Show
Ignore:
Timestamp:
03/05/08 16:01:56 (17 years ago)
Author:
smidl
Message:

Oprava PF a MPF + jejich implementace pro pmsm system

Files:
1 modified

Legend:

Unmodified
Added
Removed
  • doc/latex/classfsqmat.tex

    r32 r33  
    3232void {\bf mult\_\-sym\_\-t} (const mat \&C) 
    3333\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$. \item\end{CompactList}\item  
    34 void \textbf{mult\_\-sym} (const mat \&C, {\bf fsqmat} \&U)\label{classfsqmat_cfea3618d426e2b8232f09aa0070266f} 
     34void {\bf mult\_\-sym} (const mat \&C, {\bf fsqmat} \&U) const \label{classfsqmat_d4eddc3743c8865cc5ed92d14de0e3e3} 
    3535 
    36 \item  
    37 void \textbf{mult\_\-sym\_\-t} (const mat \&C, {\bf fsqmat} \&U)\label{classfsqmat_7ca865c68989d22903efe97045cb6c9a} 
     36\begin{CompactList}\small\item\em store result of {\tt mult\_\-sym} in external matrix \$U\$ \item\end{CompactList}\item  
     37void {\bf mult\_\-sym\_\-t} (const mat \&C, {\bf fsqmat} \&U) const \label{classfsqmat_ae4949ad2a32553c7fa04d6d1483770a} 
    3838 
    39 \item  
     39\begin{CompactList}\small\item\em store result of {\tt mult\_\-sym\_\-t} in external matrix \$U\$ \item\end{CompactList}\item  
    4040void {\bf clear} ()\label{classfsqmat_cfa4c359483d2322f32d1d50050f8ac4} 
    4141 
     
    4747 
    4848\begin{CompactList}\small\item\em Default initialization with proper size. \item\end{CompactList}\item  
    49 {\bf fsqmat} (const mat \&M)\label{classfsqmat_1929fbc9fe375f1d67f979d0d302336f} 
     49{\bf fsqmat} (const mat \&{\bf M})\label{classfsqmat_1929fbc9fe375f1d67f979d0d302336f} 
    5050 
    5151\begin{CompactList}\small\item\em Constructor. \item\end{CompactList}\item  
     
    5858 
    5959\begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item  
    60 double {\bf qform} (const vec \&v)\label{classfsqmat_1eec8762a2299d83c7b7cd6bf6cbc1ad} 
     60double {\bf qform} (const vec \&v) const \label{classfsqmat_a6c91b0389e73404324b2314b08d6e87} 
    6161 
    6262\begin{CompactList}\small\item\em Evaluates quadratic form \$x= v'$\ast$V$\ast$v\$;. \item\end{CompactList}\item  
    63 vec {\bf sqrt\_\-mult} (const vec \&v) 
     63vec {\bf sqrt\_\-mult} (const vec \&v) const  
    6464\begin{CompactList}\small\item\em Multiplies square root of \$V\$ by vector \$x\$. \item\end{CompactList}\item  
    65 {\bf fsqmat} \& \textbf{operator+=} (const {\bf fsqmat} \&A)\label{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de} 
     65{\bf fsqmat} \& {\bf operator+=} (const {\bf fsqmat} \&A)\label{classfsqmat_514d1fdd8a382dbd6a774f2cf1ebd3de} 
    6666 
    67 \item  
    68 {\bf fsqmat} \& \textbf{operator-=} (const {\bf fsqmat} \&A)\label{classfsqmat_e976bc9d899961e1d2087b0630ed33b7} 
     67\begin{CompactList}\small\item\em add another \doxyref{fsqmat}{p.}{classfsqmat} matrix \item\end{CompactList}\item  
     68{\bf fsqmat} \& {\bf operator-=} (const {\bf fsqmat} \&A)\label{classfsqmat_e976bc9d899961e1d2087b0630ed33b7} 
    6969 
    70 \item  
    71 {\bf fsqmat} \& \textbf{operator $\ast$=} (double x)\label{classfsqmat_8f7ce97628a50e06641281096b2af9b7} 
     70\begin{CompactList}\small\item\em subtrack another \doxyref{fsqmat}{p.}{classfsqmat} matrix \item\end{CompactList}\item  
     71{\bf fsqmat} \& {\bf operator $\ast$=} (double x)\label{classfsqmat_8f7ce97628a50e06641281096b2af9b7} 
    7272 
    73 \item  
     73\begin{CompactList}\small\item\em multiply by a scalar \item\end{CompactList}\item  
    7474int {\bf cols} () const \label{classsqmat_ecc2e2540f95a04f4449842588170f5b} 
    7575 
     
    8181\begin{CompactItemize} 
    8282\item  
    83 mat \textbf{M}\label{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453} 
     83mat {\bf M}\label{classfsqmat_a7a1fcb9aae19d1e4daddfc9c22ce453} 
    8484 
    85 \item  
    86 int \textbf{dim}\label{classsqmat_0abed904bdc0882373ba9adba919689d} 
     85\begin{CompactList}\small\item\em Full matrix on which the operations are performed. \item\end{CompactList}\item  
     86int {\bf dim}\label{classsqmat_0abed904bdc0882373ba9adba919689d} 
    8787 
    88 \end{CompactItemize} 
     88\begin{CompactList}\small\item\em dimension of the square matrix \item\end{CompactList}\end{CompactItemize} 
    8989\subsection*{Friends} 
    9090\begin{CompactItemize} 
    9191\item  
    92 std::ostream \& \textbf{operator$<$$<$} (std::ostream \&os, const {\bf fsqmat} \&sq)\label{classfsqmat_e06aba54d61e807b41bd68b5ee6ac22f} 
     92std::ostream \& {\bf operator$<$$<$} (std::ostream \&os, const {\bf fsqmat} \&sq)\label{classfsqmat_e06aba54d61e807b41bd68b5ee6ac22f} 
    9393 
    94 \end{CompactItemize} 
     94\begin{CompactList}\small\item\em print full matrix \item\end{CompactList}\end{CompactItemize} 
    9595 
    9696 
     
    155155\index{fsqmat@{fsqmat}!sqrt_mult@{sqrt\_\-mult}} 
    156156\index{sqrt_mult@{sqrt\_\-mult}!fsqmat@{fsqmat}} 
    157 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}vec fsqmat::sqrt\_\-mult (const vec \& {\em v})\hspace{0.3cm}{\tt  [inline, virtual]}}\label{classfsqmat_2288389e2d47bd9df112815ef570c5c9} 
     157\subsubsection{\setlength{\rightskip}{0pt plus 5cm}vec fsqmat::sqrt\_\-mult (const vec \& {\em v}) const\hspace{0.3cm}{\tt  [inline, virtual]}}\label{classfsqmat_842a774077ee34ac3c36d180ab33e103} 
    158158 
    159159 
     
    162162Used e.g. in generating normal samples.  
    163163 
    164 Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_975ddc7e8035d8d4e6cbd52dd99c248c}. 
     164Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_6b79438b5d7544a9c8e110a145355d8f}. 
    165165 
    166166The documentation for this class was generated from the following files:\begin{CompactItemize} 
    167167\item  
    168168work/mixpp/bdm/math/{\bf libDC.h}\item  
    169 work/mixpp/bdm/math/libDC.cpp\item  
    170 work/mixpp/bdm/math/libDC\_\-.cpp\end{CompactItemize} 
     169work/mixpp/bdm/math/libDC.cpp\end{CompactItemize}