279         phxu = phxu0; 
     221<a name="l00280"></a>00280  
     222<a name="l00281"></a>00281         <span class="comment">//initialize matrices A C, later, these will be only updated!</span> 
     223<a name="l00282"></a>00282         pfxu-&gt;<a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates  and writes result into A .">dfdx_cond</a> ( *<a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734" title="cache of est.mu">_mu</a>,zeros ( <a class="code" href="classKalman.html#b0153795a1444b6968a86409c778d9ce" title="cache of rvu.count()">dimu</a> ),<a class="code" href="classKalman.html#5e02efe86ee91e9c74b93b425fe060b9" title="Matrix A.">A</a>,<span class="keyword">true</span> ); 
     224<a name="l00283"></a>00283 <span class="comment">//      pfxu-&gt;dfdu_cond ( *_mu,zeros ( dimu ),B,true );</span> 
     225<a name="l00284"></a>00284         <a class="code" href="classKalman.html#dc87704284a6c0bca13bf51f4345a50a" title="Matrix B.">B</a>.clear(); 
     226<a name="l00285"></a>00285         phxu-&gt;<a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates  and writes result into A .">dfdx_cond</a> ( *<a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734" title="cache of est.mu">_mu</a>,zeros ( <a class="code" href="classKalman.html#b0153795a1444b6968a86409c778d9ce" title="cache of rvu.count()">dimu</a> ),<a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13" title="Matrix C.">C</a>,<span class="keyword">true</span> ); 
     227<a name="l00286"></a>00286 <span class="comment">//      phxu-&gt;dfdu_cond ( *_mu,zeros ( dimu ),D,true );</span> 
     228<a name="l00287"></a>00287         <a class="code" href="classKalman.html#d69f774ba3335c970c1c5b1d182f4dd1" title="Matrix D.">D</a>.clear(); 
     229<a name="l00288"></a>00288  
     230<a name="l00289"></a>00289         <a class="code" href="classKalman.html#11d171dc0e0ab111c56a70f98b97b3ec" title="Matrix R in square-root form.">R</a> = R0; 
     231<a name="l00290"></a>00290         <a class="code" href="classKalman.html#9b69015c800eb93f3ee49da23a6f55d9" title="Matrix Q in square-root form.">Q</a> = Q0; 
     232<a name="l00291"></a>00291 } 
     233<a name="l00292"></a>00292  
     234<a name="l00293"></a>00293 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     235<a name="l00294"></a><a class="code" href="classEKF.html#c79c62c9b3e0b56b3aaa1b6f1d9a7af7">00294</a> <span class="keywordtype">void</span> <a class="code" href="classEKF.html#c79c62c9b3e0b56b3aaa1b6f1d9a7af7" title="Here dt = [yt;ut] of appropriate dimensions.">EKF&lt;sq_T&gt;::bayes</a> ( <span class="keyword">const</span> vec &amp;dt ) { 
     236<a name="l00295"></a>00295         it_assert_debug ( dt.length() == ( <a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a>+<a class="code" href="classKalman.html#b0153795a1444b6968a86409c778d9ce" title="cache of rvu.count()">dimu</a> ),<span class="stringliteral">"KalmanFull::bayes wrong size of dt"</span> ); 
     237<a name="l00296"></a>00296  
     238<a name="l00297"></a>00297         vec u = dt.get ( <a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a>,<a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a>+<a class="code" href="classKalman.html#b0153795a1444b6968a86409c778d9ce" title="cache of rvu.count()">dimu</a>-1 ); 
     239<a name="l00298"></a>00298         vec y = dt.get ( 0,<a class="code" href="classKalman.html#ba17b956df1e38b31fbbc299c8213b6a" title="cache of rvy.count()">dimy</a>-1 ); 
     240<a name="l00299"></a>00299         <span class="comment">//Time update</span> 
     241<a name="l00300"></a>00300         *<a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734" title="cache of est.mu">_mu</a> = pfxu-&gt;<a class="code" href="classdiffbifn.html#ad7673e16aa1a046b131b24c731c4632" title="Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ).">eval</a> ( *<a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734" title="cache of est.mu">_mu</a>, u ); 
     242<a name="l00301"></a>00301         pfxu-&gt;<a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates  and writes result into A .">dfdx_cond</a> ( *<a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734" title="cache of est.mu">_mu</a>,u,<a class="code" href="classKalman.html#5e02efe86ee91e9c74b93b425fe060b9" title="Matrix A.">A</a>,<span class="keyword">false</span> ); <span class="comment">//update A by a derivative of fx</span> 
     243<a name="l00302"></a>00302  
     244<a name="l00303"></a>00303         <span class="comment">//P  = A*P*A.transpose() + Q; in sq_T</span> 
     245<a name="l00304"></a>00304         <a class="code" href="classKalman.html#b3388218567128a797e69b109138271d" title="cache of est.R">_P</a>-&gt;<a class="code" href="classldmat.html#e967b9425007f0cb6cd59b845f9756d8" title="Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C&amp;#39;$.">mult_sym</a> ( <a class="code" href="classKalman.html#5e02efe86ee91e9c74b93b425fe060b9" title="Matrix A.">A</a> ); 
     246<a name="l00305"></a>00305         ( *_P ) +=<a class="code" href="classKalman.html#9b69015c800eb93f3ee49da23a6f55d9" title="Matrix Q in square-root form.">Q</a>; 
     247<a name="l00306"></a>00306  
     248<a name="l00307"></a>00307         <span class="comment">//Data update</span> 
     249<a name="l00308"></a>00308         phxu-&gt;<a class="code" href="classdiffbifn.html#6d217a02d4fa13931258d4bebdd0feb4" title="Evaluates  and writes result into A .">dfdx_cond</a> ( *<a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734" title="cache of est.mu">_mu</a>,u,<a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13" title="Matrix C.">C</a>,<span class="keyword">false</span> ); <span class="comment">//update C by a derivative hx</span> 
     250<a name="l00309"></a>00309         <span class="comment">//_Ry = C*P*C.transpose() + R; in sq_T</span> 
     251<a name="l00310"></a>00310         <a class="code" href="classKalman.html#b3388218567128a797e69b109138271d" title="cache of est.R">_P</a>-&gt;<a class="code" href="classldmat.html#e967b9425007f0cb6cd59b845f9756d8" title="Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C&amp;#39;$.">mult_sym</a> ( <a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13" title="Matrix C.">C</a>, *<a class="code" href="classKalman.html#e17dd745daa8a958035a334a56fa4674" title="cache of fy.R">_Ry</a> ); 
     252<a name="l00311"></a>00311         ( *_Ry ) +=<a class="code" href="classKalman.html#11d171dc0e0ab111c56a70f98b97b3ec" title="Matrix R in square-root form.">R</a>; 
     253<a name="l00312"></a>00312  
     254<a name="l00313"></a>00313         mat Pfull = <a class="code" href="classKalman.html#b3388218567128a797e69b109138271d" title="cache of est.R">_P</a>-&gt;<a class="code" href="classldmat.html#5b0515da8dc2293d9e4360b74cc26c9e" title="Conversion to full matrix.">to_mat</a>(); 
     255<a name="l00314"></a>00314  
     256<a name="l00315"></a>00315         <a class="code" href="classKalman.html#e17dd745daa8a958035a334a56fa4674" title="cache of fy.R">_Ry</a>-&gt;<a class="code" href="classldmat.html#2c160cb123c1102face7a50ec566a031" title="Matrix inversion preserving the chosen form.">inv</a> ( *<a class="code" href="classKalman.html#8a35bd14afa5a2d9bbd23ad333bec874" title="cache of fy.iR">_iRy</a> ); <span class="comment">// result is in _iRy;</span> 
     257<a name="l00316"></a>00316         <a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>.<a class="code" href="classenorm.html#c9ca4f2ca42568e40ca146168e7f3247" title="set cache as inconsistent">_cached</a> ( <span class="keyword">true</span> ); 
     258<a name="l00317"></a>00317         <a class="code" href="classKalman.html#d422f51467c7a06174af2476d2826132" title="placeholder for Kalman gain">_K</a> = Pfull*<a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13" title="Matrix C.">C</a>.transpose() * ( <a class="code" href="classKalman.html#8a35bd14afa5a2d9bbd23ad333bec874" title="cache of fy.iR">_iRy</a>-&gt;<a class="code" href="classldmat.html#5b0515da8dc2293d9e4360b74cc26c9e" title="Conversion to full matrix.">to_mat</a>() ); 
     259<a name="l00318"></a>00318  
     260<a name="l00319"></a>00319         sq_T pom ( ( <span class="keywordtype">int</span> ) Pfull.rows() ); 
     261<a name="l00320"></a>00320         <a class="code" href="classKalman.html#8a35bd14afa5a2d9bbd23ad333bec874" title="cache of fy.iR">_iRy</a>-&gt;<a class="code" href="classldmat.html#4fd155f38eb6dd5af4bdf9c98a7999a9" title="Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C&amp;#39;*V*C$...">mult_sym_t</a> ( <a class="code" href="classKalman.html#86a805cd6515872d1132ad0d6eb5dc13" title="Matrix C.">C</a>*Pfull,pom ); 
     262<a name="l00321"></a>00321         ( *_P ) -= pom; <span class="comment">// P = P -PC'iRy*CP;</span> 
     263<a name="l00322"></a>00322         *<a class="code" href="classKalman.html#5188eb0329f8561f0b357af329769bf8" title="cache of fy.mu">_yp</a> = phxu-&gt;<a class="code" href="classdiffbifn.html#ad7673e16aa1a046b131b24c731c4632" title="Evaluates $f(x0,u0)$ (VS: Do we really need common eval? ).">eval</a> ( *<a class="code" href="classKalman.html#d1f669b5b3421a070cc75d77b55ba734" title="cache of est.mu">_mu</a>,u ); <span class="comment">//y prediction</span> 
     264<a name="l00323"></a>00323         ( *_mu ) += <a class="code" href="classKalman.html#d422f51467c7a06174af2476d2826132" title="placeholder for Kalman gain">_K</a>* ( y-*<a class="code" href="classKalman.html#5188eb0329f8561f0b357af329769bf8" title="cache of fy.mu">_yp</a> ); 
     265<a name="l00324"></a>00324  
     266<a name="l00325"></a>00325         <span class="keywordflow">if</span> ( <a class="code" href="classBM.html#bf6fb59b30141074f8ee1e2f43d03129" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>==<span class="keyword">true</span> ) {<a class="code" href="classBM.html#5623fef6572a08c2b53b8c87b82dc979" title="Logarithm of marginalized data likelihood.">ll</a>+=<a class="code" href="classKalman.html#e580ab06483952bd03f2e651763e184f" title="preditive density on $y_t$">fy</a>.<a class="code" href="classenorm.html#609a7c33dbb4fdfab050f3bdd1122401" title="Compute log-probability of argument val.">evalpdflog</a> ( y );} 
     267<a name="l00326"></a>00326 }; 
     268<a name="l00327"></a>00327  
     269<a name="l00328"></a>00328  
     270<a name="l00329"></a>00329 <span class="preprocessor">#endif // KF_H</span> 
     271<a name="l00330"></a>00330 <span class="preprocessor"></span> 
     272<a name="l00331"></a>00331  
     273</pre></div><hr size="1"><address style="text-align: right;"><small>Generated on Wed Mar 5 15:40:00 2008 for mixpp by&nbsp; 
    241274<a href="http://www.doxygen.org/index.html"> 
    242275<img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.3 </small></address>