Changeset 354 for doc/html/kalman.html
- Timestamp:
- 06/02/09 10:24:26 (16 years ago)
- Files:
-
- 1 modified
Legend:
- Unmodified
- Added
- Removed
-
doc/html/kalman.html
r353 r354 67 67 <img class="formulaDsp" alt="\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray}" src="form_100.png"> 68 68 <p> 69 where <img class="formulaInl" alt="$ x_t $" src="form_101.png"> is the state, <img class="formulaInl" alt="$ y_t $" src="form_ 8.png"> is the system output, <img class="formulaInl" alt="$ A, B, C, D$" src="form_102.png"> are state matrices of appropriate dimensions, <img class="formulaInl" alt="$v_t, w_t$" src="form_103.png"> are zero mean Gaussian noises with covariance matrices <img class="formulaInl" alt="$Q, R$" src="form_104.png">, respectively.<p>69 where <img class="formulaInl" alt="$ x_t $" src="form_101.png"> is the state, <img class="formulaInl" alt="$ y_t $" src="form_6.png"> is the system output, <img class="formulaInl" alt="$ A, B, C, D$" src="form_102.png"> are state matrices of appropriate dimensions, <img class="formulaInl" alt="$v_t, w_t$" src="form_103.png"> are zero mean Gaussian noises with covariance matrices <img class="formulaInl" alt="$Q, R$" src="form_104.png">, respectively.<p> 70 70 Both prior and posterior densities on the state are Gaussian, i.e. of the class enorm.<p> 71 71 There is a range of classes that implements this functionality, namely:<ul> … … 92 92 <span class="comment">// matrices</span> 93 93 mat A = eye(dx); 94 mat B = <a class="code" href="group__specmat.html#g4c206300055f51390d03770ea5600da3" title="A Double vector of zeros.">zeros</a>(dx,du);94 mat B = zeros(dx,du); 95 95 mat C = eye(dx); 96 mat D = <a class="code" href="group__specmat.html#g4c206300055f51390d03770ea5600da3" title="A Double vector of zeros.">zeros</a>(dy,du);96 mat D = zeros(dy,du); 97 97 mat Q = eye(dx); 98 98 mat R = 0.1*eye(dy); 99 99 <span class="comment">//prior</span> 100 100 mat P0 = 100*eye(dx); 101 vec mu0 = <a class="code" href="group__specmat.html#g4c206300055f51390d03770ea5600da3" title="A Double vector of zeros.">zeros</a>(dx);101 vec mu0 = zeros(dx); 102 102 <span class="comment">// Estimator</span> 103 103 KalmanCh KF; … … 106 106 <span class="comment">// Estimation loop</span> 107 107 <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i=0;i<100;i++){ 108 KF.bayes( <a class="code" href="group__randgen.html#g9ecf5af23567f51abc9af737fdbd872a" title="Generates a random Gaussian (0,1) variable.">randn</a>(dx+du));108 KF.bayes(randn(dx+du)); 109 109 } 110 110 <span class="comment">//print results</span> … … 114 114 } 115 115 </pre></div> </div> 116 <hr size="1"><address style="text-align: right;"><small>Generated on Tue Jun 2 10: 02:142009 for mixpp by 116 <hr size="1"><address style="text-align: right;"><small>Generated on Tue Jun 2 10:11:00 2009 for mixpp by 117 117 <a href="http://www.doxygen.org/index.html"> 118 118 <img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.8 </small></address>