Show
Ignore:
Timestamp:
06/02/09 10:24:26 (16 years ago)
Author:
smidl
Message:

doc - oprava

Files:
1 modified

Legend:

Unmodified
Added
Removed
  • doc/html/formula.repository

    r353 r354  
    1 \form#0:$x$ 
    2 \form#1:$\omega$ 
    3 \form#2:\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] 
    4 \form#3:$[\theta r]$ 
    5 \form#4:$\psi=\psi(y_{1:t},u_{1:t})$ 
    6 \form#5:$u_t$ 
    7 \form#6:$e_t$ 
    8 \form#7:\[ e_t \sim \mathcal{N}(0,1). \] 
    9 \form#8:$ y_t $ 
    10 \form#9:$\theta,r$ 
    11 \form#10:$ dt = [y_t psi_t] $ 
    12 \form#11:\[ x_t = A x_{t-1} + B u_t + Q^{1/2} e_t \] 
    13 \form#12:\[ y_t = C x_{t-1} + C u_t + Q^{1/2} w_t. \] 
    14 \form#13:\[ \left[\begin{array}{cc} R^{0.5}\\ P_{t|t-1}^{0.5}C' & P_{t|t-1}^{0.5}CA'\\ & Q^{0.5}\end{array}\right]<\mathrm{orth.oper.}>=\left[\begin{array}{cc} R_{y}^{0.5} & KA'\\ & P_{t+1|t}^{0.5}\\ \\\end{array}\right]\] 
    15 \form#14:\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \] 
    16 \form#15:$\psi$ 
    17 \form#16:$w=[w_1,\ldots,w_n]$ 
    18 \form#17:$\theta_i$ 
    19 \form#18:$\Theta$ 
    20 \form#19:$\Theta = [\theta_1,\ldots,\theta_n,w]$ 
    21 \form#20:$A=Ch' Ch$ 
    22 \form#21:$Ch$ 
    23 \form#22:\[M = L'DL\] 
    24 \form#23:$L$ 
    25 \form#24:$D$ 
    26 \form#25:$V = V + w v v'$ 
    27 \form#26:$C$ 
    28 \form#27:$V = C*V*C'$ 
    29 \form#28:$V = C'*V*C$ 
    30 \form#29:$V$ 
    31 \form#30:$x= v'*V*v$ 
    32 \form#31:$x= v'*inv(V)*v$ 
    33 \form#32:$U$ 
    34 \form#33:$A'D0 A$ 
    35 \form#34:$L'DL$ 
    36 \form#35:$A'*diag(D)*A = self.L'*diag(self.D)*self.L$ 
    37 \form#36:\[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] 
    38 \form#37:$ f(rvc) = \int f(rv,rvc) d\ rv $ 
    39 \form#38:\[ f(x) = \sum_{i=1}^{n} w_{i} f_i(x), \quad \sum_{i=1}^n w_i = 1. \] 
    40 \form#39:$f_i(x)$ 
    41 \form#40:$f(x)$ 
    42 \form#41:\[ f(\theta_t | d_1,\ldots,d_t) = \frac{f(y_t|\theta_t,\cdot) f(\theta_t|d_1,\ldots,d_{t-1})}{f(y_t|d_1,\ldots,d_{t-1})} \] 
    43 \form#42:$y_t$ 
    44 \form#43:$ c_t $ 
    45 \form#44:\[ f(\theta_t | c_t, d_1,\ldots,d_t) \propto f(y_t,\theta_t|c_t,\cdot, d_1,\ldots,d_{t-1}) \] 
    46 \form#45:$x=$ 
    47 \form#46:$ x $ 
    48 \form#47:$ f_x()$ 
    49 \form#48:$ [x_1 , x_2 , \ldots \ $ 
    50 \form#49:$ f_x(rv)$ 
    51 \form#50:$x \sim epdf(rv|cond)$ 
    52 \form#51:$ t $ 
    53 \form#52:$ t+1 $ 
    54 \form#53:$ f(d_{t+1} |d_{t}, \ldots d_{0}) $ 
    55 \form#54:$t$ 
    56 \form#55:$[y_{t} y_{t-1} ...]$ 
    57 \form#56:$[y_t, u_t, y_{t-1 }, u_{t-1}, \ldots]$ 
    58 \form#57:$ f(x_t|x_{t-1}) $ 
    59 \form#58:$ f(d_t|x_t) $ 
    60 \form#59:$p$ 
    61 \form#60:$p\times$ 
    62 \form#61:$n$ 
    63 \form#62:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \] 
    64 \form#63:$\gamma=\sum_i \beta_i$ 
    65 \form#64:\[ f(x|\alpha,\beta) = \prod f(x_i|\alpha_i,\beta_i) \] 
    66 \form#65:$\beta$ 
    67 \form#66:\[ x\sim iG(a,b) => 1/x\sim G(a,1/b) \] 
    68 \form#67:$mu=A*rvc+mu_0$ 
    69 \form#68:$\mu$ 
    70 \form#69:$k$ 
    71 \form#70:$\alpha=k$ 
    72 \form#71:$\beta=k/\mu$ 
    73 \form#72:$\mu/\sqrt(k)$ 
    74 \form#73:$ \mu $ 
    75 \form#74:$ k $ 
    76 \form#75:$ \alpha=\mu/k^2+2 $ 
    77 \form#76:$ \beta=\mu(\alpha-1)$ 
    78 \form#77:$ \mu/\sqrt(k)$ 
    79 \form#78:$l$ 
    80 \form#79:\[ \mu = \mu_{t-1} ^{l} p^{1-l}\] 
    81 \form#80:$\mathcal{I}$ 
     1\form#0:\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] 
     2\form#1:$[\theta r]$ 
     3\form#2:$\psi=\psi(y_{1:t},u_{1:t})$ 
     4\form#3:$u_t$ 
     5\form#4:$e_t$ 
     6\form#5:\[ e_t \sim \mathcal{N}(0,1). \] 
     7\form#6:$ y_t $ 
     8\form#7:$\theta,r$ 
     9\form#8:$ dt = [y_t psi_t] $ 
     10\form#9:\[ x_t = A x_{t-1} + B u_t + Q^{1/2} e_t \] 
     11\form#10:\[ y_t = C x_{t-1} + C u_t + Q^{1/2} w_t. \] 
     12\form#11:\[ \left[\begin{array}{cc} R^{0.5}\\ P_{t|t-1}^{0.5}C' & P_{t|t-1}^{0.5}CA'\\ & Q^{0.5}\end{array}\right]<\mathrm{orth.oper.}>=\left[\begin{array}{cc} R_{y}^{0.5} & KA'\\ & P_{t+1|t}^{0.5}\\ \\\end{array}\right]\] 
     13\form#12:\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \] 
     14\form#13:$\psi$ 
     15\form#14:$w=[w_1,\ldots,w_n]$ 
     16\form#15:$\theta_i$ 
     17\form#16:$\Theta$ 
     18\form#17:$\Theta = [\theta_1,\ldots,\theta_n,w]$ 
     19\form#18:$A=Ch' Ch$ 
     20\form#19:$Ch$ 
     21\form#20:\[M = L'DL\] 
     22\form#21:$L$ 
     23\form#22:$D$ 
     24\form#23:$V = V + w v v'$ 
     25\form#24:$C$ 
     26\form#25:$V = C*V*C'$ 
     27\form#26:$V = C'*V*C$ 
     28\form#27:$V$ 
     29\form#28:$x$ 
     30\form#29:$x= v'*V*v$ 
     31\form#30:$x= v'*inv(V)*v$ 
     32\form#31:$U$ 
     33\form#32:$A'D0 A$ 
     34\form#33:$L'DL$ 
     35\form#34:$A'*diag(D)*A = self.L'*diag(self.D)*self.L$ 
     36\form#35:\[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] 
     37\form#36:$ f(rvc) = \int f(rv,rvc) d\ rv $ 
     38\form#37:\[ f(x) = \sum_{i=1}^{n} w_{i} f_i(x), \quad \sum_{i=1}^n w_i = 1. \] 
     39\form#38:$f_i(x)$ 
     40\form#39:$f(x)$ 
     41\form#40:\[ f(\theta_t | d_1,\ldots,d_t) = \frac{f(y_t|\theta_t,\cdot) f(\theta_t|d_1,\ldots,d_{t-1})}{f(y_t|d_1,\ldots,d_{t-1})} \] 
     42\form#41:$y_t$ 
     43\form#42:$ c_t $ 
     44\form#43:\[ f(\theta_t | c_t, d_1,\ldots,d_t) \propto f(y_t,\theta_t|c_t,\cdot, d_1,\ldots,d_{t-1}) \] 
     45\form#44:$x=$ 
     46\form#45:$ x $ 
     47\form#46:$ f_x()$ 
     48\form#47:$ [x_1 , x_2 , \ldots \ $ 
     49\form#48:$ f_x(rv)$ 
     50\form#49:$x \sim epdf(rv|cond)$ 
     51\form#50:$ t $ 
     52\form#51:$ t+1 $ 
     53\form#52:$ f(d_{t+1} |d_{t}, \ldots d_{0}) $ 
     54\form#53:$t$ 
     55\form#54:$[y_{t} y_{t-1} ...]$ 
     56\form#55:$[y_t, u_t, y_{t-1 }, u_{t-1}, \ldots]$ 
     57\form#56:$ f(x_t|x_{t-1}) $ 
     58\form#57:$ f(d_t|x_t) $ 
     59\form#58:$p$ 
     60\form#59:$p\times$ 
     61\form#60:$n$ 
     62\form#61:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \] 
     63\form#62:$\gamma=\sum_i \beta_i$ 
     64\form#63:\[ f(x|\alpha,\beta) = \prod f(x_i|\alpha_i,\beta_i) \] 
     65\form#64:$\beta$ 
     66\form#65:\[ x\sim iG(a,b) => 1/x\sim G(a,1/b) \] 
     67\form#66:$mu=A*rvc+mu_0$ 
     68\form#67:$\mu$ 
     69\form#68:$k$ 
     70\form#69:$\alpha=k$ 
     71\form#70:$\beta=k/\mu$ 
     72\form#71:$\mu/\sqrt(k)$ 
     73\form#72:$ \mu $ 
     74\form#73:$ k $ 
     75\form#74:$ \alpha=\mu/k^2+2 $ 
     76\form#75:$ \beta=\mu(\alpha-1)$ 
     77\form#76:$ \mu/\sqrt(k)$ 
     78\form#77:$l$ 
     79\form#78:\[ \mu = \mu_{t-1} ^{l} p^{1-l}\] 
     80\form#79:$\mathcal{I}$ 
     81\form#80:$\theta$ 
    8282\form#81:$\alpha$ 
    8383\form#82:$ \Psi $ 
     
    123123\form#122:$ \phi<1 $ 
    124124\form#123:$ [d_1, d_2, \ldots d_t] $ 
    125 \form#124:$\theta$ 
    126 \form#125:$\mathbf{X}$ 
    127 \form#126:$n \times n$ 
    128 \form#127:\[ \mathbf{X} = \mathbf{F}^T \mathbf{F} \] 
    129 \form#128:$\mathbf{F}$ 
    130 \form#129:\[ \mathbf{X} = \mathbf{F}^H \mathbf{F} \] 
    131 \form#130:\[ \det(\mathbf{X}) = \det(\mathbf{P}^T \mathbf{L}) \det(\mathbf{U}) = \det(\mathbf{P}^T) \prod(\mathrm{diag}(\mathbf{U})) \] 
    132 \form#131:$ \pm 1$ 
    133 \form#132:$\mathbf{d}(d_0, d_1, \ldots, d_{n-1})$ 
    134 \form#133:$\mathbf{v}_i, \: i=0, \ldots, n-1$ 
    135 \form#134:$\mathbf{A}$ 
    136 \form#135:\[ \mathbf{A} \mathbf{v}_i = d_i \mathbf{v}_i\: i=0, \ldots, n-1. \] 
    137 \form#136:$ \mathbf{Y} \mathbf{X} = \mathbf{I}$ 
    138 \form#137:$Ax=b$ 
    139 \form#138:$A$ 
    140 \form#139:$AX=B$ 
    141 \form#140:$m \times n$ 
    142 \form#141:$m \geq n$ 
    143 \form#142:$m \leq n$ 
    144 \form#143:\[ \mathbf{X} = \mathbf{P}^T \mathbf{L} \mathbf{U} , \] 
    145 \form#144:$\mathbf{L}$ 
    146 \form#145:$\mathbf{U}$ 
    147 \form#146:$\mathbf{P}$ 
    148 \form#147:\[ \mathbf{A} = \mathbf{Q} \mathbf{R} , \] 
    149 \form#148:$\mathbf{Q}$ 
    150 \form#149:$m \times m$ 
    151 \form#150:$\mathbf{R}$ 
    152 \form#151:$\mathbf{A}=\mathbf{Q}\mathbf{R}$ 
    153 \form#152:$\mathbf{A}^{T}\mathbf{A}=\mathbf{R}^{T}\mathbf{R}$ 
    154 \form#153:\[ \mathbf{A} \mathbf{P} = \mathbf{Q} \mathbf{R} , \] 
    155 \form#154:$\mathbf{A}^{H}\mathbf{A}=\mathbf{R}^{H}\mathbf{R}$ 
    156 \form#155:$ \mathbf{A} $ 
    157 \form#156:\[ \mathbf{U} \mathbf{T} \mathbf{U}^{T} = \mathbf{A} \] 
    158 \form#157:$ \mathbf{U} $ 
    159 \form#158:$ \mathbf{T} $ 
    160 \form#159:$ \mathbf{U}^{T} $ 
    161 \form#160:$ 2 \times 2 $ 
    162 \form#161:\[ \mathbf{U} \mathbf{T} \mathbf{U}^{H} = \mathbf{A} \] 
    163 \form#162:$ \mathbf{U}^{H} $ 
    164 \form#163:$s$ 
    165 \form#164:\[ \mathrm{diag}(\mathbf{U}^T \mathbf{A} \mathbf{V}) = \mathbf{s} = \sigma_1, \ldots, \sigma_p \] 
    166 \form#165:$\sigma_1 \geq \sigma_2 \geq \ldots \sigma_p \geq 0$ 
    167 \form#166:\[ \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^T \] 
    168 \form#167:$ \mathrm{diag}(\mathbf{S}) = \mathbf{s} $ 
    169 \form#168:\[ \mathrm{diag}(\mathbf{U}^H \mathbf{A} \mathbf{V}) = \mathbf{s} = \sigma_1, \ldots, \sigma_p \] 
    170 \form#169:\[ \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^H \] 
    171 \form#170:$\mathbf{s}$ 
    172 \form#171:\[ J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{ (-1)^{k} }{k! \Gamma(\nu+k+1) } \left(\frac{x}{2}\right)^{\nu+2k} \] 
    173 \form#172:$\nu$ 
    174 \form#173:$ 0 < x < \infty $ 
    175 \form#174:\[ Y_{\nu}(x) = \frac{J_{\nu}(x) \cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)} \] 
    176 \form#175:\[ I_{\nu}(x) = i^{-\nu} J_{\nu}(ix) \] 
    177 \form#176:\[ K_{\nu}(x) = \frac{\pi}{2} i^{\nu+1} [J_{\nu}(ix) + i Y_{\nu}(ix)] \] 
    178 \form#177:\[ \mathbf{X} = \mathbf{X}^H \] 
    179 \form#178:\[ \mathbf{X}^H = \mathbf{X}^{-1} \] 
    180 \form#179:$n+|K| \times n+|K|$ 
    181 \form#180:$n = min(r, c)$ 
    182 \form#181:$r \times c$ 
    183 \form#182:$n-1$ 
    184 \form#183:\[ \int_a^b f(x) dx \] 
    185 \form#184:\[ x \sim \Gamma(\alpha,\beta) = \frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1} \exp(-\beta x) \] 
    186 \form#185:$\alpha=1$ 
    187 \form#186:$\Theta(n\log n)$ 
    188 \form#187:$\Theta(n^2)$ 
    189 \form#188:$g(x) = x^{10} + x^9 + x^8 + x^6 + x^5 + x^3 + 1$ 
    190 \form#189:$ r(t) $ 
    191 \form#190:\[ r(t) = a(t) * s(t), \] 
    192 \form#191:$ s(t) $ 
    193 \form#192:$ a(t) $ 
    194 \form#193:$ \|a(t)\| $ 
    195 \form#194:\[ R(\tau) = E[a^*(t) a(t+\tau)] = J_0(2 \pi f_\mathrm{max} \tau), \] 
    196 \form#195:$ f_\mathrm{max} $ 
    197 \form#196:\[ f_\mathrm{max} = \frac{v}{\lambda} = \frac{v}{c_0} f_c. \] 
    198 \form#197:$ c_0 $ 
    199 \form#198:$ f_c $ 
    200 \form#199:$ f_\mathrm{max} T_s $ 
    201 \form#200:$ T_s $ 
    202 \form#201:$ R(\tau) $ 
    203 \form#202:\[ h(t) = \sum_{k=0}^{N_\mathrm{taps}-1} a_k \exp (-j \theta_k ) \delta(t-\tau_k), \] 
    204 \form#203:$ N_\mathrm{taps} $ 
    205 \form#204:$ a_k $ 
    206 \form#205:$ \tau_k $ 
    207 \form#206:$ \theta_k $ 
    208 \form#207:$ k^{th} $ 
    209 \form#208:\[ \mathbf{a} = [a_0, a_1, \ldots, a_{N_\mathrm{taps}-1}] \] 
    210 \form#209:\[ \mathbf{\tau} = [\tau_0, \tau_1, \ldots, \tau_{N_\mathrm{taps}-1}], \] 
    211 \form#210:$ \tau_0 = 0 $ 
    212 \form#211:$ \tau_0 < \tau_1 < \ldots < \tau_{N_\mathrm{taps}-1} $ 
    213 \form#212:$ h(t) $ 
    214 \form#213:$ \tau_k = d_k T_s $ 
    215 \form#214:$ d_k $ 
    216 \form#215:\[ \rho \exp(2 \pi f_\rho t + \theta_\rho), \] 
    217 \form#216:$ \rho $ 
    218 \form#217:$ f_\rho $ 
    219 \form#218:$ \theta_\rho $ 
    220 \form#219:$ f_\rho = 0.7 f_\mathrm{max} $ 
    221 \form#220:\[ \tilde \mu_i(t) = \sum_{n=1}^{N_i} c_{i,n} \cos(2\pi f_{i,n} t + \theta_{i,n}) \] 
    222 \form#221:$ c_{i,n} $ 
    223 \form#222:$ f_{i,n} $ 
    224 \form#223:$ \theta_{i,n} $ 
    225 \form#224:$ N_i \rightarrow \infty $ 
    226 \form#225:\[ \tilde \mu(t) = \tilde \mu_1(t) + j \tilde \mu_2(t) \] 
    227 \form#226:$ N_i $ 
    228 \form#227:$ N_\mathrm{fft} $ 
    229 \form#228:\[ h(t) = \sum_{k=0}^{N_\mathrm{taps}-1} a_k \exp (-j \theta_k) \delta(t-\tau_k), \] 
    230 \form#229:$ N_{taps} $ 
    231 \form#230:$ \mathbf{a} $ 
    232 \form#231:$ \mathbf{\tau} $ 
    233 \form#232:$N_0/2$ 
    234 \form#233:$N_0$ 
    235 \form#234:$ f_{norm} = f_{max} T_{s} $ 
    236 \form#235:$ f_{max} $ 
    237 \form#236:$ T_{s} $ 
    238 \form#237:\[ \max_{p_0,...,p_{n-1}} \sum_{i=0}^{n-1} \log\left(1+p_i\alpha_i\right) \] 
    239 \form#238:\[ \sum_{i=0}^{n-1} p_i \le P \] 
    240 \form#239:$\alpha_0,...,\alpha_{n-1}$ 
    241 \form#240:$p_0,...,p_{n-1}$ 
    242 \form#241:$O(n^2)$ 
    243 \form#242:$2^{K-1}$ 
    244 \form#243:$ H = [H_{1} H_{2}] $ 
    245 \form#244:$ H_{2} $ 
    246 \form#245:$ [H_{1} H_{2}][I; G'] = 0 $ 
    247 \form#246:\[ L = \log \frac{P(b=0)}{P(b=1)} \] 
    248 \form#247:\[ \mbox{QLLR} = \mbox{round} \left(2^{\mbox{Dint1}}\cdot \mbox{LLR}\right) \] 
    249 \form#248:\[ 2^{-(Dint1-Dint3)} \] 
    250 \form#249:\[ \log(\exp(a)+\exp(b)) \] 
    251 \form#250:\[ \mbox{sign}(a) * \mbox{sign}(b) * \mbox{min}(|a|,|b|) + f(|a+b|) - f(|a-b|) \] 
    252 \form#251:\[ f(x) = \log(1+\exp(-x)) \] 
    253 \form#252:\[r_k = c_k s_k + n_k,\] 
    254 \form#253:$c_k$ 
    255 \form#254:$s_k$ 
    256 \form#255:$n_k$ 
    257 \form#256:$M = 2^k$ 
    258 \form#257:$k = 1, 2, \ldots $ 
    259 \form#258:$\{-(\sqrt{M}-1), \ldots, -3, -1, 1, 3, \ldots, (\sqrt{M}-1)\}$ 
    260 \form#259:$\sqrt{2(M-1)/3}$ 
    261 \form#260:$(1, 0)$ 
    262 \form#261:$M = 4$ 
    263 \form#262:$M = 2$ 
    264 \form#263:$0 \rightarrow 1+0i$ 
    265 \form#264:$1 \rightarrow -1+0i$ 
    266 \form#265:$0 \rightarrow 1$ 
    267 \form#266:$1 \rightarrow -1$ 
    268 \form#267:$\{-(M-1), \ldots, -3, -1, 1, 3, \ldots, (M-1)\}$ 
    269 \form#268:$ \sqrt{(M^2-1)/3}$ 
    270 \form#269:\[\log \left( \frac{P(b_i=0|r)}{P(b_i=1|r)} \right) = \log \left( \frac{\sum_{s_i \in S_0} \exp \left( -\frac{|r_k - s_i|^2}{N_0} \right)} {\sum_{s_i \in S_1} \exp \left( -\frac{|r_k - s_i|^2}{N_0} \right)} \right) \] 
    271 \form#270:$d_0 = |r_k - s_0|$ 
    272 \form#271:$d_1 = |r_k - s_1|$ 
    273 \form#272:\[\frac{d_1^2 - d_0^2}{N_0}\] 
    274 \form#273:$c_k = 1$ 
    275 \form#274:$L_c$ 
    276 \form#275:\[\log \left( \frac{P(b_i=0|r)}{P(b_i=1|r)} \right) = \log \left( \frac{\sum_{s_i \in S_0} \exp \left( -\frac{|r_k - c_k s_i|^2}{N_0} \right)} {\sum_{s_i \in S_1} \exp \left( -\frac{|r_k - c_k s_i|^2}{N_0} \right)} \right) \] 
    277 \form#276:$d_0 = |r_k - c_k s_0|$ 
    278 \form#277:$d_1 = |r_k - c_k s_1|$ 
    279 \form#278:$r_k$ 
    280 \form#279:\[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{2 \sqrt{2}}{N_0} \Im\{r_k \exp \left(j \frac{\Pi}{4} \right) \}\] 
    281 \form#280:\[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{2 \sqrt{2}}{N_0} \Re\{r_k \exp \left(j \frac{\Pi}{4} \right) \}\] 
    282 \form#281:$r$ 
    283 \form#282:\[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{2 \sqrt{2}}{N_0} \Im\{r_k c_k \exp \left(j \frac{\Pi}{4} \right) \}\] 
    284 \form#283:\[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{2 \sqrt{2}}{N_0} \Re\{r_k c_k \exp \left(j \frac{\Pi}{4} \right) \}\] 
    285 \form#284:$c$ 
    286 \form#285:\[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{4 \Re\{r\}} {N_0}\] 
    287 \form#286:\[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{4 \Re\{r c^{*}\}}{N_0}\] 
    288 \form#287:\[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{4 r}{N_0}\] 
    289 \form#288:$c = 1$ 
    290 \form#289:\[ y = Hx+e \] 
    291 \form#290:$n_r\times n_t$ 
    292 \form#291:$y$ 
    293 \form#292:$n_r$ 
    294 \form#293:$n_t$ 
    295 \form#294:$e$ 
    296 \form#295:\[ G = \left[ \begin{array}{cc} H_r & -H_i \\ H_i & H_r \end{array} \right] \] 
    297 \form#296:\[ \log \left( \frac {\sum_{s:b_k=0} \exp(-x^2) P(s)} {\sum_{s:b_k=1} \exp(-x^2) P(s)} \right) \] 
    298 \form#297:\[ \log \left( \frac {\sum_{s:b_k=0} \exp (-x^2) P(s)} {\sum_{s:b_k=1} \exp (-x^2) P(s)} \right) \] 
    299 \form#298:\[ LLR(k) = \log \left( \frac {\sum_{s:b_k=0} \exp \left( -\frac{|y - Hs|^2}{2\sigma^2} \right) P(s)} {\sum_{s:b_k=1} \exp \left( -\frac{|y - Hs|^2}{2\sigma^2} \right) P(s)} \right) \] 
    300 \form#299:$H = \mbox{diag}(h)$ 
    301 \form#300:$|y-Hs|$ 
    302 \form#301:\[ LLR(k) = \log \left( \frac {\sum_{s:b_k=0} \exp \left( -\frac{|y - Hs|^2}{\sigma^2} \right) P(s)} {\sum_{s:b_k=1} \exp \left( -\frac{|y - Hs|^2}{\sigma^2} \right) P(s)} \right) \] 
    303 \form#302:\[ \mbox{min} |y - Hs| \] 
    304 \form#303:$n_r\times 1$ 
    305 \form#304:$ \alpha $ 
    306 \form#305:\[ p(t) = \frac{\sin(\pi t / T)}{\pi t / T} \frac{\cos(\alpha \pi t / T)}{1 - (2 \alpha t / T)^2} \] 
    307 \form#306:\[ p(t) = \frac{4 \alpha}{\pi \sqrt{T}} \frac{\cos((1+\alpha)\pi t / T) + T \sin((1-\alpha)\pi t / T) / (4 \alpha t) }{1 - (4 \pi t / T)^2} \] 
    308 \form#307:$2^m$ 
    309 \form#308:$2^m-1$ 
    310 \form#309:$N = 2^{deg} - 1$ 
    311 \form#310:$deg = \{ 5, 7, 8, 9 \}$ 
    312 \form#311:$L \times N$ 
    313 \form#312:\[ r_k = h_k c_k + w_k \] 
    314 \form#313:$h_k$ 
    315 \form#314:$\{-\sqrt{E_c},+\sqrt{E_c}\}$ 
    316 \form#315:$w_k$ 
    317 \form#316:\[ z_k = \hat{h}_k^{*} r_k \] 
    318 \form#317:$\hat{h}_k^{*}$ 
    319 \form#318:\[ L_c = 4\sqrt{E_c} / {N_0} \] 
    320 \form#319:\[ s(1), p_{1,1}(1), p_{1,2}(1), \ldots , p_{1,n_1}(1), p_{2,1}(1), p_{2,2}(1), \ldots , p_{2,n_2}(1), s(2), \ldots \] 
    321 \form#320:$s(n)$ 
    322 \form#321:$p_{l,k}(n)$ 
    323 \form#322:\[ t_1(1), pt_{1,1}(1), pt_{1,2}(1), \ldots , pt_{1,n_1}(1), \ldots pt_{1,n_1}(m) \] 
    324 \form#323:$f(\mathbf{x})$ 
    325 \form#324:$\mathbf{x}$ 
    326 \form#325:\[ \left\| \mathbf{f}'(\mathbf{x})\right\|_{\infty} \leq \varepsilon_1 \] 
    327 \form#326:\[ \left\| d\mathbf{x}\right\|_{2} \leq \varepsilon_2 (\varepsilon_2 + \| \mathbf{x} \|_{2} ) \] 
    328 \form#327:$\varepsilon_1 = 10^{-4}$ 
    329 \form#328:$\varepsilon_2 = 10^{-8}$ 
    330 \form#329:$\mathbf{h}$ 
    331 \form#330:\[ \varphi(\alpha) = f(\mathbf{x} + \alpha \mathbf{h}) \] 
    332 \form#331:$\alpha_s$ 
    333 \form#332:$f$ 
    334 \form#333:\[ \phi(\alpha_s) \leq \varphi(0) + \alpha_s \rho \varphi'(0) \] 
    335 \form#334:\[ \varphi'(\alpha_s) \geq \beta \varphi'(0),\: \rho < \beta \] 
    336 \form#335:$\rho = 10^{-3}$ 
    337 \form#336:$\beta = 0.99$ 
    338 \form#337:\[ \| \varphi(\alpha_s)\| \leq \rho \| \varphi'(0) \| \] 
    339 \form#338:\[ b-a \leq \beta b, \] 
    340 \form#339:$\left[a,b\right]$ 
    341 \form#340:$\beta = 10^{-3}$ 
    342 \form#341:$a_1$ 
    343 \form#342:$a_2$ 
    344 \form#343:$\epsilon$ 
    345 \form#344:\[ y(n) = b(0)*x(n) + b(1)*x(n-1) + ... + b(N)*x(n-N) \] 
    346 \form#345:\[ a(0)*y(n) = x(n) - a(1)*y(n-1) - ... - a(N)*y(n-N) \] 
    347 \form#346:\[ a(0)*y(n) = b(0)*x(n) + b(1)*x(n-1) + \ldots + b(N_b)*x(n-N_b) - a(1)*y(n-1) - \ldots - a(N_a)*y(n-N_a) \] 
    348 \form#347:$max(N_a, n_b) - 1$ 
    349 \form#348:$\pi$ 
    350 \form#349:$N>n$ 
    351 \form#350:$N = 4 n$ 
    352 \form#351:$R(k) = 0, \forall \|k\| > m$ 
    353 \form#352:$2(m+n)$ 
    354 \form#353:$N+1$ 
    355 \form#354:\[ p_0 x^N + p_1 x^{N-1} + \ldots + p_{N-1} x + p_N \] 
    356 \form#355:\[ T(x) = \left\{ \begin{array}{ll} \cos(n\arccos(x)),& |x| \leq 0 \\ \cosh(n\mathrm{arccosh}(x)),& x > 1 \\ (-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1 \end{array} \right. \] 
    357 \form#356:$X$ 
    358 \form#357:$N$ 
    359 \form#358:\[ X(k) = \sum_{j=0}^{N-1} x(j) e^{-2\pi j k \cdot i / N} \] 
    360 \form#359:\[ x(j) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{2\pi j k \cdot i / N} \] 
    361 \form#360:\[ X(k) = w(k) \sum_{j=0}^{N-1} x(j) \cos \left(\frac{(2j+1)k \pi}{2N} \right) \] 
    362 \form#361:\[ x(j) = \sum_{k=0}^{N-1} w(k) X(k) \cos \left(\frac{(2j+1)k \pi}{2N} \right) \] 
    363 \form#362:$w(k) = 1/sqrt{N}$ 
    364 \form#363:$k=0$ 
    365 \form#364:$w(k) = sqrt{2/N}$ 
    366 \form#365:$k\geq 1$ 
    367 \form#366:$i$ 
    368 \form#367:\[ w_i = 0.54 - 0.46 \cos(2\pi i/(n-1)) \] 
    369 \form#368:\[ w_i = 0.5(1 - \cos(2\pi (i+1)/(n+1)) \] 
    370 \form#369:\[ w_i = 0.5(1 - \cos(2\pi i/(n-1)) \] 
    371 \form#370:\[ w_i = 0.42 - 0.5\cos(2\pi i/(n-1)) + 0.08\cos(4\pi i/(n-1)) \] 
    372 \form#371:\[ w_i = w_{n-i-1} = \frac{2(i+1)}{n+1} \] 
    373 \form#372:\[ w_i = w_{n-i-1} = \frac{2i+1}{n} \] 
    374 \form#373:\[ W[k] = \frac{T_M\left(\beta \cos\left(\frac{\pi k}{M}\right) \right)}{T_M(\beta)},k = 0, 1, 2, \ldots, M - 1 \] 
    375 \form#374:$ \mathbf{x} $ 
    376 \form#375:\[ m_r = \mathrm{E}[x-\mu]^r = \frac{1}{n} \sum_{i=0}^{n-1} (x_i - \mu)^r \] 
    377 \form#376:\[ \gamma_1 = \frac{\mathrm{E}[x-\mu]^3}{\sigma^3} \] 
    378 \form#377:$\sigma$ 
    379 \form#378:\[ \gamma_1 = \frac{k_3}{{k_2}^{3/2}} \] 
    380 \form#379:\[ k_2 = \frac{n}{n-1} m_2 \] 
    381 \form#380:\[ k_3 = \frac{n^2}{(n-1)(n-2)} m_3 \] 
    382 \form#381:$m_2$ 
    383 \form#382:$m_3$ 
    384 \form#383:\[ \gamma_2 = \frac{\mathrm{E}[x-\mu]^4}{\sigma^4} - 3 \] 
    385 \form#384:\[ \gamma_2 = \frac{k_4}{{k_2}^2} \] 
    386 \form#385:\[ k_4 = \frac{n^2 [(n+1)m_4 - 3(n-1){m_2}^2]}{(n-1)(n-2)(n-3)} \] 
    387 \form#386:$m_4$ 
    388 \form#387:\[ \gamma_2 = \frac{\mathrm{E}[x-\mu]^4}{\sigma^4} \] 
    389 \form#388:$ w_{new} = [ \alpha \cdot w_{A} ~~~ \beta \cdot w_{B} ]^T $ 
    390 \form#389:$ w_{new} $ 
    391 \form#390:$ w_{A} $ 
    392 \form#391:$ w_{B} $ 
    393 \form#392:$ \alpha = K_A / (K_A + KB_in) $ 
    394 \form#393:$ \beta = 1-\alpha $ 
    395 \form#394:$ K_A $ 
    396 \form#395:$ KB_in $ 
    397 \form#396:$ -\frac{D}{2}\log(2\pi) -\frac{1}{2}\log(|\Sigma|) $ 
    398 \form#397:$ D $ 
    399 \form#398:$ |\Sigma| $ 
    400 \form#399:$ \Sigma $