Changeset 397 for library/doc/html/kalman.html
- Timestamp:
- 06/24/09 21:56:30 (16 years ago)
- Files:
-
- 1 modified
Legend:
- Unmodified
- Added
- Removed
-
library/doc/html/kalman.html
r396 r397 65 65 Kalman Filtering</a></h2> 66 66 Kalman filtering is optimal estimation procedure for linear state space model: <p class="formulaDsp"> 67 <img class="formulaDsp" alt="\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray}" src="form_10 0.png">67 <img class="formulaDsp" alt="\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray}" src="form_108.png"> 68 68 <p> 69 where <img class="formulaInl" alt="$ x_t $" src="form_10 1.png"> is the state, <img class="formulaInl" alt="$ y_t $" src="form_6.png"> is the system output, <img class="formulaInl" alt="$ A, B, C, D$" src="form_102.png"> are state matrices of appropriate dimensions, <img class="formulaInl" alt="$v_t, w_t$" src="form_103.png"> are zero mean Gaussian noises with covariance matrices <img class="formulaInl" alt="$Q, R$" src="form_104.png">, respectively.<p>69 where <img class="formulaInl" alt="$ x_t $" src="form_109.png"> is the state, <img class="formulaInl" alt="$ y_t $" src="form_26.png"> is the system output, <img class="formulaInl" alt="$ A, B, C, D$" src="form_110.png"> are state matrices of appropriate dimensions, <img class="formulaInl" alt="$v_t, w_t$" src="form_111.png"> are zero mean Gaussian noises with covariance matrices <img class="formulaInl" alt="$Q, R$" src="form_112.png">, respectively.<p> 70 70 Both prior and posterior densities on the state are Gaussian, i.e. of the class enorm.<p> 71 71 There is a range of classes that implements this functionality, namely:<ul> … … 74 74 Extended Kalman Filtering</a></h2> 75 75 Extended Kalman filtering arise by linearization of non-linear state space model: <p class="formulaDsp"> 76 <img class="formulaDsp" alt="\begin{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \end{eqnarray}" src="form_1 05.png">76 <img class="formulaDsp" alt="\begin{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \end{eqnarray}" src="form_113.png"> 77 77 <p> 78 where <img class="formulaInl" alt="$ g(), h() $" src="form_1 06.png"> are general non-linear functions which have finite derivatives. Remaining variables have the same meaning as in the Kalman Filter.<p>78 where <img class="formulaInl" alt="$ g(), h() $" src="form_114.png"> are general non-linear functions which have finite derivatives. Remaining variables have the same meaning as in the Kalman Filter.<p> 79 79 In order to use this class, the non-linear functions and their derivatives must be defined as an instance of class <code>diffbifn</code>.<p> 80 80 Two classes are defined:<ul> … … 114 114 } 115 115 </pre></div> </div> 116 <<<<<<< HEAD:library/doc/html/kalman.html 116 117 <hr size="1"><address style="text-align: right;"><small>Generated on Wed Jun 24 13:35:47 2009 for mixpp by 118 ======= 119 <hr size="1"><address style="text-align: right;"><small>Generated on Tue Jun 23 19:52:50 2009 for mixpp by 120 >>>>>>> doc:library/doc/html/kalman.html 117 121 <a href="http://www.doxygen.org/index.html"> 118 122 <img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.9 </small></address>