#include <kalman.h>
Public Member Functions | |
| void | set_parameters (Array< EKFCh * > A, int pol0=1) |
| void | bayes (const vec &dt) |
| Incremental Bayes rule. | |
| const enorm< chmat > * | _e () const |
| const enorm< chmat > & | posterior () const |
| void | from_setting (const Setting &set) |
| This method arrange instance properties according the data stored in the Setting structure. | |
| virtual string | to_string () |
| This method returns a basic info about the current instance. | |
| virtual void | to_setting (Setting &set) const |
| This method save all the instance properties into the Setting structure. | |
| virtual void | validate () |
| This method TODO. | |
Constructors | |
| virtual BM * | _copy_ () const |
Mathematical operations | |
| virtual void | bayesB (const mat &Dt) |
| Batch Bayes rule (columns of Dt are observations). | |
| virtual double | logpred (const vec &dt) const |
| vec | logpred_m (const mat &dt) const |
| Matrix version of logpred. | |
| virtual epdf * | epredictor () const |
Constructs a predictive density . | |
| virtual mpdf * | predictor () const |
| Constructs a conditional density 1-step ahead predictor. | |
Access to attributes | |
| const RV & | _drv () const |
| void | set_drv (const RV &rv) |
| void | set_rv (const RV &rv) |
| double | _ll () const |
| void | set_evalll (bool evl0) |
Protected Attributes | |
| Array< EKFCh * > | Models |
| List of models between which we switch. | |
| vec | w |
| vector of model weights | |
| vec | _lls |
| cache of model lls | |
| int | policy |
| type of switching policy [1=maximum,2=...] | |
| enorm< chmat > | est |
| internal statistics | |
| RV | drv |
| Random variable of the data (optional). | |
| double | ll |
| Logarithm of marginalized data likelihood. | |
| bool | evalll |
If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save computational time. | |
Extension to conditional BM | |
| This extension is useful e.g. in Marginalized Particle Filter (bdm::MPF). Alternatively, it can be used for automated connection to DS when the condition is observed | |
| const RV & | _rvc () const |
| access function | |
| virtual void | condition (const vec &val) |
Substitute val for rvc. | |
| RV | rvc |
| Name of extension variable. | |
Logging of results | |
| virtual void | set_options (const string &opt) |
| Set boolean options from a string recognized are: "logbounds,logll". | |
| virtual void | log_add (logger &L, const string &name="") |
| Add all logged variables to a logger. | |
| virtual void | logit (logger &L) |
| ivec | LIDs |
| IDs of storages in loggers 4:[1=mean,2=lb,3=ub,4=ll]. | |
| ivec | LFlags |
| Flags for logging - same size as LIDs, each entry correspond to the same in LIDs. | |
The statistics of the resulting density are merged using (geometric?) combination.
The next step is performed with the new statistics for all models.
| virtual BM* bdm::BM::_copy_ | ( | ) | const [inline, virtual, inherited] |
Copy function required in vectors, Arrays of BM etc. Have to be DELETED manually! Prototype:
BM* _copy_() const {return new BM(*this);}
Reimplemented in bdm::ARX, bdm::KalmanCh, bdm::EKF< sq_T >, bdm::EKFCh, and bdm::BMEF.
| void bdm::MultiModel::bayes | ( | const vec & | dt | ) | [inline, virtual] |
Incremental Bayes rule.
| dt | vector of input data |
Implements bdm::BM.
References _lls, bdm::enorm< sq_T >::_R(), est, bdm::enorm< sq_T >::mean(), Models, policy, bdm::enorm< sq_T >::set_parameters(), and w.
| virtual double bdm::BM::logpred | ( | const vec & | dt | ) | const [inline, virtual, inherited] |
Evaluates predictive log-likelihood of the given data record I.e. marginal likelihood of the data with the posterior integrated out.
Reimplemented in bdm::ARX, bdm::MixEF, and bdm::multiBM.
Referenced by bdm::BM::logpred_m().
1.5.8