Show
Ignore:
Timestamp:
06/02/09 10:08:06 (15 years ago)
Author:
smidl
Message:

doc

Files:
1 modified

Legend:

Unmodified
Added
Removed
  • doc/html/formula.repository

    r323 r353  
    123123\form#122:$ \phi<1 $ 
    124124\form#123:$ [d_1, d_2, \ldots d_t] $ 
     125\form#124:$\theta$ 
     126\form#125:$\mathbf{X}$ 
     127\form#126:$n \times n$ 
     128\form#127:\[ \mathbf{X} = \mathbf{F}^T \mathbf{F} \] 
     129\form#128:$\mathbf{F}$ 
     130\form#129:\[ \mathbf{X} = \mathbf{F}^H \mathbf{F} \] 
     131\form#130:\[ \det(\mathbf{X}) = \det(\mathbf{P}^T \mathbf{L}) \det(\mathbf{U}) = \det(\mathbf{P}^T) \prod(\mathrm{diag}(\mathbf{U})) \] 
     132\form#131:$ \pm 1$ 
     133\form#132:$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})$ 
     134\form#133:$\mathbf{v}_i, \: i=0, \ldots, n-1$ 
     135\form#134:$\mathbf{A}$ 
     136\form#135:\[ \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. \] 
     137\form#136:$ \mathbf{Y} \mathbf{X} = \mathbf{I}$ 
     138\form#137:$Ax=b$ 
     139\form#138:$A$ 
     140\form#139:$AX=B$ 
     141\form#140:$m \times n$ 
     142\form#141:$m \geq n$ 
     143\form#142:$m \leq n$ 
     144\form#143:\[ \mathbf{X} = \mathbf{P}^T \mathbf{L} \mathbf{U} , \] 
     145\form#144:$\mathbf{L}$ 
     146\form#145:$\mathbf{U}$ 
     147\form#146:$\mathbf{P}$ 
     148\form#147:\[ \mathbf{A} = \mathbf{Q} \mathbf{R} , \] 
     149\form#148:$\mathbf{Q}$ 
     150\form#149:$m \times m$ 
     151\form#150:$\mathbf{R}$ 
     152\form#151:$\mathbf{A}=\mathbf{Q}\mathbf{R}$ 
     153\form#152:$\mathbf{A}^{T}\mathbf{A}=\mathbf{R}^{T}\mathbf{R}$ 
     154\form#153:\[ \mathbf{A} \mathbf{P} = \mathbf{Q} \mathbf{R} , \] 
     155\form#154:$\mathbf{A}^{H}\mathbf{A}=\mathbf{R}^{H}\mathbf{R}$ 
     156\form#155:$ \mathbf{A} $ 
     157\form#156:\[ \mathbf{U} \mathbf{T} \mathbf{U}^{T} = \mathbf{A} \] 
     158\form#157:$ \mathbf{U} $ 
     159\form#158:$ \mathbf{T} $ 
     160\form#159:$ \mathbf{U}^{T} $ 
     161\form#160:$ 2 \times 2 $ 
     162\form#161:\[ \mathbf{U} \mathbf{T} \mathbf{U}^{H} = \mathbf{A} \] 
     163\form#162:$ \mathbf{U}^{H} $ 
     164\form#163:$s$ 
     165\form#164:\[ \mathrm{diag}(\mathbf{U}^T \mathbf{A} \mathbf{V}) = \mathbf{s} = \sigma_1, \ldots, \sigma_p \] 
     166\form#165:$\sigma_1 \geq \sigma_2 \geq \ldots \sigma_p \geq 0$ 
     167\form#166:\[ \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^T \] 
     168\form#167:$ \mathrm{diag}(\mathbf{S}) = \mathbf{s} $ 
     169\form#168:\[ \mathrm{diag}(\mathbf{U}^H \mathbf{A} \mathbf{V}) = \mathbf{s} = \sigma_1, \ldots, \sigma_p \] 
     170\form#169:\[ \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^H \] 
     171\form#170:$\mathbf{s}$ 
     172\form#171:\[ J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{ (-1)^{k} }{k! \Gamma(\nu+k+1) } \left(\frac{x}{2}\right)^{\nu+2k} \] 
     173\form#172:$\nu$ 
     174\form#173:$ 0 < x < \infty $ 
     175\form#174:\[ Y_{\nu}(x) = \frac{J_{\nu}(x) \cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)} \] 
     176\form#175:\[ I_{\nu}(x) = i^{-\nu} J_{\nu}(ix) \] 
     177\form#176:\[ K_{\nu}(x) = \frac{\pi}{2} i^{\nu+1} [J_{\nu}(ix) + i Y_{\nu}(ix)] \] 
     178\form#177:\[ \mathbf{X} = \mathbf{X}^H \] 
     179\form#178:\[ \mathbf{X}^H = \mathbf{X}^{-1} \] 
     180\form#179:$n+|K| \times n+|K|$ 
     181\form#180:$n = min(r, c)$ 
     182\form#181:$r \times c$ 
     183\form#182:$n-1$ 
     184\form#183:\[ \int_a^b f(x) dx \] 
     185\form#184:\[ x \sim \Gamma(\alpha,\beta) = \frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1} \exp(-\beta x) \] 
     186\form#185:$\alpha=1$ 
     187\form#186:$\Theta(n\log n)$ 
     188\form#187:$\Theta(n^2)$ 
     189\form#188:$g(x) = x^{10} + x^9 + x^8 + x^6 + x^5 + x^3 + 1$ 
     190\form#189:$ r(t) $ 
     191\form#190:\[ r(t) = a(t) * s(t), \] 
     192\form#191:$ s(t) $ 
     193\form#192:$ a(t) $ 
     194\form#193:$ \|a(t)\| $ 
     195\form#194:\[ R(\tau) = E[a^*(t) a(t+\tau)] = J_0(2 \pi f_\mathrm{max} \tau), \] 
     196\form#195:$ f_\mathrm{max} $ 
     197\form#196:\[ f_\mathrm{max} = \frac{v}{\lambda} = \frac{v}{c_0} f_c. \] 
     198\form#197:$ c_0 $ 
     199\form#198:$ f_c $ 
     200\form#199:$ f_\mathrm{max} T_s $ 
     201\form#200:$ T_s $ 
     202\form#201:$ R(\tau) $ 
     203\form#202:\[ h(t) = \sum_{k=0}^{N_\mathrm{taps}-1} a_k \exp (-j \theta_k ) \delta(t-\tau_k), \] 
     204\form#203:$ N_\mathrm{taps} $ 
     205\form#204:$ a_k $ 
     206\form#205:$ \tau_k $ 
     207\form#206:$ \theta_k $ 
     208\form#207:$ k^{th} $ 
     209\form#208:\[ \mathbf{a} = [a_0, a_1, \ldots, a_{N_\mathrm{taps}-1}] \] 
     210\form#209:\[ \mathbf{\tau} = [\tau_0, \tau_1, \ldots, \tau_{N_\mathrm{taps}-1}], \] 
     211\form#210:$ \tau_0 = 0 $ 
     212\form#211:$ \tau_0 < \tau_1 < \ldots < \tau_{N_\mathrm{taps}-1} $ 
     213\form#212:$ h(t) $ 
     214\form#213:$ \tau_k = d_k T_s $ 
     215\form#214:$ d_k $ 
     216\form#215:\[ \rho \exp(2 \pi f_\rho t + \theta_\rho), \] 
     217\form#216:$ \rho $ 
     218\form#217:$ f_\rho $ 
     219\form#218:$ \theta_\rho $ 
     220\form#219:$ f_\rho = 0.7 f_\mathrm{max} $ 
     221\form#220:\[ \tilde \mu_i(t) = \sum_{n=1}^{N_i} c_{i,n} \cos(2\pi f_{i,n} t + \theta_{i,n}) \] 
     222\form#221:$ c_{i,n} $ 
     223\form#222:$ f_{i,n} $ 
     224\form#223:$ \theta_{i,n} $ 
     225\form#224:$ N_i \rightarrow \infty $ 
     226\form#225:\[ \tilde \mu(t) = \tilde \mu_1(t) + j \tilde \mu_2(t) \] 
     227\form#226:$ N_i $ 
     228\form#227:$ N_\mathrm{fft} $ 
     229\form#228:\[ h(t) = \sum_{k=0}^{N_\mathrm{taps}-1} a_k \exp (-j \theta_k) \delta(t-\tau_k), \] 
     230\form#229:$ N_{taps} $ 
     231\form#230:$ \mathbf{a} $ 
     232\form#231:$ \mathbf{\tau} $ 
     233\form#232:$N_0/2$ 
     234\form#233:$N_0$ 
     235\form#234:$ f_{norm} = f_{max} T_{s} $ 
     236\form#235:$ f_{max} $ 
     237\form#236:$ T_{s} $ 
     238\form#237:\[ \max_{p_0,...,p_{n-1}} \sum_{i=0}^{n-1} \log\left(1+p_i\alpha_i\right) \] 
     239\form#238:\[ \sum_{i=0}^{n-1} p_i \le P \] 
     240\form#239:$\alpha_0,...,\alpha_{n-1}$ 
     241\form#240:$p_0,...,p_{n-1}$ 
     242\form#241:$O(n^2)$ 
     243\form#242:$2^{K-1}$ 
     244\form#243:$ H = [H_{1} H_{2}] $ 
     245\form#244:$ H_{2} $ 
     246\form#245:$ [H_{1} H_{2}][I; G'] = 0 $ 
     247\form#246:\[ L = \log \frac{P(b=0)}{P(b=1)} \] 
     248\form#247:\[ \mbox{QLLR} = \mbox{round} \left(2^{\mbox{Dint1}}\cdot \mbox{LLR}\right) \] 
     249\form#248:\[ 2^{-(Dint1-Dint3)} \] 
     250\form#249:\[ \log(\exp(a)+\exp(b)) \] 
     251\form#250:\[ \mbox{sign}(a) * \mbox{sign}(b) * \mbox{min}(|a|,|b|) + f(|a+b|) - f(|a-b|) \] 
     252\form#251:\[ f(x) = \log(1+\exp(-x)) \] 
     253\form#252:\[r_k = c_k s_k + n_k,\] 
     254\form#253:$c_k$ 
     255\form#254:$s_k$ 
     256\form#255:$n_k$ 
     257\form#256:$M = 2^k$ 
     258\form#257:$k = 1, 2, \ldots $ 
     259\form#258:$\{-(\sqrt{M}-1), \ldots, -3, -1, 1, 3, \ldots, (\sqrt{M}-1)\}$ 
     260\form#259:$\sqrt{2(M-1)/3}$ 
     261\form#260:$(1, 0)$ 
     262\form#261:$M = 4$ 
     263\form#262:$M = 2$ 
     264\form#263:$0 \rightarrow 1+0i$ 
     265\form#264:$1 \rightarrow -1+0i$ 
     266\form#265:$0 \rightarrow 1$ 
     267\form#266:$1 \rightarrow -1$ 
     268\form#267:$\{-(M-1), \ldots, -3, -1, 1, 3, \ldots, (M-1)\}$ 
     269\form#268:$ \sqrt{(M^2-1)/3}$ 
     270\form#269:\[\log \left( \frac{P(b_i=0|r)}{P(b_i=1|r)} \right) = \log \left( \frac{\sum_{s_i \in S_0} \exp \left( -\frac{|r_k - s_i|^2}{N_0} \right)} {\sum_{s_i \in S_1} \exp \left( -\frac{|r_k - s_i|^2}{N_0} \right)} \right) \] 
     271\form#270:$d_0 = |r_k - s_0|$ 
     272\form#271:$d_1 = |r_k - s_1|$ 
     273\form#272:\[\frac{d_1^2 - d_0^2}{N_0}\] 
     274\form#273:$c_k = 1$ 
     275\form#274:$L_c$ 
     276\form#275:\[\log \left( \frac{P(b_i=0|r)}{P(b_i=1|r)} \right) = \log \left( \frac{\sum_{s_i \in S_0} \exp \left( -\frac{|r_k - c_k s_i|^2}{N_0} \right)} {\sum_{s_i \in S_1} \exp \left( -\frac{|r_k - c_k s_i|^2}{N_0} \right)} \right) \] 
     277\form#276:$d_0 = |r_k - c_k s_0|$ 
     278\form#277:$d_1 = |r_k - c_k s_1|$ 
     279\form#278:$r_k$ 
     280\form#279:\[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{2 \sqrt{2}}{N_0} \Im\{r_k \exp \left(j \frac{\Pi}{4} \right) \}\] 
     281\form#280:\[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{2 \sqrt{2}}{N_0} \Re\{r_k \exp \left(j \frac{\Pi}{4} \right) \}\] 
     282\form#281:$r$ 
     283\form#282:\[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{2 \sqrt{2}}{N_0} \Im\{r_k c_k \exp \left(j \frac{\Pi}{4} \right) \}\] 
     284\form#283:\[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{2 \sqrt{2}}{N_0} \Re\{r_k c_k \exp \left(j \frac{\Pi}{4} \right) \}\] 
     285\form#284:$c$ 
     286\form#285:\[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{4 \Re\{r\}} {N_0}\] 
     287\form#286:\[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{4 \Re\{r c^{*}\}}{N_0}\] 
     288\form#287:\[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{4 r}{N_0}\] 
     289\form#288:$c = 1$ 
     290\form#289:\[ y = Hx+e \] 
     291\form#290:$n_r\times n_t$ 
     292\form#291:$y$ 
     293\form#292:$n_r$ 
     294\form#293:$n_t$ 
     295\form#294:$e$ 
     296\form#295:\[ G = \left[ \begin{array}{cc} H_r & -H_i \\ H_i & H_r \end{array} \right] \] 
     297\form#296:\[ \log \left( \frac {\sum_{s:b_k=0} \exp(-x^2) P(s)} {\sum_{s:b_k=1} \exp(-x^2) P(s)} \right) \] 
     298\form#297:\[ \log \left( \frac {\sum_{s:b_k=0} \exp (-x^2) P(s)} {\sum_{s:b_k=1} \exp (-x^2) P(s)} \right) \] 
     299\form#298:\[ LLR(k) = \log \left( \frac {\sum_{s:b_k=0} \exp \left( -\frac{|y - Hs|^2}{2\sigma^2} \right) P(s)} {\sum_{s:b_k=1} \exp \left( -\frac{|y - Hs|^2}{2\sigma^2} \right) P(s)} \right) \] 
     300\form#299:$H = \mbox{diag}(h)$ 
     301\form#300:$|y-Hs|$ 
     302\form#301:\[ LLR(k) = \log \left( \frac {\sum_{s:b_k=0} \exp \left( -\frac{|y - Hs|^2}{\sigma^2} \right) P(s)} {\sum_{s:b_k=1} \exp \left( -\frac{|y - Hs|^2}{\sigma^2} \right) P(s)} \right) \] 
     303\form#302:\[ \mbox{min} |y - Hs| \] 
     304\form#303:$n_r\times 1$ 
     305\form#304:$ \alpha $ 
     306\form#305:\[ p(t) = \frac{\sin(\pi t / T)}{\pi t / T} \frac{\cos(\alpha \pi t / T)}{1 - (2 \alpha t / T)^2} \] 
     307\form#306:\[ p(t) = \frac{4 \alpha}{\pi \sqrt{T}} \frac{\cos((1+\alpha)\pi t / T) + T \sin((1-\alpha)\pi t / T) / (4 \alpha t) }{1 - (4 \pi t / T)^2} \] 
     308\form#307:$2^m$ 
     309\form#308:$2^m-1$ 
     310\form#309:$N = 2^{deg} - 1$ 
     311\form#310:$deg = \{ 5, 7, 8, 9 \}$ 
     312\form#311:$L \times N$ 
     313\form#312:\[ r_k = h_k c_k + w_k \] 
     314\form#313:$h_k$ 
     315\form#314:$\{-\sqrt{E_c},+\sqrt{E_c}\}$ 
     316\form#315:$w_k$ 
     317\form#316:\[ z_k = \hat{h}_k^{*} r_k \] 
     318\form#317:$\hat{h}_k^{*}$ 
     319\form#318:\[ L_c = 4\sqrt{E_c} / {N_0} \] 
     320\form#319:\[ s(1), p_{1,1}(1), p_{1,2}(1), \ldots , p_{1,n_1}(1), p_{2,1}(1), p_{2,2}(1), \ldots , p_{2,n_2}(1), s(2), \ldots \] 
     321\form#320:$s(n)$ 
     322\form#321:$p_{l,k}(n)$ 
     323\form#322:\[ t_1(1), pt_{1,1}(1), pt_{1,2}(1), \ldots , pt_{1,n_1}(1), \ldots pt_{1,n_1}(m) \] 
     324\form#323:$f(\mathbf{x})$ 
     325\form#324:$\mathbf{x}$ 
     326\form#325:\[ \left\| \mathbf{f}'(\mathbf{x})\right\|_{\infty} \leq \varepsilon_1 \] 
     327\form#326:\[ \left\| d\mathbf{x}\right\|_{2} \leq \varepsilon_2 (\varepsilon_2 + \| \mathbf{x} \|_{2} ) \] 
     328\form#327:$\varepsilon_1 = 10^{-4}$ 
     329\form#328:$\varepsilon_2 = 10^{-8}$ 
     330\form#329:$\mathbf{h}$ 
     331\form#330:\[ \varphi(\alpha) = f(\mathbf{x} + \alpha \mathbf{h}) \] 
     332\form#331:$\alpha_s$ 
     333\form#332:$f$ 
     334\form#333:\[ \phi(\alpha_s) \leq \varphi(0) + \alpha_s \rho \varphi'(0) \] 
     335\form#334:\[ \varphi'(\alpha_s) \geq \beta \varphi'(0),\: \rho < \beta \] 
     336\form#335:$\rho = 10^{-3}$ 
     337\form#336:$\beta = 0.99$ 
     338\form#337:\[ \| \varphi(\alpha_s)\| \leq \rho \| \varphi'(0) \| \] 
     339\form#338:\[ b-a \leq \beta b, \] 
     340\form#339:$\left[a,b\right]$ 
     341\form#340:$\beta = 10^{-3}$ 
     342\form#341:$a_1$ 
     343\form#342:$a_2$ 
     344\form#343:$\epsilon$ 
     345\form#344:\[ y(n) = b(0)*x(n) + b(1)*x(n-1) + ... + b(N)*x(n-N) \] 
     346\form#345:\[ a(0)*y(n) = x(n) - a(1)*y(n-1) - ... - a(N)*y(n-N) \] 
     347\form#346:\[ a(0)*y(n) = b(0)*x(n) + b(1)*x(n-1) + \ldots + b(N_b)*x(n-N_b) - a(1)*y(n-1) - \ldots - a(N_a)*y(n-N_a) \] 
     348\form#347:$max(N_a, n_b) - 1$ 
     349\form#348:$\pi$ 
     350\form#349:$N>n$ 
     351\form#350:$N = 4 n$ 
     352\form#351:$R(k) = 0, \forall \|k\| > m$ 
     353\form#352:$2(m+n)$ 
     354\form#353:$N+1$ 
     355\form#354:\[ p_0 x^N + p_1 x^{N-1} + \ldots + p_{N-1} x + p_N \] 
     356\form#355:\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \] 
     357\form#356:$X$ 
     358\form#357:$N$ 
     359\form#358:\[ X(k) = \sum_{j=0}^{N-1} x(j) e^{-2\pi j k \cdot i / N} \] 
     360\form#359:\[ x(j) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{2\pi j k \cdot i / N} \] 
     361\form#360:\[ X(k) = w(k) \sum_{j=0}^{N-1} x(j) \cos \left(\frac{(2j+1)k \pi}{2N} \right) \] 
     362\form#361:\[ x(j) = \sum_{k=0}^{N-1} w(k) X(k) \cos \left(\frac{(2j+1)k \pi}{2N} \right) \] 
     363\form#362:$w(k) = 1/sqrt{N}$ 
     364\form#363:$k=0$ 
     365\form#364:$w(k) = sqrt{2/N}$ 
     366\form#365:$k\geq 1$ 
     367\form#366:$i$ 
     368\form#367:\[ w_i = 0.54 - 0.46 \cos(2\pi i/(n-1)) \] 
     369\form#368:\[ w_i = 0.5(1 - \cos(2\pi (i+1)/(n+1)) \] 
     370\form#369:\[ w_i = 0.5(1 - \cos(2\pi i/(n-1)) \] 
     371\form#370:\[ w_i = 0.42 - 0.5\cos(2\pi i/(n-1)) + 0.08\cos(4\pi i/(n-1)) \] 
     372\form#371:\[ w_i = w_{n-i-1} = \frac{2(i+1)}{n+1} \] 
     373\form#372:\[ w_i = w_{n-i-1} = \frac{2i+1}{n} \] 
     374\form#373:\[ W[k] = \frac{T_M\left(\beta \cos\left(\frac{\pi k}{M}\right) \right)}{T_M(\beta)},k = 0, 1, 2, \ldots, M - 1 \] 
     375\form#374:$ \mathbf{x} $ 
     376\form#375:\[ m_r = \mathrm{E}[x-\mu]^r = \frac{1}{n} \sum_{i=0}^{n-1} (x_i - \mu)^r \] 
     377\form#376:\[ \gamma_1 = \frac{\mathrm{E}[x-\mu]^3}{\sigma^3} \] 
     378\form#377:$\sigma$ 
     379\form#378:\[ \gamma_1 = \frac{k_3}{{k_2}^{3/2}} \] 
     380\form#379:\[ k_2 = \frac{n}{n-1} m_2 \] 
     381\form#380:\[ k_3 = \frac{n^2}{(n-1)(n-2)} m_3 \] 
     382\form#381:$m_2$ 
     383\form#382:$m_3$ 
     384\form#383:\[ \gamma_2 = \frac{\mathrm{E}[x-\mu]^4}{\sigma^4} - 3 \] 
     385\form#384:\[ \gamma_2 = \frac{k_4}{{k_2}^2} \] 
     386\form#385:\[ k_4 = \frac{n^2 [(n+1)m_4 - 3(n-1){m_2}^2]}{(n-1)(n-2)(n-3)} \] 
     387\form#386:$m_4$ 
     388\form#387:\[ \gamma_2 = \frac{\mathrm{E}[x-\mu]^4}{\sigma^4} \] 
     389\form#388:$ w_{new} = [ \alpha \cdot w_{A} ~~~ \beta \cdot w_{B} ]^T $ 
     390\form#389:$ w_{new} $ 
     391\form#390:$ w_{A} $ 
     392\form#391:$ w_{B} $ 
     393\form#392:$ \alpha = K_A / (K_A + KB_in) $ 
     394\form#393:$ \beta = 1-\alpha $ 
     395\form#394:$ K_A $ 
     396\form#395:$ KB_in $ 
     397\form#396:$ -\frac{D}{2}\log(2\pi) -\frac{1}{2}\log(|\Sigma|) $ 
     398\form#397:$ D $ 
     399\form#398:$ |\Sigma| $ 
     400\form#399:$ \Sigma $