453 | | <a name="l00563"></a>00563 }; |
454 | | <a name="l00573"></a><a class="code" href="classbdm_1_1mgamma.html">00573</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
455 | | <a name="l00574"></a>00574 { |
456 | | <a name="l00575"></a>00575 <span class="keyword">protected</span>: |
457 | | <a name="l00577"></a><a class="code" href="classbdm_1_1mgamma.html#bdc9f1e9e03c09e91103fee269864438">00577</a> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
458 | | <a name="l00579"></a><a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09">00579</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>; |
459 | | <a name="l00581"></a><a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312">00581</a> vec &<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>; |
460 | | <a name="l00582"></a>00582 |
461 | | <a name="l00583"></a>00583 <span class="keyword">public</span>: |
462 | | <a name="l00585"></a><a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1">00585</a> <a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1" title="Constructor.">mgamma</a> ( ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> ( ), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> (), <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
463 | | <a name="l00587"></a>00587 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, <span class="keyword">const</span> vec &beta0 ); |
464 | | <a name="l00588"></a><a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff">00588</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/val;}; |
465 | | <a name="l00589"></a>00589 }; |
466 | | <a name="l00590"></a>00590 |
467 | | <a name="l00600"></a><a class="code" href="classbdm_1_1migamma.html">00600</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
468 | | <a name="l00601"></a>00601 { |
469 | | <a name="l00602"></a>00602 <span class="keyword">protected</span>: |
470 | | <a name="l00604"></a><a class="code" href="classbdm_1_1migamma.html#a31b39d4179551b593c9e0d7d756783a">00604</a> <a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
471 | | <a name="l00606"></a><a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c">00606</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>; |
472 | | <a name="l00608"></a><a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc">00608</a> vec &<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>; |
473 | | <a name="l00610"></a><a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5">00610</a> vec &<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>; |
474 | | <a name="l00611"></a>00611 |
475 | | <a name="l00612"></a>00612 <span class="keyword">public</span>: |
476 | | <a name="l00615"></a>00615 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ), <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>() ), <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
477 | | <a name="l00616"></a>00616 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> &m ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( m.<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ), <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>() ), <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
478 | | <a name="l00618"></a>00618 |
479 | | <a name="l00620"></a><a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151">00620</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> len, <span class="keywordtype">double</span> k0 ) |
480 | | <a name="l00621"></a>00621 { |
481 | | <a name="l00622"></a>00622 <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>=k0; |
482 | | <a name="l00623"></a>00623 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( ( 1.0/ ( <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>*<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> ) +2.0 ) *ones ( len ) <span class="comment">/*alpha*/</span>, ones ( len ) <span class="comment">/*beta*/</span> ); |
483 | | <a name="l00624"></a>00624 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); |
484 | | <a name="l00625"></a>00625 }; |
485 | | <a name="l00626"></a><a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c">00626</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) |
486 | | <a name="l00627"></a>00627 { |
487 | | <a name="l00628"></a>00628 <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>=elem_mult ( val, ( <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>-1.0 ) ); |
488 | | <a name="l00629"></a>00629 }; |
489 | | <a name="l00630"></a>00630 }; |
490 | | <a name="l00631"></a>00631 |
491 | | <a name="l00643"></a><a class="code" href="classbdm_1_1mgamma__fix.html">00643</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> |
492 | | <a name="l00644"></a>00644 { |
493 | | <a name="l00645"></a>00645 <span class="keyword">protected</span>: |
494 | | <a name="l00647"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa">00647</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>; |
495 | | <a name="l00649"></a><a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2">00649</a> vec <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>; |
496 | | <a name="l00650"></a>00650 <span class="keyword">public</span>: |
497 | | <a name="l00652"></a><a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d">00652</a> <a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d" title="Constructor.">mgamma_fix</a> ( ) : <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> ( ),<a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a> () {}; |
498 | | <a name="l00654"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2">00654</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) |
499 | | <a name="l00655"></a>00655 { |
500 | | <a name="l00656"></a>00656 <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">mgamma::set_parameters</a> ( k0, ref0 ); |
501 | | <a name="l00657"></a>00657 <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>=l0; |
502 | | <a name="l00658"></a>00658 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=dimension(); |
503 | | <a name="l00659"></a>00659 }; |
504 | | <a name="l00660"></a>00660 |
505 | | <a name="l00661"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7">00661</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {vec mean=elem_mult ( <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a> ) ); <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/mean;}; |
506 | | <a name="l00662"></a>00662 }; |
507 | | <a name="l00663"></a>00663 |
508 | | <a name="l00664"></a>00664 |
509 | | <a name="l00677"></a><a class="code" href="classbdm_1_1migamma__ref.html">00677</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma__ref.html" title="Inverse-Gamma random walk around a fixed point.">migamma_ref</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> |
510 | | <a name="l00678"></a>00678 { |
511 | | <a name="l00679"></a>00679 <span class="keyword">protected</span>: |
512 | | <a name="l00681"></a><a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d">00681</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>; |
513 | | <a name="l00683"></a><a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6">00683</a> vec <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>; |
514 | | <a name="l00684"></a>00684 <span class="keyword">public</span>: |
515 | | <a name="l00686"></a><a class="code" href="classbdm_1_1migamma__ref.html#f45b15a10f084991ba6b48295f10421f">00686</a> <a class="code" href="classbdm_1_1migamma__ref.html#f45b15a10f084991ba6b48295f10421f" title="Constructor.">migamma_ref</a> ( ) : <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> (),<a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a> ( ) {}; |
516 | | <a name="l00688"></a><a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800">00688</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) |
517 | | <a name="l00689"></a>00689 { |
518 | | <a name="l00690"></a>00690 <a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">migamma::set_parameters</a> ( ref0.length(), k0 ); |
519 | | <a name="l00691"></a>00691 <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>=pow ( ref0,1.0-l0 ); |
520 | | <a name="l00692"></a>00692 <a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>=l0; |
521 | | <a name="l00693"></a>00693 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); |
522 | | <a name="l00694"></a>00694 }; |
523 | | <a name="l00695"></a>00695 |
524 | | <a name="l00696"></a><a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a">00696</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) |
525 | | <a name="l00697"></a>00697 { |
526 | | <a name="l00698"></a>00698 vec mean=elem_mult ( <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a> ) ); |
527 | | <a name="l00699"></a>00699 <a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">migamma::condition</a> ( mean ); |
528 | | <a name="l00700"></a>00700 }; |
529 | | <a name="l00701"></a>00701 }; |
530 | | <a name="l00702"></a>00702 |
531 | | <a name="l00712"></a><a class="code" href="classbdm_1_1elognorm.html">00712</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1elognorm.html">elognorm</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a><ldmat> |
532 | | <a name="l00713"></a>00713 { |
533 | | <a name="l00714"></a>00714 <span class="keyword">public</span>: |
534 | | <a name="l00715"></a><a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba">00715</a> vec <a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> exp ( <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<ldmat>::sample</a>() );}; |
535 | | <a name="l00716"></a><a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea">00716</a> vec <a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec var=<a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">enorm<ldmat>::variance</a>();<span class="keywordflow">return</span> exp ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> - 0.5*var );}; |
536 | | <a name="l00717"></a>00717 |
537 | | <a name="l00718"></a>00718 }; |
538 | | <a name="l00719"></a>00719 |
539 | | <a name="l00731"></a><a class="code" href="classbdm_1_1mlognorm.html">00731</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlognorm.html" title="Log-Normal random walk.">mlognorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> |
540 | | <a name="l00732"></a>00732 { |
541 | | <a name="l00733"></a>00733 <span class="keyword">protected</span>: |
542 | | <a name="l00734"></a>00734 <a class="code" href="classbdm_1_1elognorm.html">elognorm</a> eno; |
543 | | <a name="l00736"></a><a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a">00736</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>; |
544 | | <a name="l00738"></a><a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2">00738</a> vec &<a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>; |
545 | | <a name="l00739"></a>00739 <span class="keyword">public</span>: |
546 | | <a name="l00741"></a><a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41">00741</a> <a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41" title="Constructor.">mlognorm</a> ( ) : eno (), <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a> ( eno._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&eno;}; |
547 | | <a name="l00743"></a><a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f">00743</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> size, <span class="keywordtype">double</span> k ) |
548 | | <a name="l00744"></a>00744 { |
549 | | <a name="l00745"></a>00745 <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a> = 0.5*log ( k*k+1 ); |
550 | | <a name="l00746"></a>00746 eno.<a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> ( zeros ( size ),2*<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>*eye ( size ) ); |
551 | | <a name="l00747"></a>00747 |
552 | | <a name="l00748"></a>00748 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = size; |
553 | | <a name="l00749"></a>00749 }; |
554 | | <a name="l00750"></a>00750 |
555 | | <a name="l00751"></a><a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e">00751</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) |
556 | | <a name="l00752"></a>00752 { |
557 | | <a name="l00753"></a>00753 <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>=log ( val )-<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>;<span class="comment">//elem_mult ( refl,pow ( val,l ) );</span> |
| 433 | <a name="l00563"></a>00563 <span class="comment">/*void mgnorm::to_setting( Setting &root ) const</span> |
| 434 | <a name="l00564"></a>00564 <span class="comment"> { </span> |
| 435 | <a name="l00565"></a>00565 <span class="comment"> Transport::to_setting( root );</span> |
| 436 | <a name="l00566"></a>00566 <span class="comment"></span> |
| 437 | <a name="l00567"></a>00567 <span class="comment"> Setting &kilometers_setting = root.add("kilometers", Setting::TypeInt );</span> |
| 438 | <a name="l00568"></a>00568 <span class="comment"> kilometers_setting = kilometers;</span> |
| 439 | <a name="l00569"></a>00569 <span class="comment"></span> |
| 440 | <a name="l00570"></a>00570 <span class="comment"> UI::save( passengers, root, "passengers" );</span> |
| 441 | <a name="l00571"></a>00571 <span class="comment"> }*/</span> |
| 442 | <a name="l00572"></a>00572 |
| 443 | <a name="l00573"></a>00573 }; |
| 444 | <a name="l00574"></a>00574 |
| 445 | <a name="l00575"></a>00575 UIREGISTER(mgnorm<chmat>); |
| 446 | <a name="l00576"></a>00576 |
| 447 | <a name="l00577"></a>00577 |
| 448 | <a name="l00585"></a><a class="code" href="classbdm_1_1mlstudent.html">00585</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a><ldmat> |
| 449 | <a name="l00586"></a>00586 { |
| 450 | <a name="l00587"></a>00587 <span class="keyword">protected</span>: |
| 451 | <a name="l00588"></a>00588 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Lambda; |
| 452 | <a name="l00589"></a>00589 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &<a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>; |
| 453 | <a name="l00590"></a>00590 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Re; |
| 454 | <a name="l00591"></a>00591 <span class="keyword">public</span>: |
| 455 | <a name="l00592"></a>00592 <a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> ( ) :<a class="code" href="classbdm_1_1mlnorm.html">mlnorm<ldmat></a> (), |
| 456 | <a name="l00593"></a>00593 Lambda (), <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R() ) {} |
| 457 | <a name="l00594"></a>00594 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &R0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& Lambda0 ) |
| 458 | <a name="l00595"></a>00595 { |
| 459 | <a name="l00596"></a>00596 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> ); |
| 460 | <a name="l00597"></a>00597 it_assert_debug ( R0.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>() ==A0.rows(),<span class="stringliteral">""</span> ); |
| 461 | <a name="l00598"></a>00598 |
| 462 | <a name="l00599"></a>00599 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( mu0,Lambda ); <span class="comment">//</span> |
| 463 | <a name="l00600"></a>00600 A = A0; |
| 464 | <a name="l00601"></a>00601 mu_const = mu0; |
| 465 | <a name="l00602"></a>00602 Re=R0; |
| 466 | <a name="l00603"></a>00603 Lambda = Lambda0; |
| 467 | <a name="l00604"></a>00604 } |
| 468 | <a name="l00605"></a><a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">00605</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">condition</a> ( <span class="keyword">const</span> vec &cond ) |
| 469 | <a name="l00606"></a>00606 { |
| 470 | <a name="l00607"></a>00607 _mu = A*cond + mu_const; |
| 471 | <a name="l00608"></a>00608 <span class="keywordtype">double</span> zeta; |
| 472 | <a name="l00609"></a>00609 <span class="comment">//ugly hack!</span> |
| 473 | <a name="l00610"></a>00610 <span class="keywordflow">if</span> ( ( cond.length() +1 ) ==Lambda.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>() ) |
| 474 | <a name="l00611"></a>00611 { |
| 475 | <a name="l00612"></a>00612 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( concat ( cond, vec_1 ( 1.0 ) ) ); |
| 476 | <a name="l00613"></a>00613 } |
| 477 | <a name="l00614"></a>00614 <span class="keywordflow">else</span> |
| 478 | <a name="l00615"></a>00615 { |
| 479 | <a name="l00616"></a>00616 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( cond ); |
| 480 | <a name="l00617"></a>00617 } |
| 481 | <a name="l00618"></a>00618 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> = Re; |
| 482 | <a name="l00619"></a>00619 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>*= ( 1+zeta );<span class="comment">// / ( nu ); << nu is in Re!!!!!!</span> |
| 483 | <a name="l00620"></a>00620 }; |
| 484 | <a name="l00621"></a>00621 |
| 485 | <a name="l00622"></a>00622 }; |
| 486 | <a name="l00632"></a><a class="code" href="classbdm_1_1mgamma.html">00632</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
| 487 | <a name="l00633"></a>00633 { |
| 488 | <a name="l00634"></a>00634 <span class="keyword">protected</span>: |
| 489 | <a name="l00636"></a><a class="code" href="classbdm_1_1mgamma.html#bdc9f1e9e03c09e91103fee269864438">00636</a> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
| 490 | <a name="l00638"></a><a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09">00638</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>; |
| 491 | <a name="l00640"></a><a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312">00640</a> vec &<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>; |
| 492 | <a name="l00641"></a>00641 |
| 493 | <a name="l00642"></a>00642 <span class="keyword">public</span>: |
| 494 | <a name="l00644"></a><a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1">00644</a> <a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1" title="Constructor.">mgamma</a> ( ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> ( ), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> (), <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
| 495 | <a name="l00646"></a>00646 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, <span class="keyword">const</span> vec &beta0 ); |
| 496 | <a name="l00647"></a><a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff">00647</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/val;}; |
| 497 | <a name="l00648"></a>00648 }; |
| 498 | <a name="l00649"></a>00649 |
| 499 | <a name="l00659"></a><a class="code" href="classbdm_1_1migamma.html">00659</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
| 500 | <a name="l00660"></a>00660 { |
| 501 | <a name="l00661"></a>00661 <span class="keyword">protected</span>: |
| 502 | <a name="l00663"></a><a class="code" href="classbdm_1_1migamma.html#a31b39d4179551b593c9e0d7d756783a">00663</a> <a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
| 503 | <a name="l00665"></a><a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c">00665</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>; |
| 504 | <a name="l00667"></a><a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc">00667</a> vec &<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>; |
| 505 | <a name="l00669"></a><a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5">00669</a> vec &<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>; |
| 506 | <a name="l00670"></a>00670 |
| 507 | <a name="l00671"></a>00671 <span class="keyword">public</span>: |
| 508 | <a name="l00674"></a>00674 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ), <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>() ), <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
| 509 | <a name="l00675"></a>00675 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> &m ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( m.<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ), <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>() ), <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
| 510 | <a name="l00677"></a>00677 |
| 511 | <a name="l00679"></a><a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151">00679</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> len, <span class="keywordtype">double</span> k0 ) |
| 512 | <a name="l00680"></a>00680 { |
| 513 | <a name="l00681"></a>00681 <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>=k0; |
| 514 | <a name="l00682"></a>00682 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( ( 1.0/ ( <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>*<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> ) +2.0 ) *ones ( len ) <span class="comment">/*alpha*/</span>, ones ( len ) <span class="comment">/*beta*/</span> ); |
| 515 | <a name="l00683"></a>00683 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); |
| 516 | <a name="l00684"></a>00684 }; |
| 517 | <a name="l00685"></a><a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c">00685</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) |
| 518 | <a name="l00686"></a>00686 { |
| 519 | <a name="l00687"></a>00687 <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>=elem_mult ( val, ( <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>-1.0 ) ); |
| 520 | <a name="l00688"></a>00688 }; |
| 521 | <a name="l00689"></a>00689 }; |
| 522 | <a name="l00690"></a>00690 |
| 523 | <a name="l00691"></a>00691 |
| 524 | <a name="l00703"></a><a class="code" href="classbdm_1_1mgamma__fix.html">00703</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> |
| 525 | <a name="l00704"></a>00704 { |
| 526 | <a name="l00705"></a>00705 <span class="keyword">protected</span>: |
| 527 | <a name="l00707"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa">00707</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>; |
| 528 | <a name="l00709"></a><a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2">00709</a> vec <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>; |
| 529 | <a name="l00710"></a>00710 <span class="keyword">public</span>: |
| 530 | <a name="l00712"></a><a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d">00712</a> <a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d" title="Constructor.">mgamma_fix</a> ( ) : <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> ( ),<a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a> () {}; |
| 531 | <a name="l00714"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2">00714</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) |
| 532 | <a name="l00715"></a>00715 { |
| 533 | <a name="l00716"></a>00716 <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">mgamma::set_parameters</a> ( k0, ref0 ); |
| 534 | <a name="l00717"></a>00717 <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>=l0; |
| 535 | <a name="l00718"></a>00718 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=dimension(); |
| 536 | <a name="l00719"></a>00719 }; |
| 537 | <a name="l00720"></a>00720 |
| 538 | <a name="l00721"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7">00721</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {vec mean=elem_mult ( <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a> ) ); <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/mean;}; |
| 539 | <a name="l00722"></a>00722 }; |
| 540 | <a name="l00723"></a>00723 |
| 541 | <a name="l00724"></a>00724 |
| 542 | <a name="l00737"></a><a class="code" href="classbdm_1_1migamma__ref.html">00737</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma__ref.html" title="Inverse-Gamma random walk around a fixed point.">migamma_ref</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> |
| 543 | <a name="l00738"></a>00738 { |
| 544 | <a name="l00739"></a>00739 <span class="keyword">protected</span>: |
| 545 | <a name="l00741"></a><a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d">00741</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>; |
| 546 | <a name="l00743"></a><a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6">00743</a> vec <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>; |
| 547 | <a name="l00744"></a>00744 <span class="keyword">public</span>: |
| 548 | <a name="l00746"></a><a class="code" href="classbdm_1_1migamma__ref.html#f45b15a10f084991ba6b48295f10421f">00746</a> <a class="code" href="classbdm_1_1migamma__ref.html#f45b15a10f084991ba6b48295f10421f" title="Constructor.">migamma_ref</a> ( ) : <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> (),<a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a> ( ) {}; |
| 549 | <a name="l00748"></a><a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800">00748</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) |
| 550 | <a name="l00749"></a>00749 { |
| 551 | <a name="l00750"></a>00750 <a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">migamma::set_parameters</a> ( ref0.length(), k0 ); |
| 552 | <a name="l00751"></a>00751 <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>=pow ( ref0,1.0-l0 ); |
| 553 | <a name="l00752"></a>00752 <a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>=l0; |
| 554 | <a name="l00753"></a>00753 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); |
559 | | <a name="l00755"></a>00755 }; |
560 | | <a name="l00756"></a>00756 |
561 | | <a name="l00760"></a><a class="code" href="classbdm_1_1eWishartCh.html">00760</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eWishartCh.html">eWishartCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
562 | | <a name="l00761"></a>00761 { |
563 | | <a name="l00762"></a>00762 <span class="keyword">protected</span>: |
564 | | <a name="l00764"></a><a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490">00764</a> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>; |
565 | | <a name="l00766"></a><a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f">00766</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; |
566 | | <a name="l00768"></a><a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3">00768</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>; |
567 | | <a name="l00769"></a>00769 <span class="keyword">public</span>: |
568 | | <a name="l00770"></a>00770 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0 ) {<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>=<a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> ( Y0 );<a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>=delta0; <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>=<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classsqmat.html#071e80ced9cc3b8cbb360fa7462eb646" title="Reimplementing common functions of mat: cols().">rows</a>(); <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>*<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; } |
569 | | <a name="l00771"></a>00771 mat sample_mat()<span class="keyword"> const</span> |
570 | | <a name="l00772"></a>00772 <span class="keyword"> </span>{ |
571 | | <a name="l00773"></a>00773 mat X=zeros ( <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>,<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a> ); |
572 | | <a name="l00774"></a>00774 |
573 | | <a name="l00775"></a>00775 <span class="comment">//sample diagonal</span> |
574 | | <a name="l00776"></a>00776 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>;i++ ) |
575 | | <a name="l00777"></a>00777 { |
576 | | <a name="l00778"></a>00778 GamRNG.<a class="code" href="classitpp_1_1Gamma__RNG.html#dfaae19411e39aa87e1f72e409b6babe" title="Set lambda.">setup</a> ( 0.5* ( <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>-i ) , 0.5 ); <span class="comment">// no +1 !! index if from 0</span> |
577 | | <a name="l00779"></a>00779 <span class="preprocessor">#pragma omp critical</span> |
578 | | <a name="l00780"></a>00780 <span class="preprocessor"></span> X ( i,i ) =sqrt ( GamRNG() ); |
579 | | <a name="l00781"></a>00781 } |
580 | | <a name="l00782"></a>00782 <span class="comment">//do the rest</span> |
581 | | <a name="l00783"></a>00783 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<p;i++ ) |
582 | | <a name="l00784"></a>00784 { |
583 | | <a name="l00785"></a>00785 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> j=i+1;j<p;j++ ) |
584 | | <a name="l00786"></a>00786 { |
585 | | <a name="l00787"></a>00787 <span class="preprocessor">#pragma omp critical</span> |
586 | | <a name="l00788"></a>00788 <span class="preprocessor"></span> X ( i,j ) =NorRNG.sample(); |
587 | | <a name="l00789"></a>00789 } |
588 | | <a name="l00790"></a>00790 } |
589 | | <a name="l00791"></a>00791 <span class="keywordflow">return</span> X*<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>();<span class="comment">// return upper triangular part of the decomposition</span> |
590 | | <a name="l00792"></a>00792 } |
591 | | <a name="l00793"></a><a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a">00793</a> vec <a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a" title="Returns a sample, from density .">sample</a> ()<span class="keyword"> const</span> |
592 | | <a name="l00794"></a>00794 <span class="keyword"> </span>{ |
593 | | <a name="l00795"></a>00795 <span class="keywordflow">return</span> vec ( sample_mat()._data(),p*p ); |
594 | | <a name="l00796"></a>00796 } |
595 | | <a name="l00798"></a><a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981">00798</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981" title="fast access function y0 will be copied into Y.Ch.">setY</a> ( <span class="keyword">const</span> mat &Ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,Ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() );} |
596 | | <a name="l00800"></a><a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a">00800</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a" title="fast access function y0 will be copied into Y.Ch.">_setY</a> ( <span class="keyword">const</span> vec &ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() ); } |
597 | | <a name="l00802"></a><a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e">00802</a> <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>& <a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e" title="access function">getY</a>()<span class="keyword">const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>;} |
598 | | <a name="l00803"></a>00803 }; |
| 556 | <a name="l00755"></a>00755 |
| 557 | <a name="l00756"></a><a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a">00756</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) |
| 558 | <a name="l00757"></a>00757 { |
| 559 | <a name="l00758"></a>00758 vec mean=elem_mult ( <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a> ) ); |
| 560 | <a name="l00759"></a>00759 <a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">migamma::condition</a> ( mean ); |
| 561 | <a name="l00760"></a>00760 }; |
| 562 | <a name="l00761"></a>00761 |
| 563 | <a name="l00782"></a>00782 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#6ab1cf56dd7b718c285ee65d8953cf3e">from_setting</a>( <span class="keyword">const</span> Setting &root ); |
| 564 | <a name="l00783"></a>00783 |
| 565 | <a name="l00784"></a>00784 <span class="comment">// TODO dodelat void to_setting( Setting &root ) const;</span> |
| 566 | <a name="l00785"></a>00785 }; |
| 567 | <a name="l00786"></a>00786 |
| 568 | <a name="l00787"></a>00787 |
| 569 | <a name="l00788"></a>00788 UIREGISTER(migamma_ref); |
| 570 | <a name="l00789"></a>00789 |
| 571 | <a name="l00799"></a><a class="code" href="classbdm_1_1elognorm.html">00799</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1elognorm.html">elognorm</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a><ldmat> |
| 572 | <a name="l00800"></a>00800 { |
| 573 | <a name="l00801"></a>00801 <span class="keyword">public</span>: |
| 574 | <a name="l00802"></a><a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba">00802</a> vec <a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> exp ( <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<ldmat>::sample</a>() );}; |
| 575 | <a name="l00803"></a><a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea">00803</a> vec <a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec var=<a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">enorm<ldmat>::variance</a>();<span class="keywordflow">return</span> exp ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> - 0.5*var );}; |
600 | | <a name="l00805"></a>00805 <span class="keyword">class </span>eiWishartCh: <span class="keyword">public</span> epdf |
601 | | <a name="l00806"></a>00806 { |
602 | | <a name="l00807"></a>00807 <span class="keyword">protected</span>: |
603 | | <a name="l00808"></a>00808 eWishartCh W; |
604 | | <a name="l00809"></a>00809 <span class="keywordtype">int</span> p; |
605 | | <a name="l00810"></a>00810 <span class="keywordtype">double</span> delta; |
606 | | <a name="l00811"></a>00811 <span class="keyword">public</span>: |
607 | | <a name="l00812"></a>00812 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0) { |
608 | | <a name="l00813"></a>00813 delta = delta0; |
609 | | <a name="l00814"></a>00814 W.set_parameters ( inv ( Y0 ),delta0 ); |
610 | | <a name="l00815"></a>00815 dim = W.dimension(); p=Y0.rows(); |
611 | | <a name="l00816"></a>00816 } |
612 | | <a name="l00817"></a>00817 vec sample()<span class="keyword"> const </span>{mat iCh; iCh=inv ( W.sample_mat() ); <span class="keywordflow">return</span> vec ( iCh._data(),<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> );} |
613 | | <a name="l00818"></a>00818 <span class="keywordtype">void</span> _setY ( <span class="keyword">const</span> vec &y0 ) |
614 | | <a name="l00819"></a>00819 { |
615 | | <a name="l00820"></a>00820 mat Ch ( p,p ); |
616 | | <a name="l00821"></a>00821 mat iCh ( p,p ); |
617 | | <a name="l00822"></a>00822 copy_vector ( dim, y0._data(), Ch._data() ); |
618 | | <a name="l00823"></a>00823 |
619 | | <a name="l00824"></a>00824 iCh=inv ( Ch ); |
620 | | <a name="l00825"></a>00825 W.setY ( iCh ); |
621 | | <a name="l00826"></a>00826 } |
622 | | <a name="l00827"></a>00827 <span class="keyword">virtual</span> <span class="keywordtype">double</span> evallog ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
623 | | <a name="l00828"></a>00828 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> X(p); |
624 | | <a name="l00829"></a>00829 <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>& Y=W.getY(); |
625 | | <a name="l00830"></a>00830 |
626 | | <a name="l00831"></a>00831 copy_vector(p*p,val._data(),X._Ch()._data()); |
627 | | <a name="l00832"></a>00832 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> iX(p);X.inv(iX); |
628 | | <a name="l00833"></a>00833 <span class="comment">// compute </span> |
629 | | <a name="l00834"></a>00834 <span class="comment">// \frac{ |\Psi|^{m/2}|X|^{-(m+p+1)/2}e^{-tr(\Psi X^{-1})/2} }{ 2^{mp/2}\Gamma_p(m/2)},</span> |
630 | | <a name="l00835"></a>00835 mat M=Y.<a class="code" href="classchmat.html#045addd685f8d978efda232d7dcb070e" title="Conversion to full matrix.">to_mat</a>()*iX.to_mat(); |
631 | | <a name="l00836"></a>00836 |
632 | | <a name="l00837"></a>00837 <span class="keywordtype">double</span> log1 = 0.5*p*(2*Y.<a class="code" href="classchmat.html#b504ca818203b13e667cb3c503980382" title="Logarithm of a determinant.">logdet</a>())-0.5*(delta+p+1)*(2*X.logdet())-0.5*trace(M); |
633 | | <a name="l00838"></a>00838 <span class="comment">//Fixme! Multivariate gamma omitted!! it is ok for sampling, but not otherwise!!</span> |
634 | | <a name="l00839"></a>00839 |
635 | | <a name="l00840"></a>00840 <span class="comment">/* if (0) {</span> |
636 | | <a name="l00841"></a>00841 <span class="comment"> mat XX=X.to_mat();</span> |
637 | | <a name="l00842"></a>00842 <span class="comment"> mat YY=Y.to_mat();</span> |
638 | | <a name="l00843"></a>00843 <span class="comment"> </span> |
639 | | <a name="l00844"></a>00844 <span class="comment"> double log2 = 0.5*p*log(det(YY))-0.5*(delta+p+1)*log(det(XX))-0.5*trace(YY*inv(XX)); </span> |
640 | | <a name="l00845"></a>00845 <span class="comment"> cout << log1 << "," << log2 << endl;</span> |
641 | | <a name="l00846"></a>00846 <span class="comment"> }*/</span> |
642 | | <a name="l00847"></a>00847 <span class="keywordflow">return</span> log1; |
643 | | <a name="l00848"></a>00848 }; |
644 | | <a name="l00849"></a>00849 |
645 | | <a name="l00850"></a>00850 }; |
646 | | <a name="l00851"></a>00851 |
647 | | <a name="l00852"></a>00852 <span class="keyword">class </span>rwiWishartCh : <span class="keyword">public</span> mpdf |
648 | | <a name="l00853"></a>00853 { |
649 | | <a name="l00854"></a>00854 <span class="keyword">protected</span>: |
650 | | <a name="l00855"></a>00855 eiWishartCh eiW; |
651 | | <a name="l00857"></a>00857 <span class="keywordtype">double</span> sqd; |
652 | | <a name="l00858"></a>00858 <span class="comment">//reference point for diagonal</span> |
653 | | <a name="l00859"></a>00859 vec refl; |
654 | | <a name="l00860"></a>00860 <span class="keywordtype">double</span> l; |
655 | | <a name="l00861"></a>00861 <span class="keywordtype">int</span> p; |
656 | | <a name="l00862"></a>00862 <span class="keyword">public</span>: |
657 | | <a name="l00863"></a>00863 <span class="keywordtype">void</span> set_parameters ( <span class="keywordtype">int</span> p0, <span class="keywordtype">double</span> k, vec ref0, <span class="keywordtype">double</span> l0 ) |
658 | | <a name="l00864"></a>00864 { |
659 | | <a name="l00865"></a>00865 p=p0; |
660 | | <a name="l00866"></a>00866 <span class="keywordtype">double</span> delta = 2/(k*k)+p+3; |
661 | | <a name="l00867"></a>00867 sqd=sqrt ( delta-p-1 ); |
662 | | <a name="l00868"></a>00868 l=l0; |
663 | | <a name="l00869"></a>00869 refl=pow(ref0,1-l); |
664 | | <a name="l00870"></a>00870 |
665 | | <a name="l00871"></a>00871 eiW.set_parameters ( eye ( p ),delta ); |
666 | | <a name="l00872"></a>00872 <a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&eiW; |
667 | | <a name="l00873"></a>00873 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=eiW.dimension(); |
668 | | <a name="l00874"></a>00874 } |
669 | | <a name="l00875"></a>00875 <span class="keywordtype">void</span> condition ( <span class="keyword">const</span> vec &c ) { |
670 | | <a name="l00876"></a>00876 vec z=c; |
671 | | <a name="l00877"></a>00877 <span class="keywordtype">int</span> ri=0; |
672 | | <a name="l00878"></a>00878 <span class="keywordflow">for</span>(<span class="keywordtype">int</span> i=0;i<p*p;i+=(p+1)){<span class="comment">//trace diagonal element</span> |
673 | | <a name="l00879"></a>00879 z(i) = pow(z(i),l)*refl(ri); |
674 | | <a name="l00880"></a>00880 ri++; |
675 | | <a name="l00881"></a>00881 } |
676 | | <a name="l00882"></a>00882 |
677 | | <a name="l00883"></a>00883 eiW._setY ( sqd*z ); |
678 | | <a name="l00884"></a>00884 } |
679 | | <a name="l00885"></a>00885 }; |
| 577 | <a name="l00805"></a>00805 }; |
| 578 | <a name="l00806"></a>00806 |
| 579 | <a name="l00818"></a><a class="code" href="classbdm_1_1mlognorm.html">00818</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlognorm.html" title="Log-Normal random walk.">mlognorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> |
| 580 | <a name="l00819"></a>00819 { |
| 581 | <a name="l00820"></a>00820 <span class="keyword">protected</span>: |
| 582 | <a name="l00821"></a>00821 <a class="code" href="classbdm_1_1elognorm.html">elognorm</a> eno; |
| 583 | <a name="l00823"></a><a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a">00823</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>; |
| 584 | <a name="l00825"></a><a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2">00825</a> vec &<a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>; |
| 585 | <a name="l00826"></a>00826 <span class="keyword">public</span>: |
| 586 | <a name="l00828"></a><a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41">00828</a> <a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41" title="Constructor.">mlognorm</a> ( ) : eno (), <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a> ( eno._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&eno;}; |
| 587 | <a name="l00830"></a><a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f">00830</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> size, <span class="keywordtype">double</span> k ) |
| 588 | <a name="l00831"></a>00831 { |
| 589 | <a name="l00832"></a>00832 <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a> = 0.5*log ( k*k+1 ); |
| 590 | <a name="l00833"></a>00833 eno.<a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> ( zeros ( size ),2*<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>*eye ( size ) ); |
| 591 | <a name="l00834"></a>00834 |
| 592 | <a name="l00835"></a>00835 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = size; |
| 593 | <a name="l00836"></a>00836 }; |
| 594 | <a name="l00837"></a>00837 |
| 595 | <a name="l00838"></a><a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e">00838</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) |
| 596 | <a name="l00839"></a>00839 { |
| 597 | <a name="l00840"></a>00840 <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>=log ( val )-<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>;<span class="comment">//elem_mult ( refl,pow ( val,l ) );</span> |
| 598 | <a name="l00841"></a>00841 }; |
| 599 | <a name="l00842"></a>00842 |
| 600 | <a name="l00861"></a>00861 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#3a130457942be64ee9544e8dff00d09b">from_setting</a>( <span class="keyword">const</span> Setting &root ); |
| 601 | <a name="l00862"></a>00862 |
| 602 | <a name="l00863"></a>00863 <span class="comment">// TODO dodelat void to_setting( Setting &root ) const;</span> |
| 603 | <a name="l00864"></a>00864 |
| 604 | <a name="l00865"></a>00865 }; |
| 605 | <a name="l00866"></a>00866 |
| 606 | <a name="l00867"></a>00867 UIREGISTER(mlognorm); |
| 607 | <a name="l00868"></a>00868 |
| 608 | <a name="l00872"></a><a class="code" href="classbdm_1_1eWishartCh.html">00872</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eWishartCh.html">eWishartCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
| 609 | <a name="l00873"></a>00873 { |
| 610 | <a name="l00874"></a>00874 <span class="keyword">protected</span>: |
| 611 | <a name="l00876"></a><a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490">00876</a> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>; |
| 612 | <a name="l00878"></a><a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f">00878</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; |
| 613 | <a name="l00880"></a><a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3">00880</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>; |
| 614 | <a name="l00881"></a>00881 <span class="keyword">public</span>: |
| 615 | <a name="l00882"></a>00882 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0 ) {<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>=<a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> ( Y0 );<a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>=delta0; <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>=<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classsqmat.html#071e80ced9cc3b8cbb360fa7462eb646" title="Reimplementing common functions of mat: cols().">rows</a>(); <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>*<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; } |
| 616 | <a name="l00883"></a>00883 mat sample_mat()<span class="keyword"> const</span> |
| 617 | <a name="l00884"></a>00884 <span class="keyword"> </span>{ |
| 618 | <a name="l00885"></a>00885 mat X=zeros ( <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>,<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a> ); |
681 | | <a name="l00888"></a>00888 <span class="keyword">enum</span> RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
682 | | <a name="l00894"></a><a class="code" href="classbdm_1_1eEmp.html">00894</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
683 | | <a name="l00895"></a>00895 { |
684 | | <a name="l00896"></a>00896 <span class="keyword">protected</span> : |
685 | | <a name="l00898"></a><a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031">00898</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>; |
686 | | <a name="l00900"></a><a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d">00900</a> vec <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>; |
687 | | <a name="l00902"></a><a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3">00902</a> Array<vec> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>; |
688 | | <a name="l00903"></a>00903 <span class="keyword">public</span>: |
689 | | <a name="l00906"></a>00906 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( ) {}; |
690 | | <a name="l00907"></a>00907 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> &e ) : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( e ), <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ), <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ) {}; |
691 | | <a name="l00909"></a>00909 |
692 | | <a name="l00911"></a>00911 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#7cfd383180b486fe4526bdf0179350c0" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> vec &w0, <span class="keyword">const</span> epdf* pdf0 ); |
693 | | <a name="l00913"></a><a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7">00913</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 , <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> ) {<a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( ones ( n ) /n,pdf0 );}; |
694 | | <a name="l00915"></a>00915 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b62d802b8ef39f7c4dcbeb366c90951a" title="Set sample.">set_samples</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
695 | | <a name="l00917"></a><a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1">00917</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1" title="Set sample.">set_parameters</a> ( <span class="keywordtype">int</span> n0, <span class="keywordtype">bool</span> copy=<span class="keyword">true</span> ) {<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>=n0; <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>.set_size ( n0,copy );<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>.set_size ( n0,copy );}; |
696 | | <a name="l00919"></a><a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef">00919</a> vec& <a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
697 | | <a name="l00921"></a><a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714">00921</a> <span class="keyword">const</span> vec& <a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714" title="Potentially dangerous, use with care.">_w</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
698 | | <a name="l00923"></a><a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2">00923</a> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
699 | | <a name="l00925"></a><a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2">00925</a> <span class="keyword">const</span> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2" title="access function">_samples</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
700 | | <a name="l00927"></a>00927 ivec <a class="code" href="classbdm_1_1eEmp.html#f06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( RESAMPLING_METHOD method=SYSTEMATIC ); |
701 | | <a name="l00929"></a><a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270">00929</a> vec <a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} |
702 | | <a name="l00931"></a><a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09">00931</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09" title="inherited operation : NOT implemneted">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} |
703 | | <a name="l00932"></a><a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9">00932</a> vec <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>()<span class="keyword"> const</span> |
704 | | <a name="l00933"></a>00933 <span class="keyword"> </span>{ |
705 | | <a name="l00934"></a>00934 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
706 | | <a name="l00935"></a>00935 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
707 | | <a name="l00936"></a>00936 <span class="keywordflow">return</span> pom; |
708 | | <a name="l00937"></a>00937 } |
709 | | <a name="l00938"></a><a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87">00938</a> vec <a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const</span> |
710 | | <a name="l00939"></a>00939 <span class="keyword"> </span>{ |
711 | | <a name="l00940"></a>00940 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
712 | | <a name="l00941"></a>00941 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=pow ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ),2 ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
713 | | <a name="l00942"></a>00942 <span class="keywordflow">return</span> pom-pow ( <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>(),2 ); |
714 | | <a name="l00943"></a>00943 } |
715 | | <a name="l00945"></a><a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f">00945</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f" title="For this class, qbounds are minimum and maximum value of the population!">qbounds</a> ( vec &lb, vec &ub, <span class="keywordtype">double</span> perc=0.95 )<span class="keyword"> const</span> |
716 | | <a name="l00946"></a>00946 <span class="keyword"> </span>{ |
717 | | <a name="l00947"></a>00947 <span class="comment">// lb in inf so than it will be pushed below;</span> |
718 | | <a name="l00948"></a>00948 lb.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
719 | | <a name="l00949"></a>00949 ub.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
720 | | <a name="l00950"></a>00950 lb = std::numeric_limits<double>::infinity(); |
721 | | <a name="l00951"></a>00951 ub = -std::numeric_limits<double>::infinity(); |
722 | | <a name="l00952"></a>00952 <span class="keywordtype">int</span> j; |
723 | | <a name="l00953"></a>00953 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) |
724 | | <a name="l00954"></a>00954 { |
725 | | <a name="l00955"></a>00955 <span class="keywordflow">for</span> ( j=0;j<<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>; j++ ) |
726 | | <a name="l00956"></a>00956 { |
727 | | <a name="l00957"></a>00957 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) <lb ( j ) ) {lb ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} |
728 | | <a name="l00958"></a>00958 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) >ub ( j ) ) {ub ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} |
729 | | <a name="l00959"></a>00959 } |
730 | | <a name="l00960"></a>00960 } |
731 | | <a name="l00961"></a>00961 } |
| 620 | <a name="l00887"></a>00887 <span class="comment">//sample diagonal</span> |
| 621 | <a name="l00888"></a>00888 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>;i++ ) |
| 622 | <a name="l00889"></a>00889 { |
| 623 | <a name="l00890"></a>00890 GamRNG.<a class="code" href="classitpp_1_1Gamma__RNG.html#dfaae19411e39aa87e1f72e409b6babe" title="Set lambda.">setup</a> ( 0.5* ( <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>-i ) , 0.5 ); <span class="comment">// no +1 !! index if from 0</span> |
| 624 | <a name="l00891"></a>00891 <span class="preprocessor">#pragma omp critical</span> |
| 625 | <a name="l00892"></a>00892 <span class="preprocessor"></span> X ( i,i ) =sqrt ( GamRNG() ); |
| 626 | <a name="l00893"></a>00893 } |
| 627 | <a name="l00894"></a>00894 <span class="comment">//do the rest</span> |
| 628 | <a name="l00895"></a>00895 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<p;i++ ) |
| 629 | <a name="l00896"></a>00896 { |
| 630 | <a name="l00897"></a>00897 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> j=i+1;j<p;j++ ) |
| 631 | <a name="l00898"></a>00898 { |
| 632 | <a name="l00899"></a>00899 <span class="preprocessor">#pragma omp critical</span> |
| 633 | <a name="l00900"></a>00900 <span class="preprocessor"></span> X ( i,j ) =NorRNG.sample(); |
| 634 | <a name="l00901"></a>00901 } |
| 635 | <a name="l00902"></a>00902 } |
| 636 | <a name="l00903"></a>00903 <span class="keywordflow">return</span> X*<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>();<span class="comment">// return upper triangular part of the decomposition</span> |
| 637 | <a name="l00904"></a>00904 } |
| 638 | <a name="l00905"></a><a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a">00905</a> vec <a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a" title="Returns a sample, from density .">sample</a> ()<span class="keyword"> const</span> |
| 639 | <a name="l00906"></a>00906 <span class="keyword"> </span>{ |
| 640 | <a name="l00907"></a>00907 <span class="keywordflow">return</span> vec ( sample_mat()._data(),p*p ); |
| 641 | <a name="l00908"></a>00908 } |
| 642 | <a name="l00910"></a><a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981">00910</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981" title="fast access function y0 will be copied into Y.Ch.">setY</a> ( <span class="keyword">const</span> mat &Ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,Ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() );} |
| 643 | <a name="l00912"></a><a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a">00912</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a" title="fast access function y0 will be copied into Y.Ch.">_setY</a> ( <span class="keyword">const</span> vec &ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() ); } |
| 644 | <a name="l00914"></a><a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e">00914</a> <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>& <a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e" title="access function">getY</a>()<span class="keyword">const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>;} |
| 645 | <a name="l00915"></a>00915 }; |
| 646 | <a name="l00916"></a>00916 |
| 647 | <a name="l00917"></a>00917 <span class="keyword">class </span>eiWishartCh: <span class="keyword">public</span> epdf |
| 648 | <a name="l00918"></a>00918 { |
| 649 | <a name="l00919"></a>00919 <span class="keyword">protected</span>: |
| 650 | <a name="l00920"></a>00920 eWishartCh W; |
| 651 | <a name="l00921"></a>00921 <span class="keywordtype">int</span> p; |
| 652 | <a name="l00922"></a>00922 <span class="keywordtype">double</span> delta; |
| 653 | <a name="l00923"></a>00923 <span class="keyword">public</span>: |
| 654 | <a name="l00924"></a>00924 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0) { |
| 655 | <a name="l00925"></a>00925 delta = delta0; |
| 656 | <a name="l00926"></a>00926 W.set_parameters ( inv ( Y0 ),delta0 ); |
| 657 | <a name="l00927"></a>00927 dim = W.dimension(); p=Y0.rows(); |
| 658 | <a name="l00928"></a>00928 } |
| 659 | <a name="l00929"></a>00929 vec sample()<span class="keyword"> const </span>{mat iCh; iCh=inv ( W.sample_mat() ); <span class="keywordflow">return</span> vec ( iCh._data(),<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> );} |
| 660 | <a name="l00930"></a>00930 <span class="keywordtype">void</span> _setY ( <span class="keyword">const</span> vec &y0 ) |
| 661 | <a name="l00931"></a>00931 { |
| 662 | <a name="l00932"></a>00932 mat Ch ( p,p ); |
| 663 | <a name="l00933"></a>00933 mat iCh ( p,p ); |
| 664 | <a name="l00934"></a>00934 copy_vector ( dim, y0._data(), Ch._data() ); |
| 665 | <a name="l00935"></a>00935 |
| 666 | <a name="l00936"></a>00936 iCh=inv ( Ch ); |
| 667 | <a name="l00937"></a>00937 W.setY ( iCh ); |
| 668 | <a name="l00938"></a>00938 } |
| 669 | <a name="l00939"></a>00939 <span class="keyword">virtual</span> <span class="keywordtype">double</span> evallog ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
| 670 | <a name="l00940"></a>00940 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> X(p); |
| 671 | <a name="l00941"></a>00941 <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>& Y=W.getY(); |
| 672 | <a name="l00942"></a>00942 |
| 673 | <a name="l00943"></a>00943 copy_vector(p*p,val._data(),X._Ch()._data()); |
| 674 | <a name="l00944"></a>00944 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> iX(p);X.inv(iX); |
| 675 | <a name="l00945"></a>00945 <span class="comment">// compute </span> |
| 676 | <a name="l00946"></a>00946 <span class="comment">// \frac{ |\Psi|^{m/2}|X|^{-(m+p+1)/2}e^{-tr(\Psi X^{-1})/2} }{ 2^{mp/2}\Gamma_p(m/2)},</span> |
| 677 | <a name="l00947"></a>00947 mat M=Y.<a class="code" href="classchmat.html#045addd685f8d978efda232d7dcb070e" title="Conversion to full matrix.">to_mat</a>()*iX.to_mat(); |
| 678 | <a name="l00948"></a>00948 |
| 679 | <a name="l00949"></a>00949 <span class="keywordtype">double</span> log1 = 0.5*p*(2*Y.<a class="code" href="classchmat.html#b504ca818203b13e667cb3c503980382" title="Logarithm of a determinant.">logdet</a>())-0.5*(delta+p+1)*(2*X.logdet())-0.5*trace(M); |
| 680 | <a name="l00950"></a>00950 <span class="comment">//Fixme! Multivariate gamma omitted!! it is ok for sampling, but not otherwise!!</span> |
| 681 | <a name="l00951"></a>00951 |
| 682 | <a name="l00952"></a>00952 <span class="comment">/* if (0) {</span> |
| 683 | <a name="l00953"></a>00953 <span class="comment"> mat XX=X.to_mat();</span> |
| 684 | <a name="l00954"></a>00954 <span class="comment"> mat YY=Y.to_mat();</span> |
| 685 | <a name="l00955"></a>00955 <span class="comment"> </span> |
| 686 | <a name="l00956"></a>00956 <span class="comment"> double log2 = 0.5*p*log(det(YY))-0.5*(delta+p+1)*log(det(XX))-0.5*trace(YY*inv(XX)); </span> |
| 687 | <a name="l00957"></a>00957 <span class="comment"> cout << log1 << "," << log2 << endl;</span> |
| 688 | <a name="l00958"></a>00958 <span class="comment"> }*/</span> |
| 689 | <a name="l00959"></a>00959 <span class="keywordflow">return</span> log1; |
| 690 | <a name="l00960"></a>00960 }; |
| 691 | <a name="l00961"></a>00961 |
734 | | <a name="l00964"></a>00964 |
735 | | <a name="l00966"></a>00966 |
736 | | <a name="l00967"></a>00967 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
737 | | <a name="l00968"></a>00968 <span class="keywordtype">void</span> enorm<sq_T>::set_parameters ( <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) |
738 | | <a name="l00969"></a>00969 { |
739 | | <a name="l00970"></a>00970 <span class="comment">//Fixme test dimensions of mu0 and R0;</span> |
740 | | <a name="l00971"></a>00971 mu = mu0; |
741 | | <a name="l00972"></a>00972 R = R0; |
742 | | <a name="l00973"></a>00973 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = mu0.length(); |
743 | | <a name="l00974"></a>00974 }; |
744 | | <a name="l00975"></a>00975 |
745 | | <a name="l00976"></a>00976 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
746 | | <a name="l00977"></a><a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2">00977</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">enorm<sq_T>::dupdate</a> ( mat &v, <span class="keywordtype">double</span> nu ) |
747 | | <a name="l00978"></a>00978 { |
748 | | <a name="l00979"></a>00979 <span class="comment">//</span> |
749 | | <a name="l00980"></a>00980 }; |
750 | | <a name="l00981"></a>00981 |
751 | | <a name="l00982"></a>00982 <span class="comment">// template<class sq_T></span> |
752 | | <a name="l00983"></a>00983 <span class="comment">// void enorm<sq_T>::tupdate ( double phi, mat &vbar, double nubar ) {</span> |
753 | | <a name="l00984"></a>00984 <span class="comment">// //</span> |
754 | | <a name="l00985"></a>00985 <span class="comment">// };</span> |
755 | | <a name="l00986"></a>00986 |
756 | | <a name="l00987"></a>00987 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
757 | | <a name="l00988"></a><a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766">00988</a> vec <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample, from density .">enorm<sq_T>::sample</a>()<span class="keyword"> const</span> |
758 | | <a name="l00989"></a>00989 <span class="keyword"> </span>{ |
759 | | <a name="l00990"></a>00990 vec x ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
760 | | <a name="l00991"></a>00991 <span class="preprocessor">#pragma omp critical</span> |
761 | | <a name="l00992"></a>00992 <span class="preprocessor"></span> NorRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,x ); |
762 | | <a name="l00993"></a>00993 vec smp = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
| 694 | <a name="l00964"></a>00964 <span class="keyword">class </span>rwiWishartCh : <span class="keyword">public</span> mpdf |
| 695 | <a name="l00965"></a>00965 { |
| 696 | <a name="l00966"></a>00966 <span class="keyword">protected</span>: |
| 697 | <a name="l00967"></a>00967 eiWishartCh eiW; |
| 698 | <a name="l00969"></a>00969 <span class="keywordtype">double</span> sqd; |
| 699 | <a name="l00970"></a>00970 <span class="comment">//reference point for diagonal</span> |
| 700 | <a name="l00971"></a>00971 vec refl; |
| 701 | <a name="l00972"></a>00972 <span class="keywordtype">double</span> l; |
| 702 | <a name="l00973"></a>00973 <span class="keywordtype">int</span> p; |
| 703 | <a name="l00974"></a>00974 <span class="keyword">public</span>: |
| 704 | <a name="l00975"></a>00975 <span class="keywordtype">void</span> set_parameters ( <span class="keywordtype">int</span> p0, <span class="keywordtype">double</span> k, vec ref0, <span class="keywordtype">double</span> l0 ) |
| 705 | <a name="l00976"></a>00976 { |
| 706 | <a name="l00977"></a>00977 p=p0; |
| 707 | <a name="l00978"></a>00978 <span class="keywordtype">double</span> delta = 2/(k*k)+p+3; |
| 708 | <a name="l00979"></a>00979 sqd=sqrt ( delta-p-1 ); |
| 709 | <a name="l00980"></a>00980 l=l0; |
| 710 | <a name="l00981"></a>00981 refl=pow(ref0,1-l); |
| 711 | <a name="l00982"></a>00982 |
| 712 | <a name="l00983"></a>00983 eiW.set_parameters ( eye ( p ),delta ); |
| 713 | <a name="l00984"></a>00984 <a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&eiW; |
| 714 | <a name="l00985"></a>00985 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=eiW.dimension(); |
| 715 | <a name="l00986"></a>00986 } |
| 716 | <a name="l00987"></a>00987 <span class="keywordtype">void</span> condition ( <span class="keyword">const</span> vec &c ) { |
| 717 | <a name="l00988"></a>00988 vec z=c; |
| 718 | <a name="l00989"></a>00989 <span class="keywordtype">int</span> ri=0; |
| 719 | <a name="l00990"></a>00990 <span class="keywordflow">for</span>(<span class="keywordtype">int</span> i=0;i<p*p;i+=(p+1)){<span class="comment">//trace diagonal element</span> |
| 720 | <a name="l00991"></a>00991 z(i) = pow(z(i),l)*refl(ri); |
| 721 | <a name="l00992"></a>00992 ri++; |
| 722 | <a name="l00993"></a>00993 } |
768 | | <a name="l00999"></a>00999 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
769 | | <a name="l01000"></a>01000 mat <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample, from density .">enorm<sq_T>::sample</a> ( <span class="keywordtype">int</span> N )<span class="keyword"> const</span> |
770 | | <a name="l01001"></a>01001 <span class="keyword"> </span>{ |
771 | | <a name="l01002"></a>01002 mat X ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,N ); |
772 | | <a name="l01003"></a>01003 vec x ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
773 | | <a name="l01004"></a>01004 vec pom; |
774 | | <a name="l01005"></a>01005 <span class="keywordtype">int</span> i; |
775 | | <a name="l01006"></a>01006 |
776 | | <a name="l01007"></a>01007 <span class="keywordflow">for</span> ( i=0;i<N;i++ ) |
777 | | <a name="l01008"></a>01008 { |
778 | | <a name="l01009"></a>01009 <span class="preprocessor">#pragma omp critical</span> |
779 | | <a name="l01010"></a>01010 <span class="preprocessor"></span> NorRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,x ); |
780 | | <a name="l01011"></a>01011 pom = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
781 | | <a name="l01012"></a>01012 pom +=<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
782 | | <a name="l01013"></a>01013 X.set_col ( i, pom ); |
783 | | <a name="l01014"></a>01014 } |
784 | | <a name="l01015"></a>01015 |
785 | | <a name="l01016"></a>01016 <span class="keywordflow">return</span> X; |
786 | | <a name="l01017"></a>01017 }; |
787 | | <a name="l01018"></a>01018 |
788 | | <a name="l01019"></a>01019 <span class="comment">// template<class sq_T></span> |
789 | | <a name="l01020"></a>01020 <span class="comment">// double enorm<sq_T>::eval ( const vec &val ) const {</span> |
790 | | <a name="l01021"></a>01021 <span class="comment">// double pdfl,e;</span> |
791 | | <a name="l01022"></a>01022 <span class="comment">// pdfl = evallog ( val );</span> |
792 | | <a name="l01023"></a>01023 <span class="comment">// e = exp ( pdfl );</span> |
793 | | <a name="l01024"></a>01024 <span class="comment">// return e;</span> |
794 | | <a name="l01025"></a>01025 <span class="comment">// };</span> |
795 | | <a name="l01026"></a>01026 |
796 | | <a name="l01027"></a>01027 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
797 | | <a name="l01028"></a><a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3">01028</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">enorm<sq_T>::evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const</span> |
798 | | <a name="l01029"></a>01029 <span class="keyword"> </span>{ |
799 | | <a name="l01030"></a>01030 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
800 | | <a name="l01031"></a>01031 <span class="keywordtype">double</span> tmp=-0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>-val ) );<span class="comment">// - lognc();</span> |
801 | | <a name="l01032"></a>01032 <span class="keywordflow">return</span> tmp; |
802 | | <a name="l01033"></a>01033 }; |
803 | | <a name="l01034"></a>01034 |
804 | | <a name="l01035"></a>01035 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
805 | | <a name="l01036"></a><a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32">01036</a> <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">enorm<sq_T>::lognc</a> ()<span class="keyword"> const</span> |
806 | | <a name="l01037"></a>01037 <span class="keyword"> </span>{ |
807 | | <a name="l01038"></a>01038 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
808 | | <a name="l01039"></a>01039 <span class="keywordtype">double</span> tmp=0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.logdet() ); |
809 | | <a name="l01040"></a>01040 <span class="keywordflow">return</span> tmp; |
810 | | <a name="l01041"></a>01041 }; |
811 | | <a name="l01042"></a>01042 |
812 | | <a name="l01043"></a>01043 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
813 | | <a name="l01044"></a><a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f">01044</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">mlnorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) |
814 | | <a name="l01045"></a>01045 { |
815 | | <a name="l01046"></a>01046 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> ); |
816 | | <a name="l01047"></a>01047 it_assert_debug ( A0.rows() ==R0.rows(),<span class="stringliteral">""</span> ); |
817 | | <a name="l01048"></a>01048 |
818 | | <a name="l01049"></a>01049 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( A0.rows() ),R0 ); |
819 | | <a name="l01050"></a>01050 A = A0; |
820 | | <a name="l01051"></a>01051 mu_const = mu0; |
821 | | <a name="l01052"></a>01052 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=A0.cols(); |
822 | | <a name="l01053"></a>01053 } |
823 | | <a name="l01054"></a>01054 |
824 | | <a name="l01055"></a>01055 <span class="comment">// template<class sq_T></span> |
825 | | <a name="l01056"></a>01056 <span class="comment">// vec mlnorm<sq_T>::samplecond (const vec &cond, double &lik ) {</span> |
826 | | <a name="l01057"></a>01057 <span class="comment">// this->condition ( cond );</span> |
827 | | <a name="l01058"></a>01058 <span class="comment">// vec smp = epdf.sample();</span> |
828 | | <a name="l01059"></a>01059 <span class="comment">// lik = epdf.eval ( smp );</span> |
829 | | <a name="l01060"></a>01060 <span class="comment">// return smp;</span> |
830 | | <a name="l01061"></a>01061 <span class="comment">// }</span> |
831 | | <a name="l01062"></a>01062 |
832 | | <a name="l01063"></a>01063 <span class="comment">// template<class sq_T></span> |
833 | | <a name="l01064"></a>01064 <span class="comment">// mat mlnorm<sq_T>::samplecond (const vec &cond, vec &lik, int n ) {</span> |
834 | | <a name="l01065"></a>01065 <span class="comment">// int i;</span> |
835 | | <a name="l01066"></a>01066 <span class="comment">// int dim = rv.count();</span> |
836 | | <a name="l01067"></a>01067 <span class="comment">// mat Smp ( dim,n );</span> |
837 | | <a name="l01068"></a>01068 <span class="comment">// vec smp ( dim );</span> |
838 | | <a name="l01069"></a>01069 <span class="comment">// this->condition ( cond );</span> |
839 | | <a name="l01070"></a>01070 <span class="comment">//</span> |
840 | | <a name="l01071"></a>01071 <span class="comment">// for ( i=0; i<n; i++ ) {</span> |
841 | | <a name="l01072"></a>01072 <span class="comment">// smp = epdf.sample();</span> |
842 | | <a name="l01073"></a>01073 <span class="comment">// lik ( i ) = epdf.eval ( smp );</span> |
843 | | <a name="l01074"></a>01074 <span class="comment">// Smp.set_col ( i ,smp );</span> |
844 | | <a name="l01075"></a>01075 <span class="comment">// }</span> |
845 | | <a name="l01076"></a>01076 <span class="comment">//</span> |
846 | | <a name="l01077"></a>01077 <span class="comment">// return Smp;</span> |
847 | | <a name="l01078"></a>01078 <span class="comment">// }</span> |
848 | | <a name="l01079"></a>01079 |
849 | | <a name="l01080"></a>01080 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
850 | | <a name="l01081"></a><a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">01081</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">mlnorm<sq_T>::condition</a> ( <span class="keyword">const</span> vec &cond ) |
851 | | <a name="l01082"></a>01082 { |
852 | | <a name="l01083"></a>01083 _mu = A*cond + mu_const; |
853 | | <a name="l01084"></a>01084 <span class="comment">//R is already assigned;</span> |
854 | | <a name="l01085"></a>01085 } |
855 | | <a name="l01086"></a>01086 |
856 | | <a name="l01087"></a>01087 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
857 | | <a name="l01088"></a><a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80">01088</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>* <a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">enorm<sq_T>::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const</span> |
858 | | <a name="l01089"></a>01089 <span class="keyword"> </span>{ |
859 | | <a name="l01090"></a>01090 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(), <span class="stringliteral">"rv description is not assigned"</span> ); |
860 | | <a name="l01091"></a>01091 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
861 | | <a name="l01092"></a>01092 |
862 | | <a name="l01093"></a>01093 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,irvn ); <span class="comment">//select rows and columns of R</span> |
863 | | <a name="l01094"></a>01094 |
864 | | <a name="l01095"></a>01095 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>* tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>; |
865 | | <a name="l01096"></a>01096 tmp-><a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a> ( rvn ); |
866 | | <a name="l01097"></a>01097 tmp-><a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ), Rn ); |
867 | | <a name="l01098"></a>01098 <span class="keywordflow">return</span> tmp; |
868 | | <a name="l01099"></a>01099 } |
869 | | <a name="l01100"></a>01100 |
870 | | <a name="l01101"></a>01101 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
871 | | <a name="l01102"></a><a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26">01102</a> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">enorm<sq_T>::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const</span> |
872 | | <a name="l01103"></a>01103 <span class="keyword"> </span>{ |
873 | | <a name="l01104"></a>01104 |
874 | | <a name="l01105"></a>01105 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(),<span class="stringliteral">"rvs are not assigned"</span> ); |
| 728 | <a name="l01000"></a>01000 <span class="keyword">enum</span> RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
| 729 | <a name="l01006"></a><a class="code" href="classbdm_1_1eEmp.html">01006</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
| 730 | <a name="l01007"></a>01007 { |
| 731 | <a name="l01008"></a>01008 <span class="keyword">protected</span> : |
| 732 | <a name="l01010"></a><a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031">01010</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>; |
| 733 | <a name="l01012"></a><a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d">01012</a> vec <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>; |
| 734 | <a name="l01014"></a><a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3">01014</a> Array<vec> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>; |
| 735 | <a name="l01015"></a>01015 <span class="keyword">public</span>: |
| 736 | <a name="l01018"></a>01018 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( ) {}; |
| 737 | <a name="l01019"></a>01019 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> &e ) : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( e ), <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ), <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ) {}; |
| 738 | <a name="l01021"></a>01021 |
| 739 | <a name="l01023"></a>01023 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#7cfd383180b486fe4526bdf0179350c0" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> vec &w0, <span class="keyword">const</span> epdf* pdf0 ); |
| 740 | <a name="l01025"></a><a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7">01025</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 , <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> ) {<a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( ones ( n ) /n,pdf0 );}; |
| 741 | <a name="l01027"></a>01027 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b62d802b8ef39f7c4dcbeb366c90951a" title="Set sample.">set_samples</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
| 742 | <a name="l01029"></a><a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1">01029</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1" title="Set sample.">set_parameters</a> ( <span class="keywordtype">int</span> n0, <span class="keywordtype">bool</span> copy=<span class="keyword">true</span> ) {<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>=n0; <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>.set_size ( n0,copy );<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>.set_size ( n0,copy );}; |
| 743 | <a name="l01031"></a><a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef">01031</a> vec& <a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
| 744 | <a name="l01033"></a><a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714">01033</a> <span class="keyword">const</span> vec& <a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714" title="Potentially dangerous, use with care.">_w</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
| 745 | <a name="l01035"></a><a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2">01035</a> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
| 746 | <a name="l01037"></a><a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2">01037</a> <span class="keyword">const</span> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2" title="access function">_samples</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
| 747 | <a name="l01039"></a>01039 ivec <a class="code" href="classbdm_1_1eEmp.html#f06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( RESAMPLING_METHOD method=SYSTEMATIC ); |
| 748 | <a name="l01041"></a><a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270">01041</a> vec <a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} |
| 749 | <a name="l01043"></a><a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09">01043</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09" title="inherited operation : NOT implemneted">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} |
| 750 | <a name="l01044"></a><a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9">01044</a> vec <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>()<span class="keyword"> const</span> |
| 751 | <a name="l01045"></a>01045 <span class="keyword"> </span>{ |
| 752 | <a name="l01046"></a>01046 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 753 | <a name="l01047"></a>01047 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
| 754 | <a name="l01048"></a>01048 <span class="keywordflow">return</span> pom; |
| 755 | <a name="l01049"></a>01049 } |
| 756 | <a name="l01050"></a><a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87">01050</a> vec <a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const</span> |
| 757 | <a name="l01051"></a>01051 <span class="keyword"> </span>{ |
| 758 | <a name="l01052"></a>01052 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 759 | <a name="l01053"></a>01053 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=pow ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ),2 ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
| 760 | <a name="l01054"></a>01054 <span class="keywordflow">return</span> pom-pow ( <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>(),2 ); |
| 761 | <a name="l01055"></a>01055 } |
| 762 | <a name="l01057"></a><a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f">01057</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f" title="For this class, qbounds are minimum and maximum value of the population!">qbounds</a> ( vec &lb, vec &ub, <span class="keywordtype">double</span> perc=0.95 )<span class="keyword"> const</span> |
| 763 | <a name="l01058"></a>01058 <span class="keyword"> </span>{ |
| 764 | <a name="l01059"></a>01059 <span class="comment">// lb in inf so than it will be pushed below;</span> |
| 765 | <a name="l01060"></a>01060 lb.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 766 | <a name="l01061"></a>01061 ub.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 767 | <a name="l01062"></a>01062 lb = std::numeric_limits<double>::infinity(); |
| 768 | <a name="l01063"></a>01063 ub = -std::numeric_limits<double>::infinity(); |
| 769 | <a name="l01064"></a>01064 <span class="keywordtype">int</span> j; |
| 770 | <a name="l01065"></a>01065 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) |
| 771 | <a name="l01066"></a>01066 { |
| 772 | <a name="l01067"></a>01067 <span class="keywordflow">for</span> ( j=0;j<<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>; j++ ) |
| 773 | <a name="l01068"></a>01068 { |
| 774 | <a name="l01069"></a>01069 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) <lb ( j ) ) {lb ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} |
| 775 | <a name="l01070"></a>01070 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) >ub ( j ) ) {ub ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} |
| 776 | <a name="l01071"></a>01071 } |
| 777 | <a name="l01072"></a>01072 } |
| 778 | <a name="l01073"></a>01073 } |
| 779 | <a name="l01074"></a>01074 }; |
| 780 | <a name="l01075"></a>01075 |
| 781 | <a name="l01076"></a>01076 |
| 782 | <a name="l01078"></a>01078 |
| 783 | <a name="l01079"></a>01079 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 784 | <a name="l01080"></a>01080 <span class="keywordtype">void</span> enorm<sq_T>::set_parameters ( <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) |
| 785 | <a name="l01081"></a>01081 { |
| 786 | <a name="l01082"></a>01082 <span class="comment">//Fixme test dimensions of mu0 and R0;</span> |
| 787 | <a name="l01083"></a>01083 mu = mu0; |
| 788 | <a name="l01084"></a>01084 R = R0; |
| 789 | <a name="l01085"></a>01085 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = mu0.length(); |
| 790 | <a name="l01086"></a>01086 }; |
| 791 | <a name="l01087"></a>01087 |
| 792 | <a name="l01088"></a>01088 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 793 | <a name="l01089"></a><a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2">01089</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">enorm<sq_T>::dupdate</a> ( mat &v, <span class="keywordtype">double</span> nu ) |
| 794 | <a name="l01090"></a>01090 { |
| 795 | <a name="l01091"></a>01091 <span class="comment">//</span> |
| 796 | <a name="l01092"></a>01092 }; |
| 797 | <a name="l01093"></a>01093 |
| 798 | <a name="l01094"></a>01094 <span class="comment">// template<class sq_T></span> |
| 799 | <a name="l01095"></a>01095 <span class="comment">// void enorm<sq_T>::tupdate ( double phi, mat &vbar, double nubar ) {</span> |
| 800 | <a name="l01096"></a>01096 <span class="comment">// //</span> |
| 801 | <a name="l01097"></a>01097 <span class="comment">// };</span> |
| 802 | <a name="l01098"></a>01098 |
| 803 | <a name="l01099"></a>01099 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 804 | <a name="l01100"></a><a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766">01100</a> vec <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample, from density .">enorm<sq_T>::sample</a>()<span class="keyword"> const</span> |
| 805 | <a name="l01101"></a>01101 <span class="keyword"> </span>{ |
| 806 | <a name="l01102"></a>01102 vec x ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 807 | <a name="l01103"></a>01103 <span class="preprocessor">#pragma omp critical</span> |
| 808 | <a name="l01104"></a>01104 <span class="preprocessor"></span> NorRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,x ); |
| 809 | <a name="l01105"></a>01105 vec smp = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
876 | | <a name="l01107"></a>01107 <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvc = <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#aec44dabdf0a6d90fbae95e1356eda39" title="Subtract another variable from the current one.">subt</a> ( rvn ); |
877 | | <a name="l01108"></a>01108 it_assert_debug ( ( rvc.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() +rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ==<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ),<span class="stringliteral">"wrong rvn"</span> ); |
878 | | <a name="l01109"></a>01109 <span class="comment">//Permutation vector of the new R</span> |
879 | | <a name="l01110"></a>01110 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
880 | | <a name="l01111"></a>01111 ivec irvc = rvc.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
881 | | <a name="l01112"></a>01112 ivec perm=concat ( irvn , irvc ); |
882 | | <a name="l01113"></a>01113 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,perm ); |
883 | | <a name="l01114"></a>01114 |
884 | | <a name="l01115"></a>01115 <span class="comment">//fixme - could this be done in general for all sq_T?</span> |
885 | | <a name="l01116"></a>01116 mat S=Rn.to_mat(); |
886 | | <a name="l01117"></a>01117 <span class="comment">//fixme</span> |
887 | | <a name="l01118"></a>01118 <span class="keywordtype">int</span> n=rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>()-1; |
888 | | <a name="l01119"></a>01119 <span class="keywordtype">int</span> end=<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows()-1; |
889 | | <a name="l01120"></a>01120 mat S11 = S.get ( 0,n, 0, n ); |
890 | | <a name="l01121"></a>01121 mat S12 = S.get ( 0, n , rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); |
891 | | <a name="l01122"></a>01122 mat S22 = S.get ( rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end, rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); |
892 | | <a name="l01123"></a>01123 |
893 | | <a name="l01124"></a>01124 vec mu1 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ); |
894 | | <a name="l01125"></a>01125 vec mu2 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvc ); |
895 | | <a name="l01126"></a>01126 mat A=S12*inv ( S22 ); |
896 | | <a name="l01127"></a>01127 sq_T R_n ( S11 - A *S12.T() ); |
897 | | <a name="l01128"></a>01128 |
898 | | <a name="l01129"></a>01129 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a>* tmp=<span class="keyword">new</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a> ( ); |
899 | | <a name="l01130"></a>01130 tmp->set_rv ( rvn ); tmp->set_rvc ( rvc ); |
900 | | <a name="l01131"></a>01131 tmp->set_parameters ( A,mu1-A*mu2,R_n ); |
901 | | <a name="l01132"></a>01132 <span class="keywordflow">return</span> tmp; |
902 | | <a name="l01133"></a>01133 } |
903 | | <a name="l01134"></a>01134 |
904 | | <a name="l01136"></a>01136 |
905 | | <a name="l01137"></a>01137 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
906 | | <a name="l01138"></a>01138 std::ostream &operator<< ( std::ostream &os, mlnorm<sq_T> &ml ) |
907 | | <a name="l01139"></a>01139 { |
908 | | <a name="l01140"></a>01140 os << <span class="stringliteral">"A:"</span><< ml.A<<endl; |
909 | | <a name="l01141"></a>01141 os << <span class="stringliteral">"mu:"</span><< ml.mu_const<<endl; |
910 | | <a name="l01142"></a>01142 os << <span class="stringliteral">"R:"</span> << ml.epdf._R().to_mat() <<endl; |
911 | | <a name="l01143"></a>01143 <span class="keywordflow">return</span> os; |
912 | | <a name="l01144"></a>01144 }; |
913 | | <a name="l01145"></a>01145 |
914 | | <a name="l01146"></a>01146 } |
915 | | <a name="l01147"></a>01147 <span class="preprocessor">#endif //EF_H</span> |
| 811 | <a name="l01107"></a>01107 smp += <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
| 812 | <a name="l01108"></a>01108 <span class="keywordflow">return</span> smp; |
| 813 | <a name="l01109"></a>01109 }; |
| 814 | <a name="l01110"></a>01110 |
| 815 | <a name="l01111"></a>01111 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 816 | <a name="l01112"></a>01112 mat <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample, from density .">enorm<sq_T>::sample</a> ( <span class="keywordtype">int</span> N )<span class="keyword"> const</span> |
| 817 | <a name="l01113"></a>01113 <span class="keyword"> </span>{ |
| 818 | <a name="l01114"></a>01114 mat X ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,N ); |
| 819 | <a name="l01115"></a>01115 vec x ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
| 820 | <a name="l01116"></a>01116 vec pom; |
| 821 | <a name="l01117"></a>01117 <span class="keywordtype">int</span> i; |
| 822 | <a name="l01118"></a>01118 |
| 823 | <a name="l01119"></a>01119 <span class="keywordflow">for</span> ( i=0;i<N;i++ ) |
| 824 | <a name="l01120"></a>01120 { |
| 825 | <a name="l01121"></a>01121 <span class="preprocessor">#pragma omp critical</span> |
| 826 | <a name="l01122"></a>01122 <span class="preprocessor"></span> NorRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,x ); |
| 827 | <a name="l01123"></a>01123 pom = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); |
| 828 | <a name="l01124"></a>01124 pom +=<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
| 829 | <a name="l01125"></a>01125 X.set_col ( i, pom ); |
| 830 | <a name="l01126"></a>01126 } |
| 831 | <a name="l01127"></a>01127 |
| 832 | <a name="l01128"></a>01128 <span class="keywordflow">return</span> X; |
| 833 | <a name="l01129"></a>01129 }; |
| 834 | <a name="l01130"></a>01130 |
| 835 | <a name="l01131"></a>01131 <span class="comment">// template<class sq_T></span> |
| 836 | <a name="l01132"></a>01132 <span class="comment">// double enorm<sq_T>::eval ( const vec &val ) const {</span> |
| 837 | <a name="l01133"></a>01133 <span class="comment">// double pdfl,e;</span> |
| 838 | <a name="l01134"></a>01134 <span class="comment">// pdfl = evallog ( val );</span> |
| 839 | <a name="l01135"></a>01135 <span class="comment">// e = exp ( pdfl );</span> |
| 840 | <a name="l01136"></a>01136 <span class="comment">// return e;</span> |
| 841 | <a name="l01137"></a>01137 <span class="comment">// };</span> |
| 842 | <a name="l01138"></a>01138 |
| 843 | <a name="l01139"></a>01139 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 844 | <a name="l01140"></a><a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3">01140</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">enorm<sq_T>::evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const</span> |
| 845 | <a name="l01141"></a>01141 <span class="keyword"> </span>{ |
| 846 | <a name="l01142"></a>01142 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
| 847 | <a name="l01143"></a>01143 <span class="keywordtype">double</span> tmp=-0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>-val ) );<span class="comment">// - lognc();</span> |
| 848 | <a name="l01144"></a>01144 <span class="keywordflow">return</span> tmp; |
| 849 | <a name="l01145"></a>01145 }; |
| 850 | <a name="l01146"></a>01146 |
| 851 | <a name="l01147"></a>01147 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 852 | <a name="l01148"></a><a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32">01148</a> <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">enorm<sq_T>::lognc</a> ()<span class="keyword"> const</span> |
| 853 | <a name="l01149"></a>01149 <span class="keyword"> </span>{ |
| 854 | <a name="l01150"></a>01150 <span class="comment">// 1.83787706640935 = log(2pi)</span> |
| 855 | <a name="l01151"></a>01151 <span class="keywordtype">double</span> tmp=0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.logdet() ); |
| 856 | <a name="l01152"></a>01152 <span class="keywordflow">return</span> tmp; |
| 857 | <a name="l01153"></a>01153 }; |
| 858 | <a name="l01154"></a>01154 |
| 859 | <a name="l01155"></a>01155 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 860 | <a name="l01156"></a><a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f">01156</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">mlnorm<sq_T>::set_parameters</a> ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) |
| 861 | <a name="l01157"></a>01157 { |
| 862 | <a name="l01158"></a>01158 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> ); |
| 863 | <a name="l01159"></a>01159 it_assert_debug ( A0.rows() ==R0.rows(),<span class="stringliteral">""</span> ); |
| 864 | <a name="l01160"></a>01160 |
| 865 | <a name="l01161"></a>01161 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( A0.rows() ),R0 ); |
| 866 | <a name="l01162"></a>01162 A = A0; |
| 867 | <a name="l01163"></a>01163 mu_const = mu0; |
| 868 | <a name="l01164"></a>01164 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=A0.cols(); |
| 869 | <a name="l01165"></a>01165 } |
| 870 | <a name="l01166"></a>01166 |
| 871 | <a name="l01167"></a>01167 <span class="comment">// template<class sq_T></span> |
| 872 | <a name="l01168"></a>01168 <span class="comment">// vec mlnorm<sq_T>::samplecond (const vec &cond, double &lik ) {</span> |
| 873 | <a name="l01169"></a>01169 <span class="comment">// this->condition ( cond );</span> |
| 874 | <a name="l01170"></a>01170 <span class="comment">// vec smp = epdf.sample();</span> |
| 875 | <a name="l01171"></a>01171 <span class="comment">// lik = epdf.eval ( smp );</span> |
| 876 | <a name="l01172"></a>01172 <span class="comment">// return smp;</span> |
| 877 | <a name="l01173"></a>01173 <span class="comment">// }</span> |
| 878 | <a name="l01174"></a>01174 |
| 879 | <a name="l01175"></a>01175 <span class="comment">// template<class sq_T></span> |
| 880 | <a name="l01176"></a>01176 <span class="comment">// mat mlnorm<sq_T>::samplecond (const vec &cond, vec &lik, int n ) {</span> |
| 881 | <a name="l01177"></a>01177 <span class="comment">// int i;</span> |
| 882 | <a name="l01178"></a>01178 <span class="comment">// int dim = rv.count();</span> |
| 883 | <a name="l01179"></a>01179 <span class="comment">// mat Smp ( dim,n );</span> |
| 884 | <a name="l01180"></a>01180 <span class="comment">// vec smp ( dim );</span> |
| 885 | <a name="l01181"></a>01181 <span class="comment">// this->condition ( cond );</span> |
| 886 | <a name="l01182"></a>01182 <span class="comment">//</span> |
| 887 | <a name="l01183"></a>01183 <span class="comment">// for ( i=0; i<n; i++ ) {</span> |
| 888 | <a name="l01184"></a>01184 <span class="comment">// smp = epdf.sample();</span> |
| 889 | <a name="l01185"></a>01185 <span class="comment">// lik ( i ) = epdf.eval ( smp );</span> |
| 890 | <a name="l01186"></a>01186 <span class="comment">// Smp.set_col ( i ,smp );</span> |
| 891 | <a name="l01187"></a>01187 <span class="comment">// }</span> |
| 892 | <a name="l01188"></a>01188 <span class="comment">//</span> |
| 893 | <a name="l01189"></a>01189 <span class="comment">// return Smp;</span> |
| 894 | <a name="l01190"></a>01190 <span class="comment">// }</span> |
| 895 | <a name="l01191"></a>01191 |
| 896 | <a name="l01192"></a>01192 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 897 | <a name="l01193"></a><a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">01193</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">mlnorm<sq_T>::condition</a> ( <span class="keyword">const</span> vec &cond ) |
| 898 | <a name="l01194"></a>01194 { |
| 899 | <a name="l01195"></a>01195 _mu = A*cond + mu_const; |
| 900 | <a name="l01196"></a>01196 <span class="comment">//R is already assigned;</span> |
| 901 | <a name="l01197"></a>01197 } |
| 902 | <a name="l01198"></a>01198 |
| 903 | <a name="l01199"></a>01199 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 904 | <a name="l01200"></a><a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80">01200</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>* <a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">enorm<sq_T>::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const</span> |
| 905 | <a name="l01201"></a>01201 <span class="keyword"> </span>{ |
| 906 | <a name="l01202"></a>01202 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(), <span class="stringliteral">"rv description is not assigned"</span> ); |
| 907 | <a name="l01203"></a>01203 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
| 908 | <a name="l01204"></a>01204 |
| 909 | <a name="l01205"></a>01205 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,irvn ); <span class="comment">//select rows and columns of R</span> |
| 910 | <a name="l01206"></a>01206 |
| 911 | <a name="l01207"></a>01207 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>* tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>; |
| 912 | <a name="l01208"></a>01208 tmp-><a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a> ( rvn ); |
| 913 | <a name="l01209"></a>01209 tmp-><a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ), Rn ); |
| 914 | <a name="l01210"></a>01210 <span class="keywordflow">return</span> tmp; |
| 915 | <a name="l01211"></a>01211 } |
| 916 | <a name="l01212"></a>01212 |
| 917 | <a name="l01213"></a>01213 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 918 | <a name="l01214"></a><a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26">01214</a> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">enorm<sq_T>::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const</span> |
| 919 | <a name="l01215"></a>01215 <span class="keyword"> </span>{ |
| 920 | <a name="l01216"></a>01216 |
| 921 | <a name="l01217"></a>01217 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(),<span class="stringliteral">"rvs are not assigned"</span> ); |
| 922 | <a name="l01218"></a>01218 |
| 923 | <a name="l01219"></a>01219 <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvc = <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#aec44dabdf0a6d90fbae95e1356eda39" title="Subtract another variable from the current one.">subt</a> ( rvn ); |
| 924 | <a name="l01220"></a>01220 it_assert_debug ( ( rvc.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() +rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ==<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ),<span class="stringliteral">"wrong rvn"</span> ); |
| 925 | <a name="l01221"></a>01221 <span class="comment">//Permutation vector of the new R</span> |
| 926 | <a name="l01222"></a>01222 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
| 927 | <a name="l01223"></a>01223 ivec irvc = rvc.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
| 928 | <a name="l01224"></a>01224 ivec perm=concat ( irvn , irvc ); |
| 929 | <a name="l01225"></a>01225 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,perm ); |
| 930 | <a name="l01226"></a>01226 |
| 931 | <a name="l01227"></a>01227 <span class="comment">//fixme - could this be done in general for all sq_T?</span> |
| 932 | <a name="l01228"></a>01228 mat S=Rn.to_mat(); |
| 933 | <a name="l01229"></a>01229 <span class="comment">//fixme</span> |
| 934 | <a name="l01230"></a>01230 <span class="keywordtype">int</span> n=rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>()-1; |
| 935 | <a name="l01231"></a>01231 <span class="keywordtype">int</span> end=<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows()-1; |
| 936 | <a name="l01232"></a>01232 mat S11 = S.get ( 0,n, 0, n ); |
| 937 | <a name="l01233"></a>01233 mat S12 = S.get ( 0, n , rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); |
| 938 | <a name="l01234"></a>01234 mat S22 = S.get ( rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end, rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); |
| 939 | <a name="l01235"></a>01235 |
| 940 | <a name="l01236"></a>01236 vec mu1 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ); |
| 941 | <a name="l01237"></a>01237 vec mu2 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvc ); |
| 942 | <a name="l01238"></a>01238 mat A=S12*inv ( S22 ); |
| 943 | <a name="l01239"></a>01239 sq_T R_n ( S11 - A *S12.T() ); |
| 944 | <a name="l01240"></a>01240 |
| 945 | <a name="l01241"></a>01241 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a>* tmp=<span class="keyword">new</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a> ( ); |
| 946 | <a name="l01242"></a>01242 tmp->set_rv ( rvn ); tmp->set_rvc ( rvc ); |
| 947 | <a name="l01243"></a>01243 tmp->set_parameters ( A,mu1-A*mu2,R_n ); |
| 948 | <a name="l01244"></a>01244 <span class="keywordflow">return</span> tmp; |
| 949 | <a name="l01245"></a>01245 } |
| 950 | <a name="l01246"></a>01246 |
| 951 | <a name="l01248"></a>01248 |
| 952 | <a name="l01249"></a>01249 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 953 | <a name="l01250"></a>01250 std::ostream &operator<< ( std::ostream &os, mlnorm<sq_T> &ml ) |
| 954 | <a name="l01251"></a>01251 { |
| 955 | <a name="l01252"></a>01252 os << <span class="stringliteral">"A:"</span><< ml.A<<endl; |
| 956 | <a name="l01253"></a>01253 os << <span class="stringliteral">"mu:"</span><< ml.mu_const<<endl; |
| 957 | <a name="l01254"></a>01254 os << <span class="stringliteral">"R:"</span> << ml.epdf._R().to_mat() <<endl; |
| 958 | <a name="l01255"></a>01255 <span class="keywordflow">return</span> os; |
| 959 | <a name="l01256"></a>01256 }; |
| 960 | <a name="l01257"></a>01257 |
| 961 | <a name="l01258"></a>01258 } |
| 962 | <a name="l01259"></a>01259 <span class="preprocessor">#endif //EF_H</span> |