77 | | <a name="l00025"></a>00025 <span class="keyword">extern</span> Uniform_RNG UniRNG; |
78 | | <a name="l00027"></a>00027 <span class="keyword">extern</span> Normal_RNG NorRNG; |
79 | | <a name="l00029"></a>00029 <span class="keyword">extern</span> Gamma_RNG GamRNG; |
80 | | <a name="l00030"></a>00030 |
81 | | <a name="l00037"></a><a class="code" href="classbdm_1_1eEF.html">00037</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
82 | | <a name="l00038"></a>00038 { |
83 | | <a name="l00039"></a>00039 <span class="keyword">public</span>: |
84 | | <a name="l00040"></a>00040 <span class="comment">// eEF() :epdf() {};</span> |
85 | | <a name="l00042"></a><a class="code" href="classbdm_1_1eEF.html#d5459d472d0feca7cf1fb5f65c4b9ef4">00042</a> <span class="comment"></span> <a class="code" href="classbdm_1_1eEF.html#d5459d472d0feca7cf1fb5f65c4b9ef4" title="default constructor">eEF</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ) {}; |
86 | | <a name="l00044"></a>00044 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>() <span class="keyword">const</span> =0; |
87 | | <a name="l00046"></a><a class="code" href="classbdm_1_1eEF.html#deef7d6273ba4d5a5cf0bbd91ec7277a">00046</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#deef7d6273ba4d5a5cf0bbd91ec7277a" title="TODO decide if it is really needed.">dupdate</a> ( mat &v ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
88 | | <a name="l00048"></a><a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6">00048</a> <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const</span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;}; |
89 | | <a name="l00050"></a><a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692">00050</a> <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
90 | | <a name="l00051"></a>00051 <span class="keywordtype">double</span> tmp; |
91 | | <a name="l00052"></a>00052 tmp= <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( val )-<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>(); |
92 | | <a name="l00053"></a>00053 it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> ); |
93 | | <a name="l00054"></a>00054 <span class="keywordflow">return</span> tmp;} |
94 | | <a name="l00056"></a><a class="code" href="classbdm_1_1eEF.html#79a7c8ea8c02e45d410bd1d7ffd72b41">00056</a> <span class="keyword">virtual</span> vec <a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> ( <span class="keyword">const</span> mat &Val )<span class="keyword"> const</span> |
95 | | <a name="l00057"></a>00057 <span class="keyword"> </span>{ |
96 | | <a name="l00058"></a>00058 vec x ( Val.cols() ); |
97 | | <a name="l00059"></a>00059 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<Val.cols();i++ ) {x ( i ) =<a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( Val.get_col ( i ) ) ;} |
98 | | <a name="l00060"></a>00060 <span class="keywordflow">return</span> x-<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>(); |
99 | | <a name="l00061"></a>00061 } |
100 | | <a name="l00063"></a><a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053">00063</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
101 | | <a name="l00064"></a>00064 }; |
102 | | <a name="l00065"></a>00065 |
103 | | <a name="l00072"></a><a class="code" href="classbdm_1_1mEF.html">00072</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> |
104 | | <a name="l00073"></a>00073 { |
105 | | <a name="l00074"></a>00074 |
106 | | <a name="l00075"></a>00075 <span class="keyword">public</span>: |
107 | | <a name="l00077"></a><a class="code" href="classbdm_1_1mEF.html#dd7caad7026b778af66e34480eec6f9e">00077</a> <a class="code" href="classbdm_1_1mEF.html#dd7caad7026b778af66e34480eec6f9e" title="Default constructor.">mEF</a> ( ) :<a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> ( ) {}; |
108 | | <a name="l00078"></a>00078 }; |
109 | | <a name="l00079"></a>00079 |
110 | | <a name="l00081"></a><a class="code" href="classbdm_1_1BMEF.html">00081</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> |
111 | | <a name="l00082"></a>00082 { |
112 | | <a name="l00083"></a>00083 <span class="keyword">protected</span>: |
113 | | <a name="l00085"></a><a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64">00085</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>; |
114 | | <a name="l00087"></a><a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865">00087</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>; |
115 | | <a name="l00088"></a>00088 <span class="keyword">public</span>: |
116 | | <a name="l00090"></a><a class="code" href="classbdm_1_1BMEF.html#2def512872ed8a4fc3b702371ec0be55">00090</a> <a class="code" href="classbdm_1_1BMEF.html#2def512872ed8a4fc3b702371ec0be55" title="Default constructor (=empty constructor).">BMEF</a> ( <span class="keywordtype">double</span> frg0=1.0 ) :<a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> ( ), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ( frg0 ) {} |
117 | | <a name="l00092"></a><a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62">00092</a> <a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62" title="Copy constructor.">BMEF</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> &B ) :<a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> ( B ), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ( B.<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ), <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ( B.<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ) {} |
118 | | <a name="l00094"></a><a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051">00094</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051" title="get statistics from another model">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* BM0 ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; |
119 | | <a name="l00096"></a><a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6">00096</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &data, <span class="keyword">const</span> <span class="keywordtype">double</span> w ) {}; |
120 | | <a name="l00097"></a>00097 <span class="comment">//original Bayes</span> |
121 | | <a name="l00098"></a>00098 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &dt ); |
122 | | <a name="l00100"></a><a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749">00100</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> * B ) {it_error ( <span class="stringliteral">"Not implemented"</span> );} |
123 | | <a name="l00102"></a>00102 <span class="comment">// virtual void flatten ( double nu0 ) {it_error ( "Not implemented" );}</span> |
124 | | <a name="l00103"></a>00103 |
125 | | <a name="l00104"></a><a class="code" href="classbdm_1_1BMEF.html#62d2e4691bed41a1efa6b9c2e35e5c67">00104</a> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* <a class="code" href="classbdm_1_1BMEF.html#62d2e4691bed41a1efa6b9c2e35e5c67" title="Flatten the posterior as if to keep nu0 data.">_copy_</a> ()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"function _copy_ not implemented for this BM"</span> ); <span class="keywordflow">return</span> NULL;}; |
126 | | <a name="l00105"></a>00105 }; |
127 | | <a name="l00106"></a>00106 |
128 | | <a name="l00107"></a>00107 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
129 | | <a name="l00108"></a>00108 <span class="keyword">class </span>mlnorm; |
130 | | <a name="l00109"></a>00109 |
131 | | <a name="l00115"></a>00115 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
132 | | <a name="l00116"></a><a class="code" href="classbdm_1_1enorm.html">00116</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> |
133 | | <a name="l00117"></a>00117 { |
134 | | <a name="l00118"></a>00118 <span class="keyword">protected</span>: |
135 | | <a name="l00120"></a><a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7">00120</a> vec <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
136 | | <a name="l00122"></a><a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2">00122</a> sq_T <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>; |
137 | | <a name="l00123"></a>00123 <span class="keyword">public</span>: |
138 | | <a name="l00126"></a>00126 |
139 | | <a name="l00127"></a>00127 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> ( ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ), <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( ),<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ( ) {}; |
140 | | <a name="l00128"></a>00128 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> ( <span class="keyword">const</span> vec &<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ) {set_parameters ( mu,R );} |
141 | | <a name="l00129"></a>00129 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ); |
142 | | <a name="l00130"></a>00130 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">from_setting</a>(<span class="keyword">const</span> Setting &root); |
143 | | <a name="l00131"></a><a class="code" href="classbdm_1_1enorm.html#38eb17ecb75d94a50b6782fcf735cfea">00131</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#38eb17ecb75d94a50b6782fcf735cfea" title="This method TODO.">validate</a>() { |
144 | | <a name="l00132"></a>00132 it_assert(<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>.length()==<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows(),<span class="stringliteral">"parameters mismatch"</span>); |
145 | | <a name="l00133"></a>00133 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>.length(); |
146 | | <a name="l00134"></a>00134 } |
| 76 | <a name="l00024"></a>00024 |
| 77 | <a name="l00026"></a>00026 <span class="keyword">extern</span> Uniform_RNG UniRNG; |
| 78 | <a name="l00028"></a>00028 <span class="keyword">extern</span> Normal_RNG NorRNG; |
| 79 | <a name="l00030"></a>00030 <span class="keyword">extern</span> Gamma_RNG GamRNG; |
| 80 | <a name="l00031"></a>00031 |
| 81 | <a name="l00038"></a><a class="code" href="classbdm_1_1eEF.html">00038</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
| 82 | <a name="l00039"></a>00039 { |
| 83 | <a name="l00040"></a>00040 <span class="keyword">public</span>: |
| 84 | <a name="l00041"></a>00041 <span class="comment">// eEF() :epdf() {};</span> |
| 85 | <a name="l00043"></a><a class="code" href="classbdm_1_1eEF.html#d5459d472d0feca7cf1fb5f65c4b9ef4">00043</a> <span class="comment"></span> <a class="code" href="classbdm_1_1eEF.html#d5459d472d0feca7cf1fb5f65c4b9ef4" title="default constructor">eEF</a> () : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> () {}; |
| 86 | <a name="l00045"></a>00045 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>() <span class="keyword">const</span> = 0; |
| 87 | <a name="l00047"></a><a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6">00047</a> <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> (<span class="keyword">const</span> vec &val)<span class="keyword"> const</span>{it_error (<span class="stringliteral">"Not implemented"</span>);<span class="keywordflow">return</span> 0.0;}; |
| 88 | <a name="l00049"></a><a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692">00049</a> <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> (<span class="keyword">const</span> vec &val)<span class="keyword"> const </span>{ |
| 89 | <a name="l00050"></a>00050 <span class="keywordtype">double</span> tmp; |
| 90 | <a name="l00051"></a>00051 tmp = <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> (val) - <a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>(); |
| 91 | <a name="l00052"></a>00052 <span class="comment">// it_assert_debug ( std::isfinite ( tmp ),"Infinite value" );</span> |
| 92 | <a name="l00053"></a>00053 <span class="keywordflow">return</span> tmp; |
| 93 | <a name="l00054"></a>00054 } |
| 94 | <a name="l00056"></a><a class="code" href="classbdm_1_1eEF.html#6886c60b6b690e503913240db5de0c6f">00056</a> <span class="keyword">virtual</span> vec <a class="code" href="classbdm_1_1eEF.html#6886c60b6b690e503913240db5de0c6f" title="Evaluate normalized log-probability for many samples.">evallog_m</a> (<span class="keyword">const</span> mat &Val)<span class="keyword"> const </span>{ |
| 95 | <a name="l00057"></a>00057 vec x (Val.cols()); |
| 96 | <a name="l00058"></a>00058 <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i < Val.cols();i++) {x (i) = <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> (Val.get_col (i)) ;} |
| 97 | <a name="l00059"></a>00059 <span class="keywordflow">return</span> x -<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>(); |
| 98 | <a name="l00060"></a>00060 } |
| 99 | <a name="l00062"></a><a class="code" href="classbdm_1_1eEF.html#d793f4fd6d0dcec5f16bff0ae45fc7d5">00062</a> <span class="keyword">virtual</span> vec <a class="code" href="classbdm_1_1eEF.html#d793f4fd6d0dcec5f16bff0ae45fc7d5" title="Evaluate normalized log-probability for many samples.">evallog_m</a> (<span class="keyword">const</span> Array<vec> &Val)<span class="keyword"> const </span>{ |
| 100 | <a name="l00063"></a>00063 vec x (Val.length()); |
| 101 | <a name="l00064"></a>00064 <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i < Val.length();i++) {x (i) = <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> (Val (i)) ;} |
| 102 | <a name="l00065"></a>00065 <span class="keywordflow">return</span> x -<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>(); |
| 103 | <a name="l00066"></a>00066 } |
| 104 | <a name="l00068"></a><a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053">00068</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053" title="Power of the density, used e.g. to flatten the density.">pow</a> (<span class="keywordtype">double</span> p) {it_error (<span class="stringliteral">"Not implemented"</span>);}; |
| 105 | <a name="l00069"></a>00069 }; |
| 106 | <a name="l00070"></a>00070 |
| 107 | <a name="l00071"></a>00071 |
| 108 | <a name="l00073"></a><a class="code" href="classbdm_1_1BMEF.html">00073</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> |
| 109 | <a name="l00074"></a>00074 { |
| 110 | <a name="l00075"></a>00075 <span class="keyword">protected</span>: |
| 111 | <a name="l00077"></a><a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64">00077</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>; |
| 112 | <a name="l00079"></a><a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865">00079</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>; |
| 113 | <a name="l00080"></a>00080 <span class="keyword">public</span>: |
| 114 | <a name="l00082"></a><a class="code" href="classbdm_1_1BMEF.html#2def512872ed8a4fc3b702371ec0be55">00082</a> <a class="code" href="classbdm_1_1BMEF.html#2def512872ed8a4fc3b702371ec0be55" title="Default constructor (=empty constructor).">BMEF</a> (<span class="keywordtype">double</span> frg0 = 1.0) : <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> (), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> (frg0) {} |
| 115 | <a name="l00084"></a><a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62">00084</a> <a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62" title="Copy constructor.">BMEF</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> &B) : <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> (B), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> (B.<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>), <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> (B.<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>) {} |
| 116 | <a name="l00086"></a><a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051">00086</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051" title="get statistics from another model">set_statistics</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* BM0) {it_error (<span class="stringliteral">"Not implemented"</span>);}; |
| 117 | <a name="l00088"></a><a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6">00088</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> (<span class="keyword">const</span> vec &data, <span class="keyword">const</span> <span class="keywordtype">double</span> w) {}; |
| 118 | <a name="l00089"></a>00089 <span class="comment">//original Bayes</span> |
| 119 | <a name="l00090"></a>00090 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> (<span class="keyword">const</span> vec &dt); |
| 120 | <a name="l00092"></a><a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749">00092</a> <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> * B) {it_error (<span class="stringliteral">"Not implemented"</span>);} |
| 121 | <a name="l00094"></a>00094 <span class="comment">// virtual void flatten ( double nu0 ) {it_error ( "Not implemented" );}</span> |
| 122 | <a name="l00095"></a>00095 |
| 123 | <a name="l00096"></a><a class="code" href="classbdm_1_1BMEF.html#62d2e4691bed41a1efa6b9c2e35e5c67">00096</a> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* <a class="code" href="classbdm_1_1BMEF.html#62d2e4691bed41a1efa6b9c2e35e5c67" title="Flatten the posterior as if to keep nu0 data.">_copy_</a> ()<span class="keyword"> const </span>{it_error (<span class="stringliteral">"function _copy_ not implemented for this BM"</span>); <span class="keywordflow">return</span> NULL;}; |
| 124 | <a name="l00097"></a>00097 }; |
| 125 | <a name="l00098"></a>00098 |
| 126 | <a name="l00099"></a>00099 <span class="keyword">template</span><<span class="keyword">class</span> sq_T, <span class="keyword">template</span> <<span class="keyword">typename</span>> <span class="keyword">class </span>TEpdf> |
| 127 | <a name="l00100"></a>00100 <span class="keyword">class </span>mlnorm; |
| 128 | <a name="l00101"></a>00101 |
| 129 | <a name="l00107"></a>00107 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 130 | <a name="l00108"></a><a class="code" href="classbdm_1_1enorm.html">00108</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> |
| 131 | <a name="l00109"></a>00109 { |
| 132 | <a name="l00110"></a>00110 <span class="keyword">protected</span>: |
| 133 | <a name="l00112"></a><a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7">00112</a> vec <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; |
| 134 | <a name="l00114"></a><a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2">00114</a> sq_T <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>; |
| 135 | <a name="l00115"></a>00115 <span class="keyword">public</span>: |
| 136 | <a name="l00118"></a>00118 |
| 137 | <a name="l00119"></a>00119 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> (), <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> (), <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> () {}; |
| 138 | <a name="l00120"></a>00120 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> (<span class="keyword">const</span> vec &<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>, <span class="keyword">const</span> sq_T &<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>) {set_parameters (mu, R);} |
| 139 | <a name="l00121"></a>00121 <span class="keywordtype">void</span> set_parameters (<span class="keyword">const</span> vec &<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>, <span class="keyword">const</span> sq_T &<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>); |
| 140 | <a name="l00122"></a>00122 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">from_setting</a> (<span class="keyword">const</span> Setting &root); |
| 141 | <a name="l00123"></a><a class="code" href="classbdm_1_1enorm.html#38eb17ecb75d94a50b6782fcf735cfea">00123</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#38eb17ecb75d94a50b6782fcf735cfea" title="This method TODO.">validate</a>() { |
| 142 | <a name="l00124"></a>00124 it_assert (<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>.length() == <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows(), <span class="stringliteral">"parameters mismatch"</span>); |
| 143 | <a name="l00125"></a>00125 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>.length(); |
| 144 | <a name="l00126"></a>00126 } |
| 145 | <a name="l00128"></a>00128 |
| 146 | <a name="l00131"></a>00131 |
| 147 | <a name="l00133"></a>00133 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">dupdate</a> (mat &v, <span class="keywordtype">double</span> nu = 1.0); |
| 148 | <a name="l00134"></a>00134 |
| 149 | <a name="l00135"></a>00135 vec <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
148 | | <a name="l00139"></a>00139 |
149 | | <a name="l00141"></a>00141 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">dupdate</a> ( mat &v,<span class="keywordtype">double</span> nu=1.0 ); |
150 | | <a name="l00142"></a>00142 |
151 | | <a name="l00143"></a>00143 vec <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
152 | | <a name="l00144"></a>00144 mat <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample, from density .">sample</a> ( <span class="keywordtype">int</span> N ) <span class="keyword">const</span>; |
153 | | <a name="l00145"></a>00145 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">evallog_nn</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
154 | | <a name="l00146"></a>00146 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
155 | | <a name="l00147"></a><a class="code" href="classbdm_1_1enorm.html#b2fa2915c35366392fe9bb022ca1a600">00147</a> vec <a class="code" href="classbdm_1_1enorm.html#b2fa2915c35366392fe9bb022ca1a600" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;} |
156 | | <a name="l00148"></a><a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773">00148</a> vec <a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> diag ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.to_mat() );} |
157 | | <a name="l00149"></a>00149 <span class="comment">// mlnorm<sq_T>* condition ( const RV &rvn ) const ; <=========== fails to cmpile. Why?</span> |
158 | | <a name="l00150"></a>00150 <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn ) <span class="keyword">const</span> ; |
159 | | <a name="l00151"></a>00151 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>* <a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ) <span class="keyword">const</span>; |
160 | | <a name="l00152"></a>00152 <span class="comment">// epdf* marginal ( const RV &rv ) const;</span> |
161 | | <a name="l00154"></a>00154 <span class="comment"></span> |
162 | | <a name="l00157"></a>00157 |
163 | | <a name="l00158"></a>00158 vec& _mu() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;} |
164 | | <a name="l00159"></a>00159 <span class="keywordtype">void</span> set_mu ( <span class="keyword">const</span> vec mu0 ) { <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>=mu0;} |
165 | | <a name="l00160"></a>00160 sq_T& _R() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;} |
166 | | <a name="l00161"></a>00161 <span class="keyword">const</span> sq_T& _R()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;} |
167 | | <a name="l00163"></a>00163 |
168 | | <a name="l00164"></a>00164 }; |
169 | | <a name="l00165"></a>00165 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(enorm<chmat>); |
170 | | <a name="l00166"></a>00166 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(enorm<ldmat>); |
171 | | <a name="l00167"></a>00167 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(enorm<fsqmat>); |
172 | | <a name="l00168"></a>00168 |
173 | | <a name="l00169"></a>00169 |
174 | | <a name="l00176"></a><a class="code" href="classbdm_1_1egiw.html">00176</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> |
175 | | <a name="l00177"></a>00177 { |
176 | | <a name="l00178"></a>00178 <span class="keyword">protected</span>: |
177 | | <a name="l00180"></a><a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52">00180</a> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>; |
178 | | <a name="l00182"></a><a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4">00182</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>; |
179 | | <a name="l00184"></a><a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a">00184</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>; |
180 | | <a name="l00186"></a><a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd">00186</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a>; |
181 | | <a name="l00187"></a>00187 <span class="keyword">public</span>: |
182 | | <a name="l00190"></a>00190 <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a>() :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {}; |
183 | | <a name="l00191"></a>00191 <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> ( <span class="keywordtype">int</span> dimx0, <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0=-1.0 ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {set_parameters ( dimx0,V0, nu0 );}; |
184 | | <a name="l00192"></a>00192 |
185 | | <a name="l00193"></a>00193 <span class="keywordtype">void</span> set_parameters ( <span class="keywordtype">int</span> dimx0, <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0=-1.0 ) |
186 | | <a name="l00194"></a>00194 { |
187 | | <a name="l00195"></a>00195 <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>=dimx0; |
188 | | <a name="l00196"></a>00196 <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> = V0.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>()-<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>; |
189 | | <a name="l00197"></a>00197 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>* ( <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>+<a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> ); <span class="comment">// size(R) + size(Theta)</span> |
190 | | <a name="l00198"></a>00198 |
191 | | <a name="l00199"></a>00199 <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>=V0; |
192 | | <a name="l00200"></a>00200 <span class="keywordflow">if</span> ( nu0<0 ) |
193 | | <a name="l00201"></a>00201 { |
194 | | <a name="l00202"></a>00202 <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> = 0.1 +<a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> +2*<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> +2; <span class="comment">// +2 assures finite expected value of R</span> |
195 | | <a name="l00203"></a>00203 <span class="comment">// terms before that are sufficient for finite normalization</span> |
196 | | <a name="l00204"></a>00204 } |
197 | | <a name="l00205"></a>00205 <span class="keywordflow">else</span> |
198 | | <a name="l00206"></a>00206 { |
199 | | <a name="l00207"></a>00207 <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>=nu0; |
200 | | <a name="l00208"></a>00208 } |
201 | | <a name="l00209"></a>00209 } |
202 | | <a name="l00211"></a>00211 |
203 | | <a name="l00212"></a>00212 vec <a class="code" href="classbdm_1_1egiw.html#920f21548b7a3723923dd108fe514c61" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
204 | | <a name="l00213"></a>00213 vec <a class="code" href="classbdm_1_1egiw.html#df70c05f918c3a6f86d60f10c1fd6ba2" title="return expected value">mean</a>() <span class="keyword">const</span>; |
205 | | <a name="l00214"></a>00214 vec <a class="code" href="classbdm_1_1egiw.html#c1ecc406613cc2341225dc10c3d3b46a" title="return expected variance (not covariance!)">variance</a>() <span class="keyword">const</span>; |
206 | | <a name="l00215"></a>00215 |
207 | | <a name="l00217"></a>00217 vec <a class="code" href="classbdm_1_1egiw.html#66d2ba9295c306012b309efcc9e516f0" title="LS estimate of .">est_theta</a>() <span class="keyword">const</span>; |
208 | | <a name="l00218"></a>00218 |
209 | | <a name="l00220"></a>00220 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1egiw.html#88c321a2051d1afdbb31a098896a717b" title="Covariance of the LS estimate.">est_theta_cov</a>() <span class="keyword">const</span>; |
210 | | <a name="l00221"></a>00221 |
211 | | <a name="l00222"></a>00222 <span class="keywordtype">void</span> mean_mat ( mat &M, mat&R ) <span class="keyword">const</span>; |
212 | | <a name="l00224"></a>00224 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#bfb8e7c619b34ad804a73bff71742b5e" title="In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise...">evallog_nn</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
213 | | <a name="l00225"></a>00225 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#41d72ba7b2abc8a9a4209ffa98ed5633" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
214 | | <a name="l00226"></a><a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be">00226</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ) {V*=p;<a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>*=p;}; |
215 | | <a name="l00227"></a>00227 |
216 | | <a name="l00230"></a>00230 |
217 | | <a name="l00231"></a>00231 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& _V() {<span class="keywordflow">return</span> V;} |
218 | | <a name="l00232"></a>00232 <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& _V()<span class="keyword"> const </span>{<span class="keywordflow">return</span> V;} |
219 | | <a name="l00233"></a>00233 <span class="keywordtype">double</span>& _nu() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} |
220 | | <a name="l00234"></a>00234 <span class="keyword">const</span> <span class="keywordtype">double</span>& _nu()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} |
221 | | <a name="l00235"></a><a class="code" href="classbdm_1_1egiw.html#55b76ec75bd2df5ef9cab3be20a33bbb">00235</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#55b76ec75bd2df5ef9cab3be20a33bbb">from_setting</a>(<span class="keyword">const</span> Setting &<span class="keyword">set</span>){ |
222 | | <a name="l00236"></a>00236 <span class="keyword">set</span>.lookupValue(<span class="stringliteral">"nu"</span>,<a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>); |
223 | | <a name="l00237"></a>00237 <span class="keyword">set</span>.lookupValue(<span class="stringliteral">"dimx"</span>,<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>); |
224 | | <a name="l00238"></a>00238 mat V; |
225 | | <a name="l00239"></a>00239 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(V,<span class="keyword">set</span>,<span class="stringliteral">"V"</span>); |
226 | | <a name="l00240"></a>00240 set_parameters(<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>, V, <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>); |
227 | | <a name="l00241"></a>00241 <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a>* <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>=UI::build<RV>(<span class="keyword">set</span>,<span class="stringliteral">"rv"</span>); |
228 | | <a name="l00242"></a>00242 <a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a>(*rv); |
229 | | <a name="l00243"></a>00243 <span class="keyword">delete</span> rv; |
230 | | <a name="l00244"></a>00244 } |
231 | | <a name="l00246"></a>00246 }; |
232 | | <a name="l00247"></a>00247 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(egiw); |
233 | | <a name="l00248"></a>00248 |
234 | | <a name="l00257"></a><a class="code" href="classbdm_1_1eDirich.html">00257</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> |
235 | | <a name="l00258"></a>00258 { |
236 | | <a name="l00259"></a>00259 <span class="keyword">protected</span>: |
237 | | <a name="l00261"></a><a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2">00261</a> vec <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>; |
238 | | <a name="l00262"></a>00262 <span class="keyword">public</span>: |
239 | | <a name="l00265"></a>00265 |
240 | | <a name="l00266"></a>00266 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ) {}; |
241 | | <a name="l00267"></a>00267 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> &D0 ) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> () {set_parameters ( D0.<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> );}; |
242 | | <a name="l00268"></a>00268 eDirich ( <span class="keyword">const</span> vec &beta0 ) {set_parameters ( beta0 );}; |
243 | | <a name="l00269"></a>00269 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &beta0 ) |
244 | | <a name="l00270"></a>00270 { |
245 | | <a name="l00271"></a>00271 <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>= beta0; |
246 | | <a name="l00272"></a>00272 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length(); |
247 | | <a name="l00273"></a>00273 } |
248 | | <a name="l00275"></a>00275 |
249 | | <a name="l00276"></a><a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc">00276</a> vec <a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> vec_1 ( 0.0 );}; |
250 | | <a name="l00277"></a><a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6">00277</a> vec <a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>/sum(<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>);}; |
251 | | <a name="l00278"></a><a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc">00278</a> vec <a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordtype">double</span> gamma =sum(<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>); <span class="keywordflow">return</span> elem_mult ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>, ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>+1 ) ) / ( gamma* ( gamma+1 ) );} |
252 | | <a name="l00280"></a><a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318">00280</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318" title="In this instance, val is ...">evallog_nn</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const</span> |
253 | | <a name="l00281"></a>00281 <span class="keyword"> </span>{ |
254 | | <a name="l00282"></a>00282 <span class="keywordtype">double</span> tmp; tmp= ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>-1 ) *log ( val ); it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> ); |
255 | | <a name="l00283"></a>00283 <span class="keywordflow">return</span> tmp; |
256 | | <a name="l00284"></a>00284 }; |
257 | | <a name="l00285"></a><a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2">00285</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a> ()<span class="keyword"> const</span> |
258 | | <a name="l00286"></a>00286 <span class="keyword"> </span>{ |
259 | | <a name="l00287"></a>00287 <span class="keywordtype">double</span> tmp; |
260 | | <a name="l00288"></a>00288 <span class="keywordtype">double</span> gam=sum ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ); |
261 | | <a name="l00289"></a>00289 <span class="keywordtype">double</span> lgb=0.0; |
262 | | <a name="l00290"></a>00290 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length();i++ ) {lgb+=lgamma ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ( i ) );} |
263 | | <a name="l00291"></a>00291 tmp= lgb-lgamma ( gam ); |
264 | | <a name="l00292"></a>00292 it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> ); |
265 | | <a name="l00293"></a>00293 <span class="keywordflow">return</span> tmp; |
266 | | <a name="l00294"></a>00294 }; |
267 | | <a name="l00296"></a><a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324">00296</a> vec& <a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>;} |
268 | | <a name="l00298"></a>00298 }; |
269 | | <a name="l00299"></a>00299 |
270 | | <a name="l00301"></a><a class="code" href="classbdm_1_1multiBM.html">00301</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> |
271 | | <a name="l00302"></a>00302 { |
272 | | <a name="l00303"></a>00303 <span class="keyword">protected</span>: |
273 | | <a name="l00305"></a><a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a">00305</a> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>; |
274 | | <a name="l00307"></a><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25">00307</a> vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>; |
275 | | <a name="l00308"></a>00308 <span class="keyword">public</span>: |
276 | | <a name="l00310"></a><a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf">00310</a> <a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf" title="Default constructor.">multiBM</a> ( ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) |
277 | | <a name="l00311"></a>00311 { |
278 | | <a name="l00312"></a>00312 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>.length() >0 ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
279 | | <a name="l00313"></a>00313 <span class="keywordflow">else</span>{<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=0.0;} |
280 | | <a name="l00314"></a>00314 } |
281 | | <a name="l00316"></a><a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31">00316</a> <a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31" title="Copy constructor.">multiBM</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> &B ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( B ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( B.<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) {} |
282 | | <a name="l00318"></a><a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52">00318</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52" title="Sets sufficient statistics to match that of givefrom mB0.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a>* mB0 ) {<span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* mB=<span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> ( mB0 ); <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>=mB-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;} |
283 | | <a name="l00319"></a><a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95">00319</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95" title="Incremental Bayes rule.">bayes</a> ( <span class="keyword">const</span> vec &dt ) |
284 | | <a name="l00320"></a>00320 { |
285 | | <a name="l00321"></a>00321 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a><1.0 ) {<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
286 | | <a name="l00322"></a>00322 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>+=dt; |
287 | | <a name="l00323"></a>00323 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BM.html#4064b6559d962633e4372b12f4cd204a" title="Logarithm of marginalized data likelihood.">ll</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
288 | | <a name="l00324"></a>00324 } |
289 | | <a name="l00325"></a><a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">00325</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">logpred</a> ( <span class="keyword">const</span> vec &dt )<span class="keyword"> const</span> |
290 | | <a name="l00326"></a>00326 <span class="keyword"> </span>{ |
291 | | <a name="l00327"></a>00327 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> pred ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ); |
292 | | <a name="l00328"></a>00328 vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> = pred.<a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>(); |
293 | | <a name="l00329"></a>00329 |
294 | | <a name="l00330"></a>00330 <span class="keywordtype">double</span> lll; |
295 | | <a name="l00331"></a>00331 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a><1.0 ) |
296 | | <a name="l00332"></a>00332 {beta*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
297 | | <a name="l00333"></a>00333 <span class="keywordflow">else</span> |
298 | | <a name="l00334"></a>00334 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {lll=<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
299 | | <a name="l00335"></a>00335 <span class="keywordflow">else</span>{lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
300 | | <a name="l00336"></a>00336 |
301 | | <a name="l00337"></a>00337 beta+=dt; |
302 | | <a name="l00338"></a>00338 <span class="keywordflow">return</span> pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-lll; |
303 | | <a name="l00339"></a>00339 } |
304 | | <a name="l00340"></a><a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732">00340</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* B ) |
305 | | <a name="l00341"></a>00341 { |
306 | | <a name="l00342"></a>00342 <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* E=<span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> ( B ); |
307 | | <a name="l00343"></a>00343 <span class="comment">// sum(beta) should be equal to sum(B.beta)</span> |
308 | | <a name="l00344"></a>00344 <span class="keyword">const</span> vec &Eb=E-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;<span class="comment">//const_cast<multiBM*> ( E )->_beta();</span> |
309 | | <a name="l00345"></a>00345 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*= ( sum ( Eb ) /sum ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ) ); |
310 | | <a name="l00346"></a>00346 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
311 | | <a name="l00347"></a>00347 } |
312 | | <a name="l00348"></a>00348 <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>& posterior()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; |
313 | | <a name="l00349"></a>00349 <span class="keyword">const</span> eDirich* _e()<span class="keyword"> const </span>{<span class="keywordflow">return</span> &<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; |
314 | | <a name="l00350"></a>00350 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &beta0 ) |
315 | | <a name="l00351"></a>00351 { |
316 | | <a name="l00352"></a>00352 <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.set_parameters ( beta0 ); |
317 | | <a name="l00353"></a>00353 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.lognc();} |
318 | | <a name="l00354"></a>00354 } |
319 | | <a name="l00355"></a>00355 }; |
320 | | <a name="l00356"></a>00356 |
321 | | <a name="l00366"></a><a class="code" href="classbdm_1_1egamma.html">00366</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> |
322 | | <a name="l00367"></a>00367 { |
323 | | <a name="l00368"></a>00368 <span class="keyword">protected</span>: |
324 | | <a name="l00370"></a><a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa">00370</a> vec <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>; |
325 | | <a name="l00372"></a><a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1">00372</a> vec <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>; |
326 | | <a name="l00373"></a>00373 <span class="keyword">public</span> : |
327 | | <a name="l00376"></a>00376 <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> ( ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ), <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> ( 0 ), <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a> ( 0 ) {}; |
328 | | <a name="l00377"></a>00377 <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {set_parameters ( a, b );}; |
329 | | <a name="l00378"></a>00378 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b ) {<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>=a,<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>=b;<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length();}; |
330 | | <a name="l00380"></a>00380 |
331 | | <a name="l00381"></a>00381 vec <a class="code" href="classbdm_1_1egamma.html#6ed82f0fd05f6002487256d8e75a0bbd" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
332 | | <a name="l00383"></a>00383 <span class="comment">// mat sample ( int N ) const;</span> |
333 | | <a name="l00384"></a>00384 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#a8e11e5a580ff42a1b205974c60768c6" title="TODO: is it used anywhere?">evallog</a> ( <span class="keyword">const</span> vec &val ) <span class="keyword">const</span>; |
334 | | <a name="l00385"></a>00385 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#9a66cbd100e8520c769ccb3c451f86f8" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
335 | | <a name="l00387"></a><a class="code" href="classbdm_1_1egamma.html#0865cb3d6339fdc7410806cf70a329ed">00387</a> vec& <a class="code" href="classbdm_1_1egamma.html#0865cb3d6339fdc7410806cf70a329ed" title="Returns poiter to alpha and beta. Potentially dengerous: use with care!">_alpha</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>;} |
336 | | <a name="l00388"></a>00388 vec& _beta() {<span class="keywordflow">return</span> beta;} |
337 | | <a name="l00389"></a><a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85">00389</a> vec <a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,beta );} |
338 | | <a name="l00390"></a><a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1">00390</a> vec <a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,elem_mult ( beta,beta ) ); } |
339 | | <a name="l00391"></a>00391 |
340 | | <a name="l00400"></a><a class="code" href="classbdm_1_1egamma.html#8a6fd1a1c0190f3e0d95a2a1f99aafc1">00400</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#8a6fd1a1c0190f3e0d95a2a1f99aafc1">from_setting</a>(<span class="keyword">const</span> Setting &<span class="keyword">set</span>){ |
341 | | <a name="l00401"></a>00401 <a class="code" href="classbdm_1_1egamma.html#8a6fd1a1c0190f3e0d95a2a1f99aafc1">epdf::from_setting</a>(<span class="keyword">set</span>); <span class="comment">// reads rv</span> |
342 | | <a name="l00402"></a>00402 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,<span class="keyword">set</span>,<span class="stringliteral">"alpha"</span>); |
343 | | <a name="l00403"></a>00403 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(beta,<span class="keyword">set</span>,<span class="stringliteral">"beta"</span>); |
344 | | <a name="l00404"></a>00404 <a class="code" href="classbdm_1_1egamma.html#c3a8d8ae8ba79d0fb35036711fa7d127" title="This method TODO.">validate</a>(); |
345 | | <a name="l00405"></a>00405 } |
346 | | <a name="l00406"></a><a class="code" href="classbdm_1_1egamma.html#c3a8d8ae8ba79d0fb35036711fa7d127">00406</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#c3a8d8ae8ba79d0fb35036711fa7d127" title="This method TODO.">validate</a>(){ |
347 | | <a name="l00407"></a>00407 it_assert(<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length() ==beta.length(), <span class="stringliteral">"parameters do not match"</span>); |
348 | | <a name="l00408"></a>00408 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> =<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length(); |
349 | | <a name="l00409"></a>00409 } |
350 | | <a name="l00410"></a>00410 }; |
351 | | <a name="l00411"></a>00411 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(egamma); |
352 | | <a name="l00428"></a><a class="code" href="classbdm_1_1eigamma.html">00428</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> |
353 | | <a name="l00429"></a>00429 { |
354 | | <a name="l00430"></a>00430 <span class="keyword">protected</span>: |
355 | | <a name="l00431"></a>00431 <span class="keyword">public</span> : |
356 | | <a name="l00436"></a>00436 |
357 | | <a name="l00437"></a><a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f">00437</a> vec <a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> 1.0/<a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample, from density .">egamma::sample</a>();}; |
358 | | <a name="l00439"></a><a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb">00439</a> vec <a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>,<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>-1 );} |
359 | | <a name="l00440"></a><a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133">00440</a> vec <a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{vec mea=<a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>(); <span class="keywordflow">return</span> elem_div ( elem_mult ( mea,mea ),<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>-2 );} |
360 | | <a name="l00441"></a>00441 }; |
361 | | <a name="l00442"></a>00442 <span class="comment">/*</span> |
362 | | <a name="l00444"></a>00444 <span class="comment"> class emix : public epdf {</span> |
363 | | <a name="l00445"></a>00445 <span class="comment"> protected:</span> |
364 | | <a name="l00446"></a>00446 <span class="comment"> int n;</span> |
365 | | <a name="l00447"></a>00447 <span class="comment"> vec &w;</span> |
366 | | <a name="l00448"></a>00448 <span class="comment"> Array<epdf*> Coms;</span> |
367 | | <a name="l00449"></a>00449 <span class="comment"> public:</span> |
368 | | <a name="l00451"></a>00451 <span class="comment"> emix ( const RV &rv, vec &w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span> |
369 | | <a name="l00452"></a>00452 <span class="comment"> void set_parameters( int &i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span> |
370 | | <a name="l00453"></a>00453 <span class="comment"> vec mean(){vec pom; for(int i=0;i<n;i++){pom+=Coms(i)->mean()*w(i);} return pom;};</span> |
371 | | <a name="l00454"></a>00454 <span class="comment"> vec sample() {it_error ( "Not implemented" );return 0;}</span> |
372 | | <a name="l00455"></a>00455 <span class="comment"> };</span> |
373 | | <a name="l00456"></a>00456 <span class="comment"> */</span> |
374 | | <a name="l00457"></a>00457 |
375 | | <a name="l00459"></a>00459 |
376 | | <a name="l00460"></a><a class="code" href="classbdm_1_1euni.html">00460</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
377 | | <a name="l00461"></a>00461 { |
378 | | <a name="l00462"></a>00462 <span class="keyword">protected</span>: |
379 | | <a name="l00464"></a><a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32">00464</a> vec <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>; |
380 | | <a name="l00466"></a><a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1">00466</a> vec <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>; |
381 | | <a name="l00468"></a><a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c">00468</a> vec <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>; |
382 | | <a name="l00470"></a><a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20">00470</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>; |
383 | | <a name="l00472"></a><a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476">00472</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>; |
384 | | <a name="l00473"></a>00473 <span class="keyword">public</span>: |
385 | | <a name="l00476"></a>00476 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ) {} |
386 | | <a name="l00477"></a>00477 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) {set_parameters ( low0,high0 );} |
387 | | <a name="l00478"></a>00478 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0 ) |
388 | | <a name="l00479"></a>00479 { |
389 | | <a name="l00480"></a>00480 <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> = high0-low0; |
390 | | <a name="l00481"></a>00481 it_assert_debug ( min ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ) >0.0,<span class="stringliteral">"bad support"</span> ); |
391 | | <a name="l00482"></a>00482 <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> = low0; |
392 | | <a name="l00483"></a>00483 <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a> = high0; |
393 | | <a name="l00484"></a>00484 <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> = prod ( 1.0/<a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ); |
394 | | <a name="l00485"></a>00485 <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a> = log ( <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> ); |
395 | | <a name="l00486"></a>00486 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>.length(); |
396 | | <a name="l00487"></a>00487 } |
397 | | <a name="l00489"></a>00489 |
398 | | <a name="l00490"></a>00490 <span class="keywordtype">double</span> eval ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>;} |
399 | | <a name="l00491"></a><a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81">00491</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81" title="Compute log-probability of argument val.">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>;} |
400 | | <a name="l00492"></a><a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194">00492</a> vec <a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const</span> |
401 | | <a name="l00493"></a>00493 <span class="keyword"> </span>{ |
402 | | <a name="l00494"></a>00494 vec smp ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
403 | | <a name="l00495"></a>00495 <span class="preprocessor">#pragma omp critical</span> |
404 | | <a name="l00496"></a>00496 <span class="preprocessor"></span> UniRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ,smp ); |
405 | | <a name="l00497"></a>00497 <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>+elem_mult ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>,smp ); |
406 | | <a name="l00498"></a>00498 } |
407 | | <a name="l00500"></a><a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226">00500</a> vec <a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226" title="set values of low and high ">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>-<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> ) /2.0;} |
408 | | <a name="l00501"></a><a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c">00501</a> vec <a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> ( pow ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,2 ) +pow ( <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>,2 ) +elem_mult ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> ) ) /3.0;} |
409 | | <a name="l00510"></a><a class="code" href="classbdm_1_1euni.html#77f5fef1f006fe056066da23b9e5f042">00510</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1euni.html#77f5fef1f006fe056066da23b9e5f042">from_setting</a>(<span class="keyword">const</span> Setting &<span class="keyword">set</span>){ |
410 | | <a name="l00511"></a>00511 <a class="code" href="classbdm_1_1euni.html#77f5fef1f006fe056066da23b9e5f042">epdf::from_setting</a>(<span class="keyword">set</span>); <span class="comment">// reads rv and rvc</span> |
411 | | <a name="l00512"></a>00512 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,<span class="keyword">set</span>,<span class="stringliteral">"high"</span>); |
412 | | <a name="l00513"></a>00513 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>,<span class="keyword">set</span>,<span class="stringliteral">"low"</span>); |
413 | | <a name="l00514"></a>00514 } |
414 | | <a name="l00515"></a>00515 }; |
415 | | <a name="l00516"></a>00516 |
416 | | <a name="l00517"></a>00517 |
417 | | <a name="l00523"></a>00523 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
418 | | <a name="l00524"></a><a class="code" href="classbdm_1_1mlnorm.html">00524</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
419 | | <a name="l00525"></a>00525 { |
420 | | <a name="l00526"></a>00526 <span class="keyword">protected</span>: |
421 | | <a name="l00528"></a><a class="code" href="classbdm_1_1mlnorm.html#150ad6acb223b0a0abeaf92346686dcd">00528</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
422 | | <a name="l00529"></a>00529 mat A; |
423 | | <a name="l00530"></a>00530 vec mu_const; |
424 | | <a name="l00531"></a>00531 vec& _mu; <span class="comment">//cached epdf.mu;</span> |
425 | | <a name="l00532"></a>00532 <span class="keyword">public</span>: |
426 | | <a name="l00535"></a>00535 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> ( ) :<a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (),<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),A ( ),_mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a> =&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; }; |
427 | | <a name="l00536"></a>00536 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),_mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) |
428 | | <a name="l00537"></a>00537 { |
429 | | <a name="l00538"></a>00538 <a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a> =&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( A,mu0,R ); |
430 | | <a name="l00539"></a>00539 }; |
431 | | <a name="l00541"></a>00541 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( <span class="keyword">const</span> mat &A, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R ); |
432 | | <a name="l00544"></a>00544 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">condition</a> ( <span class="keyword">const</span> vec &cond ); |
433 | | <a name="l00545"></a>00545 |
434 | | <a name="l00547"></a><a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced">00547</a> vec& <a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced" title="access function">_mu_const</a>() {<span class="keywordflow">return</span> mu_const;} |
435 | | <a name="l00549"></a><a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614">00549</a> mat& <a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614" title="access function">_A</a>() {<span class="keywordflow">return</span> A;} |
436 | | <a name="l00551"></a><a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604">00551</a> mat <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R().to_mat();} |
437 | | <a name="l00552"></a>00552 |
438 | | <a name="l00553"></a>00553 <span class="keyword">template</span><<span class="keyword">class</span> sq_M> |
439 | | <a name="l00554"></a>00554 <span class="keyword">friend</span> std::ostream &operator<< ( std::ostream &os, mlnorm<sq_M> &ml ); |
440 | | <a name="l00555"></a>00555 }; |
441 | | <a name="l00556"></a>00556 |
442 | | <a name="l00558"></a>00558 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
443 | | <a name="l00559"></a><a class="code" href="classbdm_1_1mgnorm.html">00559</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgnorm.html" title="Mpdf with general function for mean value.">mgnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
444 | | <a name="l00560"></a>00560 { |
445 | | <a name="l00561"></a>00561 <span class="keyword">protected</span>: |
446 | | <a name="l00563"></a><a class="code" href="classbdm_1_1mgnorm.html#8f7a376a1d2197e0634557e88e03104a">00563</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
447 | | <a name="l00564"></a>00564 vec &mu; |
448 | | <a name="l00565"></a>00565 <a class="code" href="classbdm_1_1fnc.html" title="Class representing function of variable represented by rv.">fnc</a>* g; |
449 | | <a name="l00566"></a>00566 <span class="keyword">public</span>: |
450 | | <a name="l00568"></a><a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d">00568</a> <a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d" title="default constructor">mgnorm</a>() :mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;} |
451 | | <a name="l00570"></a><a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564">00570</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564" title="set mean function">set_parameters</a> ( <a class="code" href="classbdm_1_1fnc.html" title="Class representing function of variable represented by rv.">fnc</a>* g0, <span class="keyword">const</span> sq_T &R0 ) {g=g0; <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( g-><a class="code" href="classbdm_1_1fnc.html#083832294da9d1e40804158b979c4341" title="access function">dimension</a>() ), R0 );} |
452 | | <a name="l00571"></a><a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d">00571</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &cond ) {mu=g-><a class="code" href="classbdm_1_1fnc.html#6277b11d7fffc7ef8a2fa3e84ae5bad4" title="function evaluates numerical value of at cond ">eval</a> ( cond );}; |
453 | | <a name="l00572"></a>00572 |
454 | | <a name="l00573"></a>00573 |
455 | | <a name="l00601"></a><a class="code" href="classbdm_1_1mgnorm.html#d717dacc6a9eb967f8410994dc6dc6f9">00601</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#d717dacc6a9eb967f8410994dc6dc6f9">from_setting</a>( <span class="keyword">const</span> Setting &<span class="keyword">set</span> ) |
456 | | <a name="l00602"></a>00602 { |
457 | | <a name="l00603"></a>00603 <a class="code" href="classbdm_1_1fnc.html" title="Class representing function of variable represented by rv.">fnc</a>* g = UI::build<fnc>( <span class="keyword">set</span>, <span class="stringliteral">"g"</span> ); |
458 | | <a name="l00604"></a>00604 |
459 | | <a name="l00605"></a>00605 mat R; |
460 | | <a name="l00606"></a>00606 <span class="keywordflow">if</span> ( <span class="keyword">set</span>.exists( <span class="stringliteral">"dR"</span> ) ) |
461 | | <a name="l00607"></a>00607 { |
462 | | <a name="l00608"></a>00608 vec dR; |
463 | | <a name="l00609"></a>00609 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>( dR, <span class="keyword">set</span>, <span class="stringliteral">"dR"</span> ); |
464 | | <a name="l00610"></a>00610 R=diag(dR); |
465 | | <a name="l00611"></a>00611 } |
466 | | <a name="l00612"></a>00612 <span class="keywordflow">else</span> |
467 | | <a name="l00613"></a>00613 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>( R, <span class="keyword">set</span>, <span class="stringliteral">"R"</span>); |
468 | | <a name="l00614"></a>00614 |
469 | | <a name="l00615"></a>00615 <a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564" title="set mean function">set_parameters</a>(g,R); |
470 | | <a name="l00616"></a>00616 } |
471 | | <a name="l00617"></a>00617 |
472 | | <a name="l00618"></a>00618 <span class="comment">/*void mgnorm::to_setting( Setting &set ) const</span> |
473 | | <a name="l00619"></a>00619 <span class="comment"> { </span> |
474 | | <a name="l00620"></a>00620 <span class="comment"> Transport::to_setting( set );</span> |
475 | | <a name="l00621"></a>00621 <span class="comment"></span> |
476 | | <a name="l00622"></a>00622 <span class="comment"> Setting &kilometers_setting = set.add("kilometers", Setting::TypeInt );</span> |
477 | | <a name="l00623"></a>00623 <span class="comment"> kilometers_setting = kilometers;</span> |
478 | | <a name="l00624"></a>00624 <span class="comment"></span> |
479 | | <a name="l00625"></a>00625 <span class="comment"> UI::save( passengers, set, "passengers" );</span> |
480 | | <a name="l00626"></a>00626 <span class="comment"> }*/</span> |
481 | | <a name="l00627"></a>00627 |
482 | | <a name="l00628"></a>00628 }; |
483 | | <a name="l00629"></a>00629 |
484 | | <a name="l00630"></a>00630 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(mgnorm<chmat>); |
485 | | <a name="l00631"></a>00631 |
| 151 | <a name="l00137"></a>00137 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">evallog_nn</a> (<span class="keyword">const</span> vec &val) <span class="keyword">const</span>; |
| 152 | <a name="l00138"></a>00138 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
| 153 | <a name="l00139"></a><a class="code" href="classbdm_1_1enorm.html#b2fa2915c35366392fe9bb022ca1a600">00139</a> vec <a class="code" href="classbdm_1_1enorm.html#b2fa2915c35366392fe9bb022ca1a600" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;} |
| 154 | <a name="l00140"></a><a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773">00140</a> vec <a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> diag (<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.to_mat());} |
| 155 | <a name="l00141"></a>00141 <span class="comment">// mlnorm<sq_T>* condition ( const RV &rvn ) const ; <=========== fails to cmpile. Why?</span> |
| 156 | <a name="l00142"></a>00142 <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr<mpdf></a> <a class="code" href="classbdm_1_1enorm.html#40201ca12c6900f7aeb493bb7c582e20" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn ) <span class="keyword">const</span>; |
| 157 | <a name="l00143"></a>00143 |
| 158 | <a name="l00144"></a>00144 <span class="comment">// target not typed to mlnorm<sq_T, enorm<sq_T> > &</span> |
| 159 | <a name="l00145"></a>00145 <span class="comment">// because that doesn't compile (perhaps because we</span> |
| 160 | <a name="l00146"></a>00146 <span class="comment">// haven't finished defining enorm yet), but the type</span> |
| 161 | <a name="l00147"></a>00147 <span class="comment">// is required</span> |
| 162 | <a name="l00148"></a>00148 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#40201ca12c6900f7aeb493bb7c582e20" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn, <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling , where is random variable, rv, and...">mpdf</a> &target ) <span class="keyword">const</span>; |
| 163 | <a name="l00149"></a>00149 |
| 164 | <a name="l00150"></a>00150 <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr<epdf></a> <a class="code" href="classbdm_1_1enorm.html#dcb739443669ba0a8faf634196284c08" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">marginal</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn ) <span class="keyword">const</span>; |
| 165 | <a name="l00151"></a>00151 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#dcb739443669ba0a8faf634196284c08" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn, <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> &target ) <span class="keyword">const</span>; |
| 166 | <a name="l00153"></a>00153 |
| 167 | <a name="l00156"></a>00156 |
| 168 | <a name="l00157"></a>00157 vec& _mu() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;} |
| 169 | <a name="l00158"></a>00158 <span class="keywordtype">void</span> set_mu (<span class="keyword">const</span> vec mu0) { <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> = mu0;} |
| 170 | <a name="l00159"></a>00159 sq_T& _R() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;} |
| 171 | <a name="l00160"></a>00160 <span class="keyword">const</span> sq_T& _R()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;} |
| 172 | <a name="l00162"></a>00162 |
| 173 | <a name="l00163"></a>00163 }; |
| 174 | <a name="l00164"></a>00164 <a class="code" href="user__info_8h.html#b06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (enorm, chmat); |
| 175 | <a name="l00165"></a>00165 SHAREDPTR2 ( enorm, chmat ); |
| 176 | <a name="l00166"></a>00166 <a class="code" href="user__info_8h.html#b06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (enorm, ldmat); |
| 177 | <a name="l00167"></a>00167 SHAREDPTR2 ( enorm, ldmat ); |
| 178 | <a name="l00168"></a>00168 <a class="code" href="user__info_8h.html#b06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (enorm, fsqmat); |
| 179 | <a name="l00169"></a>00169 SHAREDPTR2 ( enorm, fsqmat ); |
| 180 | <a name="l00170"></a>00170 |
| 181 | <a name="l00171"></a>00171 |
| 182 | <a name="l00178"></a><a class="code" href="classbdm_1_1egiw.html">00178</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> |
| 183 | <a name="l00179"></a>00179 { |
| 184 | <a name="l00180"></a>00180 <span class="keyword">protected</span>: |
| 185 | <a name="l00182"></a><a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52">00182</a> <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>; |
| 186 | <a name="l00184"></a><a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4">00184</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>; |
| 187 | <a name="l00186"></a><a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a">00186</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>; |
| 188 | <a name="l00188"></a><a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd">00188</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a>; |
| 189 | <a name="l00189"></a>00189 <span class="keyword">public</span>: |
| 190 | <a name="l00192"></a>00192 <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a>() : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {}; |
| 191 | <a name="l00193"></a>00193 <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> (<span class="keywordtype">int</span> dimx0, <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0 = -1.0) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {set_parameters (dimx0, V0, nu0);}; |
| 192 | <a name="l00194"></a>00194 |
| 193 | <a name="l00195"></a>00195 <span class="keywordtype">void</span> set_parameters (<span class="keywordtype">int</span> dimx0, ldmat V0, <span class="keywordtype">double</span> nu0 = -1.0) { |
| 194 | <a name="l00196"></a>00196 <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> = dimx0; |
| 195 | <a name="l00197"></a>00197 <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> = V0.rows() - <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>; |
| 196 | <a name="l00198"></a>00198 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> * (<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> + <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a>); <span class="comment">// size(R) + size(Theta)</span> |
| 197 | <a name="l00199"></a>00199 |
| 198 | <a name="l00200"></a>00200 <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a> = V0; |
| 199 | <a name="l00201"></a>00201 <span class="keywordflow">if</span> (nu0 < 0) { |
| 200 | <a name="l00202"></a>00202 <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> = 0.1 + <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> + 2 * <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> + 2; <span class="comment">// +2 assures finite expected value of R</span> |
| 201 | <a name="l00203"></a>00203 <span class="comment">// terms before that are sufficient for finite normalization</span> |
| 202 | <a name="l00204"></a>00204 } <span class="keywordflow">else</span> { |
| 203 | <a name="l00205"></a>00205 <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> = nu0; |
| 204 | <a name="l00206"></a>00206 } |
| 205 | <a name="l00207"></a>00207 } |
| 206 | <a name="l00209"></a>00209 |
| 207 | <a name="l00210"></a>00210 vec <a class="code" href="classbdm_1_1egiw.html#920f21548b7a3723923dd108fe514c61" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
| 208 | <a name="l00211"></a>00211 vec <a class="code" href="classbdm_1_1egiw.html#df70c05f918c3a6f86d60f10c1fd6ba2" title="return expected value">mean</a>() <span class="keyword">const</span>; |
| 209 | <a name="l00212"></a>00212 vec <a class="code" href="classbdm_1_1egiw.html#c1ecc406613cc2341225dc10c3d3b46a" title="return expected variance (not covariance!)">variance</a>() <span class="keyword">const</span>; |
| 210 | <a name="l00213"></a>00213 |
| 211 | <a name="l00215"></a>00215 vec <a class="code" href="classbdm_1_1egiw.html#66d2ba9295c306012b309efcc9e516f0" title="LS estimate of .">est_theta</a>() <span class="keyword">const</span>; |
| 212 | <a name="l00216"></a>00216 |
| 213 | <a name="l00218"></a>00218 ldmat <a class="code" href="classbdm_1_1egiw.html#88c321a2051d1afdbb31a098896a717b" title="Covariance of the LS estimate.">est_theta_cov</a>() <span class="keyword">const</span>; |
| 214 | <a name="l00219"></a>00219 |
| 215 | <a name="l00221"></a>00221 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#d2075aa2306648b3e4fe40bb86628d5c" title="expected values of the linear coefficient and the covariance matrix are written to...">mean_mat</a> (mat &M, mat&R) <span class="keyword">const</span>; |
| 216 | <a name="l00223"></a>00223 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#bfb8e7c619b34ad804a73bff71742b5e" title="In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise...">evallog_nn</a> (<span class="keyword">const</span> vec &val) <span class="keyword">const</span>; |
| 217 | <a name="l00224"></a>00224 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#41d72ba7b2abc8a9a4209ffa98ed5633" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
| 218 | <a name="l00225"></a><a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be">00225</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be" title="Power of the density, used e.g. to flatten the density.">pow</a> (<span class="keywordtype">double</span> p) {V *= p;<a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> *= p;}; |
| 219 | <a name="l00226"></a>00226 |
| 220 | <a name="l00229"></a>00229 |
| 221 | <a name="l00230"></a>00230 <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& _V() {<span class="keywordflow">return</span> V;} |
| 222 | <a name="l00231"></a>00231 <span class="keyword">const</span> ldmat& _V()<span class="keyword"> const </span>{<span class="keywordflow">return</span> V;} |
| 223 | <a name="l00232"></a>00232 <span class="keywordtype">double</span>& _nu() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} |
| 224 | <a name="l00233"></a>00233 <span class="keyword">const</span> <span class="keywordtype">double</span>& _nu()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} |
| 225 | <a name="l00234"></a><a class="code" href="classbdm_1_1egiw.html#55b76ec75bd2df5ef9cab3be20a33bbb">00234</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#55b76ec75bd2df5ef9cab3be20a33bbb">from_setting</a> (<span class="keyword">const</span> Setting &<span class="keyword">set</span>) { |
| 226 | <a name="l00235"></a>00235 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>, <span class="keyword">set</span>, <span class="stringliteral">"nu"</span>, UI::compulsory); |
| 227 | <a name="l00236"></a>00236 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>, <span class="keyword">set</span>, <span class="stringliteral">"dimx"</span>, UI::compulsory); |
| 228 | <a name="l00237"></a>00237 mat V; |
| 229 | <a name="l00238"></a>00238 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (V, <span class="keyword">set</span>, <span class="stringliteral">"V"</span>, UI::compulsory); |
| 230 | <a name="l00239"></a>00239 set_parameters (<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>, V, <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>); |
| 231 | <a name="l00240"></a>00240 <a class="code" href="classbdm_1_1shared__ptr.html" title="A naive implementation of roughly a subset of the std::tr1:shared_ptr spec.">shared_ptr<RV></a> <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> = UI::build<RV> (<span class="keyword">set</span>, <span class="stringliteral">"rv"</span>, UI::compulsory); |
| 232 | <a name="l00241"></a>00241 <a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a> (*rv); |
| 233 | <a name="l00242"></a>00242 } |
| 234 | <a name="l00244"></a>00244 }; |
| 235 | <a name="l00245"></a>00245 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a> ( egiw ); |
| 236 | <a name="l00246"></a>00246 SHAREDPTR ( egiw ); |
| 237 | <a name="l00247"></a>00247 |
| 238 | <a name="l00256"></a><a class="code" href="classbdm_1_1eDirich.html">00256</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> |
| 239 | <a name="l00257"></a>00257 { |
| 240 | <a name="l00258"></a>00258 <span class="keyword">protected</span>: |
| 241 | <a name="l00260"></a><a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2">00260</a> vec <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>; |
| 242 | <a name="l00261"></a>00261 <span class="keyword">public</span>: |
| 243 | <a name="l00264"></a>00264 |
| 244 | <a name="l00265"></a>00265 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> () {}; |
| 245 | <a name="l00266"></a>00266 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> &D0) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> () {set_parameters (D0.<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>);}; |
| 246 | <a name="l00267"></a>00267 eDirich (<span class="keyword">const</span> vec &beta0) {set_parameters (beta0);}; |
| 247 | <a name="l00268"></a>00268 <span class="keywordtype">void</span> set_parameters (<span class="keyword">const</span> vec &beta0) { |
| 248 | <a name="l00269"></a>00269 <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> = beta0; |
| 249 | <a name="l00270"></a>00270 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length(); |
| 250 | <a name="l00271"></a>00271 } |
| 251 | <a name="l00273"></a>00273 |
| 252 | <a name="l00274"></a><a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc">00274</a> vec <a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{it_error (<span class="stringliteral">"Not implemented"</span>);<span class="keywordflow">return</span> vec_1 (0.0);}; |
| 253 | <a name="l00275"></a><a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6">00275</a> vec <a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> / sum (<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>);}; |
| 254 | <a name="l00276"></a><a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc">00276</a> vec <a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordtype">double</span> gamma = sum (<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>); <span class="keywordflow">return</span> elem_mult (<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>, (<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> + 1)) / (gamma* (gamma + 1));} |
| 255 | <a name="l00278"></a><a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318">00278</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318" title="In this instance, val is ...">evallog_nn</a> (<span class="keyword">const</span> vec &val)<span class="keyword"> const </span>{ |
| 256 | <a name="l00279"></a>00279 <span class="keywordtype">double</span> tmp; tmp = (<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> - 1) * log (val); |
| 257 | <a name="l00280"></a>00280 <span class="comment">// it_assert_debug ( std::isfinite ( tmp ),"Infinite value" );</span> |
| 258 | <a name="l00281"></a>00281 <span class="keywordflow">return</span> tmp; |
| 259 | <a name="l00282"></a>00282 }; |
| 260 | <a name="l00283"></a><a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2">00283</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a> ()<span class="keyword"> const </span>{ |
| 261 | <a name="l00284"></a>00284 <span class="keywordtype">double</span> tmp; |
| 262 | <a name="l00285"></a>00285 <span class="keywordtype">double</span> gam = sum (<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>); |
| 263 | <a name="l00286"></a>00286 <span class="keywordtype">double</span> lgb = 0.0; |
| 264 | <a name="l00287"></a>00287 <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i < <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length();i++) {lgb += lgamma (<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> (i));} |
| 265 | <a name="l00288"></a>00288 tmp = lgb - lgamma (gam); |
| 266 | <a name="l00289"></a>00289 <span class="comment">// it_assert_debug ( std::isfinite ( tmp ),"Infinite value" );</span> |
| 267 | <a name="l00290"></a>00290 <span class="keywordflow">return</span> tmp; |
| 268 | <a name="l00291"></a>00291 }; |
| 269 | <a name="l00293"></a><a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324">00293</a> vec& <a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>;} |
| 270 | <a name="l00295"></a>00295 }; |
| 271 | <a name="l00296"></a>00296 |
| 272 | <a name="l00298"></a><a class="code" href="classbdm_1_1multiBM.html">00298</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> |
| 273 | <a name="l00299"></a>00299 { |
| 274 | <a name="l00300"></a>00300 <span class="keyword">protected</span>: |
| 275 | <a name="l00302"></a><a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a">00302</a> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>; |
| 276 | <a name="l00304"></a><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25">00304</a> vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>; |
| 277 | <a name="l00305"></a>00305 <span class="keyword">public</span>: |
| 278 | <a name="l00307"></a><a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf">00307</a> <a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf" title="Default constructor.">multiBM</a> () : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> (), <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> (), <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> (<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta()) { |
| 279 | <a name="l00308"></a>00308 <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>.length() > 0) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> = <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 280 | <a name="l00309"></a>00309 <span class="keywordflow">else</span>{<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> = 0.0;} |
| 281 | <a name="l00310"></a>00310 } |
| 282 | <a name="l00312"></a><a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31">00312</a> <a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31" title="Copy constructor.">multiBM</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> &B) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> (B), <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> (B.<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>), <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> (<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta()) {} |
| 283 | <a name="l00314"></a><a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52">00314</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52" title="Sets sufficient statistics to match that of givefrom mB0.">set_statistics</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a>* mB0) {<span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* mB = <span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> (mB0); <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> = mB-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;} |
| 284 | <a name="l00315"></a><a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95">00315</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95" title="Incremental Bayes rule.">bayes</a> (<span class="keyword">const</span> vec &dt) { |
| 285 | <a name="l00316"></a>00316 <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> < 1.0) {<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> *= <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> = <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 286 | <a name="l00317"></a>00317 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> += dt; |
| 287 | <a name="l00318"></a>00318 <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) {<a class="code" href="classbdm_1_1BM.html#4064b6559d962633e4372b12f4cd204a" title="Logarithm of marginalized data likelihood.">ll</a> = <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>() - <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
| 288 | <a name="l00319"></a>00319 } |
| 289 | <a name="l00320"></a><a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">00320</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">logpred</a> (<span class="keyword">const</span> vec &dt)<span class="keyword"> const </span>{ |
| 290 | <a name="l00321"></a>00321 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> pred (<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>); |
| 291 | <a name="l00322"></a>00322 vec &<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> = pred.<a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>(); |
| 292 | <a name="l00323"></a>00323 |
| 293 | <a name="l00324"></a>00324 <span class="keywordtype">double</span> lll; |
| 294 | <a name="l00325"></a>00325 <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> < 1.0) |
| 295 | <a name="l00326"></a>00326 {beta *= <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;lll = pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 296 | <a name="l00327"></a>00327 <span class="keywordflow">else</span> |
| 297 | <a name="l00328"></a>00328 <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) {lll = <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} |
| 298 | <a name="l00329"></a>00329 <span class="keywordflow">else</span>{lll = pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 299 | <a name="l00330"></a>00330 |
| 300 | <a name="l00331"></a>00331 beta += dt; |
| 301 | <a name="l00332"></a>00332 <span class="keywordflow">return</span> pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>() - lll; |
| 302 | <a name="l00333"></a>00333 } |
| 303 | <a name="l00334"></a><a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732">00334</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* B) { |
| 304 | <a name="l00335"></a>00335 <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* E = <span class="keyword">dynamic_cast<</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">></span> (B); |
| 305 | <a name="l00336"></a>00336 <span class="comment">// sum(beta) should be equal to sum(B.beta)</span> |
| 306 | <a name="l00337"></a>00337 <span class="keyword">const</span> vec &Eb = E-><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;<span class="comment">//const_cast<multiBM*> ( E )->_beta();</span> |
| 307 | <a name="l00338"></a>00338 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> *= (sum (Eb) / sum (<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>)); |
| 308 | <a name="l00339"></a>00339 <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> = <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 309 | <a name="l00340"></a>00340 } |
| 310 | <a name="l00342"></a><a class="code" href="classbdm_1_1multiBM.html#31ff93f89473f099e489b9e1dc8d9513">00342</a> <span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a>& <a class="code" href="classbdm_1_1multiBM.html#31ff93f89473f099e489b9e1dc8d9513" title="reimplemnetation of BM::posterior()">posterior</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; |
| 311 | <a name="l00344"></a><a class="code" href="classbdm_1_1multiBM.html#7a480eace4446661bacca94c57499f01">00344</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#7a480eace4446661bacca94c57499f01" title="constructor function">set_parameters</a> (<span class="keyword">const</span> vec &beta0) { |
| 312 | <a name="l00345"></a>00345 <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#a06af2376976a33e1eceaed7e8da75a5">set_parameters</a> (beta0); |
| 313 | <a name="l00346"></a>00346 <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> = <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} |
| 314 | <a name="l00347"></a>00347 } |
| 315 | <a name="l00348"></a>00348 }; |
| 316 | <a name="l00349"></a>00349 |
| 317 | <a name="l00359"></a><a class="code" href="classbdm_1_1egamma.html">00359</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> |
| 318 | <a name="l00360"></a>00360 { |
| 319 | <a name="l00361"></a>00361 <span class="keyword">protected</span>: |
| 320 | <a name="l00363"></a><a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa">00363</a> vec <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>; |
| 321 | <a name="l00365"></a><a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1">00365</a> vec <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>; |
| 322 | <a name="l00366"></a>00366 <span class="keyword">public</span> : |
| 323 | <a name="l00369"></a>00369 <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> (), <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> (0), <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a> (0) {}; |
| 324 | <a name="l00370"></a>00370 <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> (<span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b) {set_parameters (a, b);}; |
| 325 | <a name="l00371"></a>00371 <span class="keywordtype">void</span> set_parameters (<span class="keyword">const</span> vec &a, <span class="keyword">const</span> vec &b) {<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> = a, <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a> = b;<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length();}; |
| 326 | <a name="l00373"></a>00373 |
| 327 | <a name="l00374"></a>00374 vec <a class="code" href="classbdm_1_1egamma.html#6ed82f0fd05f6002487256d8e75a0bbd" title="Returns a sample, from density .">sample</a>() <span class="keyword">const</span>; |
| 328 | <a name="l00375"></a>00375 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#a8e11e5a580ff42a1b205974c60768c6" title="Evaluate normalized log-probability.">evallog</a> (<span class="keyword">const</span> vec &val) <span class="keyword">const</span>; |
| 329 | <a name="l00376"></a>00376 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#9a66cbd100e8520c769ccb3c451f86f8" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; |
| 330 | <a name="l00378"></a><a class="code" href="classbdm_1_1egamma.html#0865cb3d6339fdc7410806cf70a329ed">00378</a> vec& <a class="code" href="classbdm_1_1egamma.html#0865cb3d6339fdc7410806cf70a329ed" title="Returns pointer to internal alpha. Potentially dengerous: use with care!">_alpha</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>;} |
| 331 | <a name="l00380"></a><a class="code" href="classbdm_1_1egamma.html#c42cadd9cbd344caaa69b0b433cd16ca">00380</a> vec& <a class="code" href="classbdm_1_1egamma.html#c42cadd9cbd344caaa69b0b433cd16ca" title="Returns pointer to internal beta. Potentially dengerous: use with care!">_beta</a>() {<span class="keywordflow">return</span> beta;} |
| 332 | <a name="l00381"></a><a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85">00381</a> vec <a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div (<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>, beta);} |
| 333 | <a name="l00382"></a><a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1">00382</a> vec <a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div (<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>, elem_mult (beta, beta)); } |
| 334 | <a name="l00383"></a>00383 |
| 335 | <a name="l00392"></a><a class="code" href="classbdm_1_1egamma.html#8a6fd1a1c0190f3e0d95a2a1f99aafc1">00392</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#8a6fd1a1c0190f3e0d95a2a1f99aafc1">from_setting</a> (<span class="keyword">const</span> Setting &<span class="keyword">set</span>) { |
| 336 | <a name="l00393"></a>00393 <a class="code" href="classbdm_1_1egamma.html#8a6fd1a1c0190f3e0d95a2a1f99aafc1">epdf::from_setting</a> (<span class="keyword">set</span>); <span class="comment">// reads rv</span> |
| 337 | <a name="l00394"></a>00394 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>, <span class="keyword">set</span>, <span class="stringliteral">"alpha"</span>, UI::compulsory); |
| 338 | <a name="l00395"></a>00395 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (beta, <span class="keyword">set</span>, <span class="stringliteral">"beta"</span>, UI::compulsory); |
| 339 | <a name="l00396"></a>00396 <a class="code" href="classbdm_1_1egamma.html#c3a8d8ae8ba79d0fb35036711fa7d127" title="This method TODO.">validate</a>(); |
| 340 | <a name="l00397"></a>00397 } |
| 341 | <a name="l00398"></a><a class="code" href="classbdm_1_1egamma.html#c3a8d8ae8ba79d0fb35036711fa7d127">00398</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#c3a8d8ae8ba79d0fb35036711fa7d127" title="This method TODO.">validate</a>() { |
| 342 | <a name="l00399"></a>00399 it_assert (<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length() == beta.length(), <span class="stringliteral">"parameters do not match"</span>); |
| 343 | <a name="l00400"></a>00400 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length(); |
| 344 | <a name="l00401"></a>00401 } |
| 345 | <a name="l00402"></a>00402 }; |
| 346 | <a name="l00403"></a>00403 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a> (egamma); |
| 347 | <a name="l00404"></a>00404 SHAREDPTR ( egamma ); |
| 348 | <a name="l00405"></a>00405 |
| 349 | <a name="l00422"></a><a class="code" href="classbdm_1_1eigamma.html">00422</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> |
| 350 | <a name="l00423"></a>00423 { |
| 351 | <a name="l00424"></a>00424 <span class="keyword">protected</span>: |
| 352 | <a name="l00425"></a>00425 <span class="keyword">public</span> : |
| 353 | <a name="l00430"></a>00430 |
| 354 | <a name="l00431"></a><a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f">00431</a> vec <a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> 1.0 / <a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample, from density .">egamma::sample</a>();}; |
| 355 | <a name="l00433"></a><a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb">00433</a> vec <a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div (<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>, <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> - 1);} |
| 356 | <a name="l00434"></a><a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133">00434</a> vec <a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{vec mea = <a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>(); <span class="keywordflow">return</span> elem_div (elem_mult (mea, mea), <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> - 2);} |
| 357 | <a name="l00435"></a>00435 }; |
| 358 | <a name="l00436"></a>00436 <span class="comment">/*</span> |
| 359 | <a name="l00438"></a>00438 <span class="comment">class emix : public epdf {</span> |
| 360 | <a name="l00439"></a>00439 <span class="comment">protected:</span> |
| 361 | <a name="l00440"></a>00440 <span class="comment"> int n;</span> |
| 362 | <a name="l00441"></a>00441 <span class="comment"> vec &w;</span> |
| 363 | <a name="l00442"></a>00442 <span class="comment"> Array<epdf*> Coms;</span> |
| 364 | <a name="l00443"></a>00443 <span class="comment">public:</span> |
| 365 | <a name="l00445"></a>00445 <span class="comment"> emix ( const RV &rv, vec &w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span> |
| 366 | <a name="l00446"></a>00446 <span class="comment"> void set_parameters( int &i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span> |
| 367 | <a name="l00447"></a>00447 <span class="comment"> vec mean(){vec pom; for(int i=0;i<n;i++){pom+=Coms(i)->mean()*w(i);} return pom;};</span> |
| 368 | <a name="l00448"></a>00448 <span class="comment"> vec sample() {it_error ( "Not implemented" );return 0;}</span> |
| 369 | <a name="l00449"></a>00449 <span class="comment">};</span> |
| 370 | <a name="l00450"></a>00450 <span class="comment">*/</span> |
| 371 | <a name="l00451"></a>00451 |
| 372 | <a name="l00453"></a>00453 |
| 373 | <a name="l00454"></a><a class="code" href="classbdm_1_1euni.html">00454</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
| 374 | <a name="l00455"></a>00455 { |
| 375 | <a name="l00456"></a>00456 <span class="keyword">protected</span>: |
| 376 | <a name="l00458"></a><a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32">00458</a> vec <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>; |
| 377 | <a name="l00460"></a><a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1">00460</a> vec <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>; |
| 378 | <a name="l00462"></a><a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c">00462</a> vec <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>; |
| 379 | <a name="l00464"></a><a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20">00464</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>; |
| 380 | <a name="l00466"></a><a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476">00466</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>; |
| 381 | <a name="l00467"></a>00467 <span class="keyword">public</span>: |
| 382 | <a name="l00470"></a>00470 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> () : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> () {} |
| 383 | <a name="l00471"></a>00471 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> (<span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0) {set_parameters (low0, high0);} |
| 384 | <a name="l00472"></a>00472 <span class="keywordtype">void</span> set_parameters (<span class="keyword">const</span> vec &low0, <span class="keyword">const</span> vec &high0) { |
| 385 | <a name="l00473"></a>00473 <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> = high0 - low0; |
| 386 | <a name="l00474"></a>00474 it_assert_debug (min (<a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>) > 0.0, <span class="stringliteral">"bad support"</span>); |
| 387 | <a name="l00475"></a>00475 <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> = low0; |
| 388 | <a name="l00476"></a>00476 <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a> = high0; |
| 389 | <a name="l00477"></a>00477 <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> = prod (1.0 / <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>); |
| 390 | <a name="l00478"></a>00478 <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a> = log (<a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>); |
| 391 | <a name="l00479"></a>00479 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>.length(); |
| 392 | <a name="l00480"></a>00480 } |
| 393 | <a name="l00482"></a>00482 |
| 394 | <a name="l00483"></a><a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81">00483</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81">evallog</a> (<span class="keyword">const</span> vec &val)<span class="keyword"> const </span>{ |
| 395 | <a name="l00484"></a>00484 <span class="keywordflow">if</span> (any (val < <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>) && any (val > <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>)) {<span class="keywordflow">return</span> inf;} |
| 396 | <a name="l00485"></a>00485 <span class="keywordflow">else</span> <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>; |
| 397 | <a name="l00486"></a>00486 } |
| 398 | <a name="l00487"></a><a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194">00487</a> vec <a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{ |
| 399 | <a name="l00488"></a>00488 vec smp (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>); |
| 400 | <a name="l00489"></a>00489 <span class="preprocessor">#pragma omp critical</span> |
| 401 | <a name="l00490"></a>00490 <span class="preprocessor"></span> UniRNG.sample_vector (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> , smp); |
| 402 | <a name="l00491"></a>00491 <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> + elem_mult (<a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>, smp); |
| 403 | <a name="l00492"></a>00492 } |
| 404 | <a name="l00494"></a><a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226">00494</a> vec <a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226" title="set values of low and high ">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> (<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a> -<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>) / 2.0;} |
| 405 | <a name="l00495"></a><a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c">00495</a> vec <a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> (pow (<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>, 2) + pow (<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>, 2) + elem_mult (<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>, <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>)) / 3.0;} |
| 406 | <a name="l00504"></a><a class="code" href="classbdm_1_1euni.html#77f5fef1f006fe056066da23b9e5f042">00504</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1euni.html#77f5fef1f006fe056066da23b9e5f042">from_setting</a> (<span class="keyword">const</span> Setting &<span class="keyword">set</span>) { |
| 407 | <a name="l00505"></a>00505 <a class="code" href="classbdm_1_1euni.html#77f5fef1f006fe056066da23b9e5f042">epdf::from_setting</a> (<span class="keyword">set</span>); <span class="comment">// reads rv and rvc</span> |
| 408 | <a name="l00506"></a>00506 |
| 409 | <a name="l00507"></a>00507 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>, <span class="keyword">set</span>, <span class="stringliteral">"high"</span>, UI::compulsory); |
| 410 | <a name="l00508"></a>00508 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>, <span class="keyword">set</span>, <span class="stringliteral">"low"</span>, UI::compulsory); |
| 411 | <a name="l00509"></a>00509 } |
| 412 | <a name="l00510"></a>00510 }; |
| 413 | <a name="l00511"></a>00511 |
| 414 | <a name="l00512"></a>00512 |
| 415 | <a name="l00518"></a>00518 <span class="keyword">template</span> < <span class="keyword">class</span> sq_T, <span class="keyword">template</span> <<span class="keyword">typename</span>> <span class="keyword">class </span>TEpdf = enorm > |
| 416 | <a name="l00519"></a><a class="code" href="classbdm_1_1mlnorm.html">00519</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>< TEpdf<sq_T> > |
| 417 | <a name="l00520"></a>00520 { |
| 418 | <a name="l00521"></a>00521 <span class="keyword">protected</span>: |
| 419 | <a name="l00523"></a><a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42">00523</a> mat <a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a>; |
| 420 | <a name="l00525"></a><a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6">00525</a> vec <a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>; |
| 421 | <a name="l00526"></a>00526 <span class="comment">// vec& _mu; //cached epdf.mu; !!!!!! WHY NOT?</span> |
| 422 | <a name="l00527"></a>00527 <span class="keyword">public</span>: |
| 423 | <a name="l00530"></a>00530 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a>() : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>< TEpdf<sq_T> >() {}; |
| 424 | <a name="l00531"></a>00531 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> (<span class="keyword">const</span> mat &<a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a>, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R) : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>< TEpdf<sq_T> >() { |
| 425 | <a name="l00532"></a>00532 <a class="code" href="classbdm_1_1mlnorm.html#04f7c6cda7b2f95161dd5fbcf15d1fd5" title="Set A and R.">set_parameters</a> (A, mu0, R); |
| 426 | <a name="l00533"></a>00533 } |
| 427 | <a name="l00534"></a>00534 |
| 428 | <a name="l00536"></a><a class="code" href="classbdm_1_1mlnorm.html#04f7c6cda7b2f95161dd5fbcf15d1fd5">00536</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#04f7c6cda7b2f95161dd5fbcf15d1fd5" title="Set A and R.">set_parameters</a> (<span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0) { |
| 429 | <a name="l00537"></a>00537 it_assert_debug (A0.rows() == mu0.length(), <span class="stringliteral">""</span>); |
| 430 | <a name="l00538"></a>00538 it_assert_debug (A0.rows() == R0.rows(), <span class="stringliteral">""</span>); |
| 431 | <a name="l00539"></a>00539 |
| 432 | <a name="l00540"></a>00540 this-><a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.set_parameters (zeros (A0.rows()), R0); |
| 433 | <a name="l00541"></a>00541 <a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a> = A0; |
| 434 | <a name="l00542"></a>00542 <a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a> = mu0; |
| 435 | <a name="l00543"></a>00543 this-><a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = A0.cols(); |
| 436 | <a name="l00544"></a>00544 } |
| 437 | <a name="l00547"></a><a class="code" href="classbdm_1_1mlnorm.html#c2895ae549ee76d961be98d7061bd110">00547</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#c2895ae549ee76d961be98d7061bd110">condition</a> (<span class="keyword">const</span> vec &cond) { |
| 438 | <a name="l00548"></a>00548 this-><a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>._mu() = <a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a> * cond + <a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>; |
| 439 | <a name="l00549"></a>00549 <span class="comment">//R is already assigned;</span> |
| 440 | <a name="l00550"></a>00550 } |
| 441 | <a name="l00551"></a>00551 |
| 442 | <a name="l00553"></a><a class="code" href="classbdm_1_1mlnorm.html#6332e5200f3afa15db3f7f4bca09b17f">00553</a> vec& <a class="code" href="classbdm_1_1mlnorm.html#6332e5200f3afa15db3f7f4bca09b17f" title="access function">_mu_const</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>;} |
| 443 | <a name="l00555"></a><a class="code" href="classbdm_1_1mlnorm.html#b256b547c5156b5898a3a1e5462f9540">00555</a> mat& <a class="code" href="classbdm_1_1mlnorm.html#b256b547c5156b5898a3a1e5462f9540" title="access function">_A</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a>;} |
| 444 | <a name="l00557"></a><a class="code" href="classbdm_1_1mlnorm.html#564715dea56f7bbff0083aec295ce97e">00557</a> mat <a class="code" href="classbdm_1_1mlnorm.html#564715dea56f7bbff0083aec295ce97e" title="access function">_R</a>() { <span class="keywordflow">return</span> this-><a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>._R().to_mat(); } |
| 445 | <a name="l00558"></a>00558 |
| 446 | <a name="l00560"></a>00560 <span class="keyword">template</span><<span class="keyword">typename</span> sq_M> |
| 447 | <a name="l00561"></a>00561 <span class="keyword">friend</span> std::ostream &operator<< (std::ostream &os, mlnorm<sq_M, enorm> &ml); |
| 448 | <a name="l00562"></a>00562 |
| 449 | <a name="l00563"></a><a class="code" href="classbdm_1_1mlnorm.html#52980f13d80162d00b30d5864343f564">00563</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#52980f13d80162d00b30d5864343f564">from_setting</a> (<span class="keyword">const</span> Setting &<span class="keyword">set</span>) { |
| 450 | <a name="l00564"></a>00564 <a class="code" href="classbdm_1_1mlnorm.html#52980f13d80162d00b30d5864343f564">mpdf::from_setting</a> (<span class="keyword">set</span>); |
| 451 | <a name="l00565"></a>00565 |
| 452 | <a name="l00566"></a>00566 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a>, <span class="keyword">set</span>, <span class="stringliteral">"A"</span>, UI::compulsory); |
| 453 | <a name="l00567"></a>00567 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>, <span class="keyword">set</span>, <span class="stringliteral">"const"</span>, UI::compulsory); |
| 454 | <a name="l00568"></a>00568 mat R0; |
| 455 | <a name="l00569"></a>00569 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (R0, <span class="keyword">set</span>, <span class="stringliteral">"R"</span>, UI::compulsory); |
| 456 | <a name="l00570"></a>00570 <a class="code" href="classbdm_1_1mlnorm.html#04f7c6cda7b2f95161dd5fbcf15d1fd5" title="Set A and R.">set_parameters</a> (<a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a>, <a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>, R0); |
| 457 | <a name="l00571"></a>00571 }; |
| 458 | <a name="l00572"></a>00572 }; |
| 459 | <a name="l00573"></a>00573 <a class="code" href="user__info_8h.html#b06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (mlnorm,ldmat); |
| 460 | <a name="l00574"></a>00574 SHAREDPTR2 ( mlnorm, ldmat ); |
| 461 | <a name="l00575"></a>00575 <a class="code" href="user__info_8h.html#b06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (mlnorm,fsqmat); |
| 462 | <a name="l00576"></a>00576 SHAREDPTR2 ( mlnorm, fsqmat ); |
| 463 | <a name="l00577"></a>00577 <a class="code" href="user__info_8h.html#b06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (mlnorm, chmat); |
| 464 | <a name="l00578"></a>00578 SHAREDPTR2 ( mlnorm, chmat ); |
| 465 | <a name="l00579"></a>00579 |
| 466 | <a name="l00581"></a>00581 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 467 | <a name="l00582"></a><a class="code" href="classbdm_1_1mgnorm.html">00582</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgnorm.html" title="Mpdf with general function for mean value.">mgnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>< enorm< sq_T > > |
| 468 | <a name="l00583"></a>00583 { |
| 469 | <a name="l00584"></a>00584 <span class="keyword">private</span>: |
| 470 | <a name="l00585"></a>00585 <span class="comment">// vec &mu; WHY NOT?</span> |
| 471 | <a name="l00586"></a>00586 <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr<fnc></a> g; |
| 472 | <a name="l00587"></a>00587 |
| 473 | <a name="l00588"></a>00588 <span class="keyword">public</span>: |
| 474 | <a name="l00590"></a><a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d">00590</a> <a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d" title="default constructor">mgnorm</a>() : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a><<a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a><sq_T> >() { } |
| 475 | <a name="l00592"></a>00592 <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#b736332d20e418bf50d45836e129f339" title="set mean function">set_parameters</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr<fnc></a> &g0, <span class="keyword">const</span> sq_T &R0); |
| 476 | <a name="l00593"></a>00593 <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d">condition</a> (<span class="keyword">const</span> vec &cond); |
| 477 | <a name="l00594"></a>00594 |
| 478 | <a name="l00595"></a>00595 |
| 479 | <a name="l00623"></a><a class="code" href="classbdm_1_1mgnorm.html#d717dacc6a9eb967f8410994dc6dc6f9">00623</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#d717dacc6a9eb967f8410994dc6dc6f9">from_setting</a> (<span class="keyword">const</span> Setting &<span class="keyword">set</span>) { |
| 480 | <a name="l00624"></a>00624 <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr<fnc></a> g = UI::build<fnc> (<span class="keyword">set</span>, <span class="stringliteral">"g"</span>, UI::compulsory); |
| 481 | <a name="l00625"></a>00625 |
| 482 | <a name="l00626"></a>00626 mat R; |
| 483 | <a name="l00627"></a>00627 vec dR; |
| 484 | <a name="l00628"></a>00628 <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (dR, <span class="keyword">set</span>, <span class="stringliteral">"dR"</span>)) |
| 485 | <a name="l00629"></a>00629 R = diag (dR); |
| 486 | <a name="l00630"></a>00630 <span class="keywordflow">else</span> |
| 487 | <a name="l00631"></a>00631 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (R, <span class="keyword">set</span>, <span class="stringliteral">"R"</span>, UI::compulsory); |
487 | | <a name="l00640"></a><a class="code" href="classbdm_1_1mlstudent.html">00640</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a><ldmat> |
488 | | <a name="l00641"></a>00641 { |
489 | | <a name="l00642"></a>00642 <span class="keyword">protected</span>: |
490 | | <a name="l00643"></a>00643 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Lambda; |
491 | | <a name="l00644"></a>00644 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &<a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>; |
492 | | <a name="l00645"></a>00645 <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Re; |
493 | | <a name="l00646"></a>00646 <span class="keyword">public</span>: |
494 | | <a name="l00647"></a>00647 <a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> ( ) :<a class="code" href="classbdm_1_1mlnorm.html">mlnorm<ldmat></a> (), |
495 | | <a name="l00648"></a>00648 Lambda (), <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R() ) {} |
496 | | <a name="l00649"></a>00649 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &R0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& Lambda0 ) |
497 | | <a name="l00650"></a>00650 { |
498 | | <a name="l00651"></a>00651 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> ); |
499 | | <a name="l00652"></a>00652 it_assert_debug ( R0.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>() ==A0.rows(),<span class="stringliteral">""</span> ); |
500 | | <a name="l00653"></a>00653 |
501 | | <a name="l00654"></a>00654 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( mu0,Lambda ); <span class="comment">//</span> |
502 | | <a name="l00655"></a>00655 A = A0; |
503 | | <a name="l00656"></a>00656 mu_const = mu0; |
504 | | <a name="l00657"></a>00657 Re=R0; |
505 | | <a name="l00658"></a>00658 Lambda = Lambda0; |
506 | | <a name="l00659"></a>00659 } |
507 | | <a name="l00660"></a><a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">00660</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">condition</a> ( <span class="keyword">const</span> vec &cond ) |
508 | | <a name="l00661"></a>00661 { |
509 | | <a name="l00662"></a>00662 _mu = A*cond + mu_const; |
510 | | <a name="l00663"></a>00663 <span class="keywordtype">double</span> zeta; |
511 | | <a name="l00664"></a>00664 <span class="comment">//ugly hack!</span> |
512 | | <a name="l00665"></a>00665 <span class="keywordflow">if</span> ( ( cond.length() +1 ) ==Lambda.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>() ) |
513 | | <a name="l00666"></a>00666 { |
514 | | <a name="l00667"></a>00667 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( concat ( cond, vec_1 ( 1.0 ) ) ); |
515 | | <a name="l00668"></a>00668 } |
516 | | <a name="l00669"></a>00669 <span class="keywordflow">else</span> |
517 | | <a name="l00670"></a>00670 { |
518 | | <a name="l00671"></a>00671 zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( cond ); |
519 | | <a name="l00672"></a>00672 } |
520 | | <a name="l00673"></a>00673 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> = Re; |
521 | | <a name="l00674"></a>00674 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>*= ( 1+zeta );<span class="comment">// / ( nu ); << nu is in Re!!!!!!</span> |
522 | | <a name="l00675"></a>00675 }; |
523 | | <a name="l00676"></a>00676 |
524 | | <a name="l00677"></a>00677 }; |
525 | | <a name="l00687"></a><a class="code" href="classbdm_1_1mgamma.html">00687</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
526 | | <a name="l00688"></a>00688 { |
527 | | <a name="l00689"></a>00689 <span class="keyword">protected</span>: |
528 | | <a name="l00691"></a><a class="code" href="classbdm_1_1mgamma.html#bdc9f1e9e03c09e91103fee269864438">00691</a> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
529 | | <a name="l00693"></a><a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09">00693</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>; |
530 | | <a name="l00695"></a><a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312">00695</a> vec &<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>; |
531 | | <a name="l00696"></a>00696 |
532 | | <a name="l00697"></a>00697 <span class="keyword">public</span>: |
533 | | <a name="l00699"></a><a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1">00699</a> <a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1" title="Constructor.">mgamma</a> ( ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> ( ), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> (), <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
534 | | <a name="l00701"></a>00701 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, <span class="keyword">const</span> vec &beta0 ); |
535 | | <a name="l00702"></a><a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff">00702</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) {<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/val;}; |
536 | | <a name="l00712"></a><a class="code" href="classbdm_1_1mgamma.html#da2af0f327e5452bee71d1bf97452ae4">00712</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#da2af0f327e5452bee71d1bf97452ae4">from_setting</a>(<span class="keyword">const</span> Setting &<span class="keyword">set</span>){ |
537 | | <a name="l00713"></a>00713 <a class="code" href="classbdm_1_1mgamma.html#da2af0f327e5452bee71d1bf97452ae4">mpdf::from_setting</a>(<span class="keyword">set</span>); <span class="comment">// reads rv and rvc</span> |
538 | | <a name="l00714"></a>00714 vec betatmp; <span class="comment">// ugly but necessary</span> |
539 | | <a name="l00715"></a>00715 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(betatmp,<span class="keyword">set</span>,<span class="stringliteral">"beta"</span>); |
540 | | <a name="l00716"></a>00716 <span class="keyword">set</span>.lookupValue(<span class="stringliteral">"k"</span>,<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>); |
541 | | <a name="l00717"></a>00717 <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a>(<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>,betatmp); |
542 | | <a name="l00718"></a>00718 } |
543 | | <a name="l00719"></a>00719 }; |
544 | | <a name="l00720"></a>00720 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(mgamma); |
545 | | <a name="l00721"></a>00721 |
546 | | <a name="l00731"></a><a class="code" href="classbdm_1_1migamma.html">00731</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> |
547 | | <a name="l00732"></a>00732 { |
548 | | <a name="l00733"></a>00733 <span class="keyword">protected</span>: |
549 | | <a name="l00735"></a><a class="code" href="classbdm_1_1migamma.html#a31b39d4179551b593c9e0d7d756783a">00735</a> <a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; |
550 | | <a name="l00737"></a><a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c">00737</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>; |
551 | | <a name="l00739"></a><a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc">00739</a> vec &<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>; |
552 | | <a name="l00741"></a><a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5">00741</a> vec &<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>; |
553 | | <a name="l00742"></a>00742 |
554 | | <a name="l00743"></a>00743 <span class="keyword">public</span>: |
555 | | <a name="l00746"></a>00746 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ), <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>() ), <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
556 | | <a name="l00747"></a>00747 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> &m ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( m.<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ), <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>() ), <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; |
557 | | <a name="l00749"></a>00749 |
558 | | <a name="l00751"></a><a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151">00751</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> len, <span class="keywordtype">double</span> k0 ) |
559 | | <a name="l00752"></a>00752 { |
560 | | <a name="l00753"></a>00753 <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>=k0; |
561 | | <a name="l00754"></a>00754 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( ( 1.0/ ( <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>*<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> ) +2.0 ) *ones ( len ) <span class="comment">/*alpha*/</span>, ones ( len ) <span class="comment">/*beta*/</span> ); |
562 | | <a name="l00755"></a>00755 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); |
563 | | <a name="l00756"></a>00756 }; |
564 | | <a name="l00757"></a><a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c">00757</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) |
565 | | <a name="l00758"></a>00758 { |
566 | | <a name="l00759"></a>00759 <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>=elem_mult ( val, ( <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>-1.0 ) ); |
567 | | <a name="l00760"></a>00760 }; |
568 | | <a name="l00761"></a>00761 }; |
569 | | <a name="l00762"></a>00762 |
| 489 | <a name="l00633"></a>00633 <a class="code" href="classbdm_1_1mgnorm.html#b736332d20e418bf50d45836e129f339" title="set mean function">set_parameters</a> (g, R); |
| 490 | <a name="l00634"></a>00634 } |
| 491 | <a name="l00635"></a>00635 }; |
| 492 | <a name="l00636"></a>00636 |
| 493 | <a name="l00637"></a>00637 <a class="code" href="user__info_8h.html#b06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (mgnorm, chmat); |
| 494 | <a name="l00638"></a>00638 SHAREDPTR2 ( mgnorm, chmat ); |
| 495 | <a name="l00639"></a>00639 |
| 496 | <a name="l00640"></a>00640 |
| 497 | <a name="l00648"></a><a class="code" href="classbdm_1_1mlstudent.html">00648</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a><ldmat, enorm> |
| 498 | <a name="l00649"></a>00649 { |
| 499 | <a name="l00650"></a>00650 <span class="keyword">protected</span>: |
| 500 | <a name="l00652"></a><a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657">00652</a> <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657" title="Variable from theory.">Lambda</a>; |
| 501 | <a name="l00654"></a><a class="code" href="classbdm_1_1mlstudent.html#72e9bda4d6684e07faafc4b2192daf39">00654</a> <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &<a class="code" href="classbdm_1_1mlnorm.html#564715dea56f7bbff0083aec295ce97e" title="access function">_R</a>; |
| 502 | <a name="l00656"></a><a class="code" href="classbdm_1_1mlstudent.html#1c063ad6cb6e079ee11bc4128c2c9fe8">00656</a> <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1mlstudent.html#1c063ad6cb6e079ee11bc4128c2c9fe8" title="Variable .">Re</a>; |
| 503 | <a name="l00657"></a>00657 <span class="keyword">public</span>: |
| 504 | <a name="l00658"></a>00658 <a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> () : <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a><<a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>, <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a>> (), |
| 505 | <a name="l00659"></a>00659 <a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657" title="Variable from theory.">Lambda</a> (), <a class="code" href="classbdm_1_1mlnorm.html#564715dea56f7bbff0083aec295ce97e" title="access function">_R</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1mlnorm.html#564715dea56f7bbff0083aec295ce97e" title="access function">_R</a>()) {} |
| 506 | <a name="l00661"></a><a class="code" href="classbdm_1_1mlstudent.html#4cdf79aac1b2165c0290e73810a0e4a3">00661</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#4cdf79aac1b2165c0290e73810a0e4a3" title="constructor function">set_parameters</a> (<span class="keyword">const</span> mat &A0, <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &R0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>& Lambda0) { |
| 507 | <a name="l00662"></a>00662 it_assert_debug (A0.rows() == mu0.length(), <span class="stringliteral">""</span>); |
| 508 | <a name="l00663"></a>00663 it_assert_debug (R0.<a class="code" href="classbdm_1_1sqmat.html#73e639221343dcce76c3305524d67590" title="Reimplementing common functions of mat: rows().">rows</a>() == A0.rows(), <span class="stringliteral">""</span>); |
| 509 | <a name="l00664"></a>00664 |
| 510 | <a name="l00665"></a>00665 <a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> (mu0, <a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657" title="Variable from theory.">Lambda</a>); <span class="comment">//</span> |
| 511 | <a name="l00666"></a>00666 <a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a> = A0; |
| 512 | <a name="l00667"></a>00667 <a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a> = mu0; |
| 513 | <a name="l00668"></a>00668 <a class="code" href="classbdm_1_1mlstudent.html#1c063ad6cb6e079ee11bc4128c2c9fe8" title="Variable .">Re</a> = R0; |
| 514 | <a name="l00669"></a>00669 <a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657" title="Variable from theory.">Lambda</a> = Lambda0; |
| 515 | <a name="l00670"></a>00670 } |
| 516 | <a name="l00671"></a><a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">00671</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">condition</a> (<span class="keyword">const</span> vec &cond) { |
| 517 | <a name="l00672"></a>00672 <a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1enorm.html#766127847e9482aea9226ea157295ea2">_mu</a>() = <a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a> * cond + <a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>; |
| 518 | <a name="l00673"></a>00673 <span class="keywordtype">double</span> zeta; |
| 519 | <a name="l00674"></a>00674 <span class="comment">//ugly hack!</span> |
| 520 | <a name="l00675"></a>00675 <span class="keywordflow">if</span> ( (cond.length() + 1) == <a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657" title="Variable from theory.">Lambda</a>.<a class="code" href="classbdm_1_1sqmat.html#73e639221343dcce76c3305524d67590" title="Reimplementing common functions of mat: rows().">rows</a>()) { |
| 521 | <a name="l00676"></a>00676 zeta = <a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657" title="Variable from theory.">Lambda</a>.<a class="code" href="classbdm_1_1ldmat.html#f743de194aadb8515cf18226fadf365f" title="Evaluates quadratic form ;.">invqform</a> (concat (cond, vec_1 (1.0))); |
| 522 | <a name="l00677"></a>00677 } <span class="keywordflow">else</span> { |
| 523 | <a name="l00678"></a>00678 zeta = <a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657" title="Variable from theory.">Lambda</a>.<a class="code" href="classbdm_1_1ldmat.html#f743de194aadb8515cf18226fadf365f" title="Evaluates quadratic form ;.">invqform</a> (cond); |
| 524 | <a name="l00679"></a>00679 } |
| 525 | <a name="l00680"></a>00680 <a class="code" href="classbdm_1_1mlnorm.html#564715dea56f7bbff0083aec295ce97e" title="access function">_R</a> = <a class="code" href="classbdm_1_1mlstudent.html#1c063ad6cb6e079ee11bc4128c2c9fe8" title="Variable .">Re</a>; |
| 526 | <a name="l00681"></a>00681 <a class="code" href="classbdm_1_1mlnorm.html#564715dea56f7bbff0083aec295ce97e" title="access function">_R</a> *= (1 + zeta);<span class="comment">// / ( nu ); << nu is in Re!!!!!!</span> |
| 527 | <a name="l00682"></a>00682 }; |
| 528 | <a name="l00683"></a>00683 |
| 529 | <a name="l00684"></a>00684 }; |
| 530 | <a name="l00694"></a><a class="code" href="classbdm_1_1mgamma.html">00694</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a><egamma> |
| 531 | <a name="l00695"></a>00695 { |
| 532 | <a name="l00696"></a>00696 <span class="keyword">protected</span>: |
| 533 | <a name="l00697"></a>00697 |
| 534 | <a name="l00699"></a><a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09">00699</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>; |
| 535 | <a name="l00700"></a>00700 |
| 536 | <a name="l00702"></a><a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312">00702</a> vec &<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a>; |
| 537 | <a name="l00703"></a>00703 |
| 538 | <a name="l00704"></a>00704 <span class="keyword">public</span>: |
| 539 | <a name="l00706"></a><a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1">00706</a> <a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1" title="Constructor.">mgamma</a>() : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a><<a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a>>(), <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a> (0), |
| 540 | <a name="l00707"></a>00707 <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a>()) { |
| 541 | <a name="l00708"></a>00708 } |
| 542 | <a name="l00709"></a>00709 |
| 543 | <a name="l00711"></a>00711 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a> (<span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, <span class="keyword">const</span> vec &beta0); |
| 544 | <a name="l00712"></a>00712 |
| 545 | <a name="l00713"></a><a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff">00713</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff">condition</a> (<span class="keyword">const</span> vec &val) {<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a> = <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a> / val;}; |
| 546 | <a name="l00723"></a><a class="code" href="classbdm_1_1mgamma.html#da2af0f327e5452bee71d1bf97452ae4">00723</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#da2af0f327e5452bee71d1bf97452ae4">from_setting</a> (<span class="keyword">const</span> Setting &<span class="keyword">set</span>) { |
| 547 | <a name="l00724"></a>00724 <a class="code" href="classbdm_1_1mgamma.html#da2af0f327e5452bee71d1bf97452ae4">mpdf::from_setting</a> (<span class="keyword">set</span>); <span class="comment">// reads rv and rvc</span> |
| 548 | <a name="l00725"></a>00725 vec betatmp; <span class="comment">// ugly but necessary</span> |
| 549 | <a name="l00726"></a>00726 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (betatmp, <span class="keyword">set</span>, <span class="stringliteral">"beta"</span>, UI::compulsory); |
| 550 | <a name="l00727"></a>00727 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, <span class="keyword">set</span>, <span class="stringliteral">"k"</span>, UI::compulsory); |
| 551 | <a name="l00728"></a>00728 <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a> (<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, betatmp); |
| 552 | <a name="l00729"></a>00729 } |
| 553 | <a name="l00730"></a>00730 }; |
| 554 | <a name="l00731"></a>00731 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a> (mgamma); |
| 555 | <a name="l00732"></a>00732 SHAREDPTR (mgamma); |
| 556 | <a name="l00733"></a>00733 |
| 557 | <a name="l00743"></a><a class="code" href="classbdm_1_1migamma.html">00743</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a><eigamma> |
| 558 | <a name="l00744"></a>00744 { |
| 559 | <a name="l00745"></a>00745 <span class="keyword">protected</span>: |
| 560 | <a name="l00747"></a><a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c">00747</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>; |
| 561 | <a name="l00748"></a>00748 |
| 562 | <a name="l00750"></a><a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc">00750</a> vec &<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a>; |
| 563 | <a name="l00751"></a>00751 |
| 564 | <a name="l00753"></a><a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5">00753</a> vec &<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a>; |
| 565 | <a name="l00754"></a>00754 |
| 566 | <a name="l00755"></a>00755 <span class="keyword">public</span>: |
| 567 | <a name="l00758"></a>00758 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a>() : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a><<a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a>>(), |
| 568 | <a name="l00759"></a>00759 <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> (0), |
| 569 | <a name="l00760"></a>00760 <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a>()), |
| 570 | <a name="l00761"></a>00761 <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a>()) { |
| 571 | <a name="l00762"></a>00762 } |
626 | | <a name="l00890"></a><a class="code" href="classbdm_1_1mlognorm.html">00890</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlognorm.html" title="Log-Normal random walk.">mlognorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> |
627 | | <a name="l00891"></a>00891 { |
628 | | <a name="l00892"></a>00892 <span class="keyword">protected</span>: |
629 | | <a name="l00893"></a>00893 <a class="code" href="classbdm_1_1elognorm.html">elognorm</a> eno; |
630 | | <a name="l00895"></a><a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a">00895</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>; |
631 | | <a name="l00897"></a><a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2">00897</a> vec &<a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>; |
632 | | <a name="l00898"></a>00898 <span class="keyword">public</span>: |
633 | | <a name="l00900"></a><a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41">00900</a> <a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41" title="Constructor.">mlognorm</a> ( ) : eno (), <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a> ( eno._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&eno;}; |
634 | | <a name="l00902"></a><a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f">00902</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> size, <span class="keywordtype">double</span> k ) |
635 | | <a name="l00903"></a>00903 { |
636 | | <a name="l00904"></a>00904 <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a> = 0.5*log ( k*k+1 ); |
637 | | <a name="l00905"></a>00905 eno.<a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> ( zeros ( size ),2*<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>*eye ( size ) ); |
638 | | <a name="l00906"></a>00906 |
639 | | <a name="l00907"></a>00907 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = size; |
640 | | <a name="l00908"></a>00908 }; |
641 | | <a name="l00909"></a>00909 |
642 | | <a name="l00910"></a><a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e">00910</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &val ) |
643 | | <a name="l00911"></a>00911 { |
644 | | <a name="l00912"></a>00912 <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>=log ( val )-<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>;<span class="comment">//elem_mult ( refl,pow ( val,l ) );</span> |
645 | | <a name="l00913"></a>00913 }; |
646 | | <a name="l00914"></a>00914 |
647 | | <a name="l00933"></a>00933 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#49e45ea13a869da607ef9be7a229128a">from_setting</a>( <span class="keyword">const</span> Setting &<span class="keyword">set</span> ); |
648 | | <a name="l00934"></a>00934 |
649 | | <a name="l00935"></a>00935 <span class="comment">// TODO dodelat void to_setting( Setting &set ) const;</span> |
650 | | <a name="l00936"></a>00936 |
651 | | <a name="l00937"></a>00937 }; |
652 | | <a name="l00938"></a>00938 |
653 | | <a name="l00939"></a>00939 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(mlognorm); |
654 | | <a name="l00940"></a>00940 |
655 | | <a name="l00944"></a><a class="code" href="classbdm_1_1eWishartCh.html">00944</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eWishartCh.html">eWishartCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
656 | | <a name="l00945"></a>00945 { |
657 | | <a name="l00946"></a>00946 <span class="keyword">protected</span>: |
658 | | <a name="l00948"></a><a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490">00948</a> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>; |
659 | | <a name="l00950"></a><a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f">00950</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; |
660 | | <a name="l00952"></a><a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3">00952</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>; |
661 | | <a name="l00953"></a>00953 <span class="keyword">public</span>: |
662 | | <a name="l00954"></a>00954 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0 ) {<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>=<a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> ( Y0 );<a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>=delta0; <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>=<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classsqmat.html#071e80ced9cc3b8cbb360fa7462eb646" title="Reimplementing common functions of mat: cols().">rows</a>(); <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>*<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; } |
663 | | <a name="l00955"></a>00955 mat sample_mat()<span class="keyword"> const</span> |
664 | | <a name="l00956"></a>00956 <span class="keyword"> </span>{ |
665 | | <a name="l00957"></a>00957 mat X=zeros ( <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>,<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a> ); |
666 | | <a name="l00958"></a>00958 |
667 | | <a name="l00959"></a>00959 <span class="comment">//sample diagonal</span> |
668 | | <a name="l00960"></a>00960 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>;i++ ) |
669 | | <a name="l00961"></a>00961 { |
670 | | <a name="l00962"></a>00962 GamRNG.setup ( 0.5* ( <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>-i ) , 0.5 ); <span class="comment">// no +1 !! index if from 0</span> |
671 | | <a name="l00963"></a>00963 <span class="preprocessor">#pragma omp critical</span> |
672 | | <a name="l00964"></a>00964 <span class="preprocessor"></span> X ( i,i ) =sqrt ( GamRNG() ); |
673 | | <a name="l00965"></a>00965 } |
674 | | <a name="l00966"></a>00966 <span class="comment">//do the rest</span> |
675 | | <a name="l00967"></a>00967 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<p;i++ ) |
676 | | <a name="l00968"></a>00968 { |
677 | | <a name="l00969"></a>00969 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> j=i+1;j<p;j++ ) |
678 | | <a name="l00970"></a>00970 { |
679 | | <a name="l00971"></a>00971 <span class="preprocessor">#pragma omp critical</span> |
680 | | <a name="l00972"></a>00972 <span class="preprocessor"></span> X ( i,j ) =NorRNG.sample(); |
681 | | <a name="l00973"></a>00973 } |
682 | | <a name="l00974"></a>00974 } |
683 | | <a name="l00975"></a>00975 <span class="keywordflow">return</span> X*<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>();<span class="comment">// return upper triangular part of the decomposition</span> |
684 | | <a name="l00976"></a>00976 } |
685 | | <a name="l00977"></a><a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a">00977</a> vec <a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a" title="Returns a sample, from density .">sample</a> ()<span class="keyword"> const</span> |
686 | | <a name="l00978"></a>00978 <span class="keyword"> </span>{ |
687 | | <a name="l00979"></a>00979 <span class="keywordflow">return</span> vec ( sample_mat()._data(),p*p ); |
688 | | <a name="l00980"></a>00980 } |
689 | | <a name="l00982"></a><a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981">00982</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981" title="fast access function y0 will be copied into Y.Ch.">setY</a> ( <span class="keyword">const</span> mat &Ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,Ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() );} |
690 | | <a name="l00984"></a><a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a">00984</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a" title="fast access function y0 will be copied into Y.Ch.">_setY</a> ( <span class="keyword">const</span> vec &ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() ); } |
691 | | <a name="l00986"></a><a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e">00986</a> <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>& <a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e" title="access function">getY</a>()<span class="keyword">const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>;} |
692 | | <a name="l00987"></a>00987 }; |
693 | | <a name="l00988"></a>00988 |
694 | | <a name="l00989"></a>00989 <span class="keyword">class </span>eiWishartCh: <span class="keyword">public</span> epdf |
695 | | <a name="l00990"></a>00990 { |
696 | | <a name="l00991"></a>00991 <span class="keyword">protected</span>: |
697 | | <a name="l00992"></a>00992 eWishartCh W; |
698 | | <a name="l00993"></a>00993 <span class="keywordtype">int</span> p; |
699 | | <a name="l00994"></a>00994 <span class="keywordtype">double</span> delta; |
700 | | <a name="l00995"></a>00995 <span class="keyword">public</span>: |
701 | | <a name="l00996"></a>00996 <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0) { |
702 | | <a name="l00997"></a>00997 delta = delta0; |
703 | | <a name="l00998"></a>00998 W.set_parameters ( inv ( Y0 ),delta0 ); |
704 | | <a name="l00999"></a>00999 dim = W.dimension(); p=Y0.rows(); |
705 | | <a name="l01000"></a>01000 } |
706 | | <a name="l01001"></a>01001 vec sample()<span class="keyword"> const </span>{mat iCh; iCh=inv ( W.sample_mat() ); <span class="keywordflow">return</span> vec ( iCh._data(),<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> );} |
707 | | <a name="l01002"></a>01002 <span class="keywordtype">void</span> _setY ( <span class="keyword">const</span> vec &y0 ) |
708 | | <a name="l01003"></a>01003 { |
709 | | <a name="l01004"></a>01004 mat Ch ( p,p ); |
710 | | <a name="l01005"></a>01005 mat iCh ( p,p ); |
711 | | <a name="l01006"></a>01006 copy_vector ( dim, y0._data(), Ch._data() ); |
712 | | <a name="l01007"></a>01007 |
713 | | <a name="l01008"></a>01008 iCh=inv ( Ch ); |
714 | | <a name="l01009"></a>01009 W.setY ( iCh ); |
715 | | <a name="l01010"></a>01010 } |
716 | | <a name="l01011"></a>01011 <span class="keyword">virtual</span> <span class="keywordtype">double</span> evallog ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{ |
717 | | <a name="l01012"></a>01012 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> X(p); |
718 | | <a name="l01013"></a>01013 <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>& Y=W.getY(); |
719 | | <a name="l01014"></a>01014 |
720 | | <a name="l01015"></a>01015 copy_vector(p*p,val._data(),X._Ch()._data()); |
721 | | <a name="l01016"></a>01016 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> iX(p);X.inv(iX); |
722 | | <a name="l01017"></a>01017 <span class="comment">// compute </span> |
723 | | <a name="l01018"></a>01018 <span class="comment">// \frac{ |\Psi|^{m/2}|X|^{-(m+p+1)/2}e^{-tr(\Psi X^{-1})/2} }{ 2^{mp/2}\Gamma_p(m/2)},</span> |
724 | | <a name="l01019"></a>01019 mat M=Y.<a class="code" href="classchmat.html#045addd685f8d978efda232d7dcb070e" title="Conversion to full matrix.">to_mat</a>()*iX.to_mat(); |
725 | | <a name="l01020"></a>01020 |
726 | | <a name="l01021"></a>01021 <span class="keywordtype">double</span> log1 = 0.5*p*(2*Y.<a class="code" href="classchmat.html#b504ca818203b13e667cb3c503980382" title="Logarithm of a determinant.">logdet</a>())-0.5*(delta+p+1)*(2*X.logdet())-0.5*trace(M); |
727 | | <a name="l01022"></a>01022 <span class="comment">//Fixme! Multivariate gamma omitted!! it is ok for sampling, but not otherwise!!</span> |
728 | | <a name="l01023"></a>01023 |
729 | | <a name="l01024"></a>01024 <span class="comment">/* if (0) {</span> |
730 | | <a name="l01025"></a>01025 <span class="comment"> mat XX=X.to_mat();</span> |
731 | | <a name="l01026"></a>01026 <span class="comment"> mat YY=Y.to_mat();</span> |
732 | | <a name="l01027"></a>01027 <span class="comment"> </span> |
733 | | <a name="l01028"></a>01028 <span class="comment"> double log2 = 0.5*p*log(det(YY))-0.5*(delta+p+1)*log(det(XX))-0.5*trace(YY*inv(XX)); </span> |
734 | | <a name="l01029"></a>01029 <span class="comment"> cout << log1 << "," << log2 << endl;</span> |
735 | | <a name="l01030"></a>01030 <span class="comment"> }*/</span> |
736 | | <a name="l01031"></a>01031 <span class="keywordflow">return</span> log1; |
737 | | <a name="l01032"></a>01032 }; |
738 | | <a name="l01033"></a>01033 |
739 | | <a name="l01034"></a>01034 }; |
740 | | <a name="l01035"></a>01035 |
741 | | <a name="l01036"></a>01036 <span class="keyword">class </span>rwiWishartCh : <span class="keyword">public</span> mpdf |
742 | | <a name="l01037"></a>01037 { |
743 | | <a name="l01038"></a>01038 <span class="keyword">protected</span>: |
744 | | <a name="l01039"></a>01039 eiWishartCh eiW; |
745 | | <a name="l01041"></a>01041 <span class="keywordtype">double</span> sqd; |
746 | | <a name="l01042"></a>01042 <span class="comment">//reference point for diagonal</span> |
747 | | <a name="l01043"></a>01043 vec refl; |
748 | | <a name="l01044"></a>01044 <span class="keywordtype">double</span> l; |
749 | | <a name="l01045"></a>01045 <span class="keywordtype">int</span> p; |
750 | | <a name="l01046"></a>01046 <span class="keyword">public</span>: |
751 | | <a name="l01047"></a>01047 <span class="keywordtype">void</span> set_parameters ( <span class="keywordtype">int</span> p0, <span class="keywordtype">double</span> k, vec ref0, <span class="keywordtype">double</span> l0 ) |
752 | | <a name="l01048"></a>01048 { |
753 | | <a name="l01049"></a>01049 p=p0; |
754 | | <a name="l01050"></a>01050 <span class="keywordtype">double</span> delta = 2/(k*k)+p+3; |
755 | | <a name="l01051"></a>01051 sqd=sqrt ( delta-p-1 ); |
756 | | <a name="l01052"></a>01052 l=l0; |
757 | | <a name="l01053"></a>01053 refl=pow(ref0,1-l); |
758 | | <a name="l01054"></a>01054 |
759 | | <a name="l01055"></a>01055 eiW.set_parameters ( eye ( p ),delta ); |
760 | | <a name="l01056"></a>01056 <a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&eiW; |
761 | | <a name="l01057"></a>01057 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=eiW.dimension(); |
762 | | <a name="l01058"></a>01058 } |
763 | | <a name="l01059"></a>01059 <span class="keywordtype">void</span> condition ( <span class="keyword">const</span> vec &c ) { |
764 | | <a name="l01060"></a>01060 vec z=c; |
765 | | <a name="l01061"></a>01061 <span class="keywordtype">int</span> ri=0; |
766 | | <a name="l01062"></a>01062 <span class="keywordflow">for</span>(<span class="keywordtype">int</span> i=0;i<p*p;i+=(p+1)){<span class="comment">//trace diagonal element</span> |
767 | | <a name="l01063"></a>01063 z(i) = pow(z(i),l)*refl(ri); |
768 | | <a name="l01064"></a>01064 ri++; |
769 | | <a name="l01065"></a>01065 } |
770 | | <a name="l01066"></a>01066 |
771 | | <a name="l01067"></a>01067 eiW._setY ( sqd*z ); |
772 | | <a name="l01068"></a>01068 } |
773 | | <a name="l01069"></a>01069 }; |
774 | | <a name="l01070"></a>01070 |
775 | | <a name="l01072"></a>01072 <span class="keyword">enum</span> RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
776 | | <a name="l01078"></a><a class="code" href="classbdm_1_1eEmp.html">01078</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
777 | | <a name="l01079"></a>01079 { |
778 | | <a name="l01080"></a>01080 <span class="keyword">protected</span> : |
779 | | <a name="l01082"></a><a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031">01082</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>; |
780 | | <a name="l01084"></a><a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d">01084</a> vec <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>; |
781 | | <a name="l01086"></a><a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3">01086</a> Array<vec> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>; |
782 | | <a name="l01087"></a>01087 <span class="keyword">public</span>: |
783 | | <a name="l01090"></a>01090 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( ) {}; |
784 | | <a name="l01092"></a><a class="code" href="classbdm_1_1eEmp.html#a3daf6363455af099921715e1233c076">01092</a> <a class="code" href="classbdm_1_1eEmp.html#a3daf6363455af099921715e1233c076" title="copy constructor">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> &e ) : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( e ), <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ), <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ) {}; |
785 | | <a name="l01094"></a>01094 |
786 | | <a name="l01096"></a>01096 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#7cfd383180b486fe4526bdf0179350c0" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> vec &w0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
787 | | <a name="l01098"></a><a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7">01098</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 , <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> ) {<a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( ones ( n ) /n,pdf0 );}; |
788 | | <a name="l01100"></a>01100 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b62d802b8ef39f7c4dcbeb366c90951a" title="Set sample.">set_samples</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); |
789 | | <a name="l01102"></a><a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1">01102</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1" title="Set sample.">set_parameters</a> ( <span class="keywordtype">int</span> n0, <span class="keywordtype">bool</span> copy=<span class="keyword">true</span> ) {<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>=n0; <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>.set_size ( n0,copy );<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>.set_size ( n0,copy );}; |
790 | | <a name="l01104"></a><a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef">01104</a> vec& <a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
791 | | <a name="l01106"></a><a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714">01106</a> <span class="keyword">const</span> vec& <a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714" title="Potentially dangerous, use with care.">_w</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
792 | | <a name="l01108"></a><a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2">01108</a> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
793 | | <a name="l01110"></a><a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2">01110</a> <span class="keyword">const</span> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2" title="access function">_samples</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
794 | | <a name="l01112"></a>01112 ivec <a class="code" href="classbdm_1_1eEmp.html#f06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( RESAMPLING_METHOD method=SYSTEMATIC ); |
795 | | <a name="l01114"></a><a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270">01114</a> vec <a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} |
796 | | <a name="l01116"></a><a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09">01116</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09" title="inherited operation : NOT implemneted">evallog</a> ( <span class="keyword">const</span> vec &val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} |
797 | | <a name="l01117"></a><a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9">01117</a> vec <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>()<span class="keyword"> const</span> |
798 | | <a name="l01118"></a>01118 <span class="keyword"> </span>{ |
799 | | <a name="l01119"></a>01119 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
800 | | <a name="l01120"></a>01120 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
801 | | <a name="l01121"></a>01121 <span class="keywordflow">return</span> pom; |
802 | | <a name="l01122"></a>01122 } |
803 | | <a name="l01123"></a><a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87">01123</a> vec <a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const</span> |
804 | | <a name="l01124"></a>01124 <span class="keyword"> </span>{ |
805 | | <a name="l01125"></a>01125 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
806 | | <a name="l01126"></a>01126 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=pow ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ),2 ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} |
807 | | <a name="l01127"></a>01127 <span class="keywordflow">return</span> pom-pow ( <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>(),2 ); |
808 | | <a name="l01128"></a>01128 } |
809 | | <a name="l01130"></a><a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f">01130</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f" title="For this class, qbounds are minimum and maximum value of the population!">qbounds</a> ( vec &lb, vec &ub, <span class="keywordtype">double</span> perc=0.95 )<span class="keyword"> const</span> |
810 | | <a name="l01131"></a>01131 <span class="keyword"> </span>{ |
811 | | <a name="l01132"></a>01132 <span class="comment">// lb in inf so than it will be pushed below;</span> |
812 | | <a name="l01133"></a>01133 lb.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
813 | | <a name="l01134"></a>01134 ub.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); |
814 | | <a name="l01135"></a>01135 lb = std::numeric_limits<double>::infinity(); |
815 | | <a name="l01136"></a>01136 ub = -std::numeric_limits<double>::infinity(); |
816 | | <a name="l01137"></a>01137 <span class="keywordtype">int</span> j; |
817 | | <a name="l01138"></a>01138 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i<<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) |
818 | | <a name="l01139"></a>01139 { |
819 | | <a name="l01140"></a>01140 <span class="keywordflow">for</span> ( j=0;j<<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>; j++ ) |
820 | | <a name="l01141"></a>01141 { |
821 | | <a name="l01142"></a>01142 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) <lb ( j ) ) {lb ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} |
822 | | <a name="l01143"></a>01143 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) >ub ( j ) ) {ub ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} |
823 | | <a name="l01144"></a>01144 } |
824 | | <a name="l01145"></a>01145 } |
825 | | <a name="l01146"></a>01146 } |
826 | | <a name="l01147"></a>01147 }; |
827 | | <a name="l01148"></a>01148 |
828 | | <a name="l01149"></a>01149 |
829 | | <a name="l01151"></a>01151 |
830 | | <a name="l01152"></a>01152 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
831 | | <a name="l01153"></a>01153 <span class="keywordtype">void</span> enorm<sq_T>::set_parameters ( <span class="keyword">const</span> vec &mu0, <span class="keyword">const</span> sq_T &R0 ) |
832 | | <a name="l01154"></a>01154 { |
833 | | <a name="l01155"></a>01155 <span class="comment">//Fixme test dimensions of mu0 and R0;</span> |
834 | | <a name="l01156"></a>01156 mu = mu0; |
835 | | <a name="l01157"></a>01157 R = R0; |
836 | | <a name="l01158"></a>01158 <a class="code" href="classbdm_1_1root.html#1c314bd6d6dacb8ba78ea5eb88fd9516" title="This method TODO.">validate</a>(); |
837 | | <a name="l01159"></a>01159 }; |
838 | | <a name="l01160"></a>01160 |
839 | | <a name="l01161"></a>01161 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
840 | | <a name="l01162"></a><a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">01162</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">enorm<sq_T>::from_setting</a>(<span class="keyword">const</span> Setting &<span class="keyword">set</span>){ |
841 | | <a name="l01163"></a>01163 <a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">epdf::from_setting</a>(<span class="keyword">set</span>); <span class="comment">//reads rv</span> |
842 | | <a name="l01164"></a>01164 |
843 | | <a name="l01165"></a>01165 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>,<span class="keyword">set</span>,<span class="stringliteral">"mu"</span>); |
844 | | <a name="l01166"></a>01166 mat Rtmp;<span class="comment">// necessary for conversion</span> |
845 | | <a name="l01167"></a>01167 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(Rtmp,<span class="keyword">set</span>,<span class="stringliteral">"R"</span>); |
846 | | <a name="l01168"></a>01168 <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>=Rtmp; <span class="comment">// conversion</span> |
847 | | <a name="l01169"></a>01169 <a class="code" href="classbdm_1_1enorm.html#38eb17ecb75d94a50b6782fcf735cfea" title="This method TODO.">validate</a>(); |
848 | | <a name="l01170"></a>01170 } |
| 635 | <a name="l00888"></a><a class="code" href="classbdm_1_1elognorm.html">00888</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1elognorm.html">elognorm</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a><ldmat> |
| 636 | <a name="l00889"></a>00889 { |
| 637 | <a name="l00890"></a>00890 <span class="keyword">public</span>: |
| 638 | <a name="l00891"></a><a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba">00891</a> vec <a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> exp (<a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<ldmat>::sample</a>());}; |
| 639 | <a name="l00892"></a><a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea">00892</a> vec <a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec var = <a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">enorm<ldmat>::variance</a>();<span class="keywordflow">return</span> exp (<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> - 0.5*var);}; |
| 640 | <a name="l00893"></a>00893 |
| 641 | <a name="l00894"></a>00894 }; |
| 642 | <a name="l00895"></a>00895 |
| 643 | <a name="l00907"></a><a class="code" href="classbdm_1_1mlognorm.html">00907</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlognorm.html" title="Log-Normal random walk.">mlognorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a><elognorm> |
| 644 | <a name="l00908"></a>00908 { |
| 645 | <a name="l00909"></a>00909 <span class="keyword">protected</span>: |
| 646 | <a name="l00911"></a><a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a">00911</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>; |
| 647 | <a name="l00912"></a>00912 |
| 648 | <a name="l00914"></a><a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2">00914</a> vec &<a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>; |
| 649 | <a name="l00915"></a>00915 <span class="keyword">public</span>: |
| 650 | <a name="l00917"></a><a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41">00917</a> <a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41" title="Constructor.">mlognorm</a>() : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a><<a class="code" href="classbdm_1_1elognorm.html">elognorm</a>>(), |
| 651 | <a name="l00918"></a>00918 <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a> (0), |
| 652 | <a name="l00919"></a>00919 <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>._mu()) { |
| 653 | <a name="l00920"></a>00920 } |
| 654 | <a name="l00921"></a>00921 |
| 655 | <a name="l00923"></a><a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f">00923</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f" title="Set value of k.">set_parameters</a> (<span class="keywordtype">int</span> size, <span class="keywordtype">double</span> k) { |
| 656 | <a name="l00924"></a>00924 <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a> = 0.5 * log (k * k + 1); |
| 657 | <a name="l00925"></a>00925 <a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> (zeros (size), 2*<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>*eye (size)); |
| 658 | <a name="l00926"></a>00926 |
| 659 | <a name="l00927"></a>00927 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = size; |
| 660 | <a name="l00928"></a>00928 }; |
| 661 | <a name="l00929"></a>00929 |
| 662 | <a name="l00930"></a><a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e">00930</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e">condition</a> (<span class="keyword">const</span> vec &val) { |
| 663 | <a name="l00931"></a>00931 <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a> = log (val) - <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>;<span class="comment">//elem_mult ( refl,pow ( val,l ) );</span> |
| 664 | <a name="l00932"></a>00932 }; |
| 665 | <a name="l00933"></a>00933 |
| 666 | <a name="l00952"></a>00952 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#49e45ea13a869da607ef9be7a229128a">from_setting</a> (<span class="keyword">const</span> Setting &<span class="keyword">set</span>); |
| 667 | <a name="l00953"></a>00953 |
| 668 | <a name="l00954"></a>00954 <span class="comment">// TODO dodelat void to_setting( Setting &set ) const;</span> |
| 669 | <a name="l00955"></a>00955 |
| 670 | <a name="l00956"></a>00956 }; |
| 671 | <a name="l00957"></a>00957 |
| 672 | <a name="l00958"></a>00958 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a> (mlognorm); |
| 673 | <a name="l00959"></a>00959 SHAREDPTR (mlognorm); |
| 674 | <a name="l00960"></a>00960 |
| 675 | <a name="l00964"></a><a class="code" href="classbdm_1_1eWishartCh.html">00964</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eWishartCh.html">eWishartCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
| 676 | <a name="l00965"></a>00965 { |
| 677 | <a name="l00966"></a>00966 <span class="keyword">protected</span>: |
| 678 | <a name="l00968"></a><a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490">00968</a> <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>; |
| 679 | <a name="l00970"></a><a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f">00970</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; |
| 680 | <a name="l00972"></a><a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3">00972</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>; |
| 681 | <a name="l00973"></a>00973 <span class="keyword">public</span>: |
| 682 | <a name="l00975"></a><a class="code" href="classbdm_1_1eWishartCh.html#183d961532ee97b7dc5ec81701aa59a0">00975</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#183d961532ee97b7dc5ec81701aa59a0" title="Set internal structures.">set_parameters</a> (<span class="keyword">const</span> mat &Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0) {<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a> = <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> (Y0);<a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a> = delta0; <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a> = <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classbdm_1_1sqmat.html#73e639221343dcce76c3305524d67590" title="Reimplementing common functions of mat: rows().">rows</a>(); <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a> * <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; } |
| 683 | <a name="l00977"></a><a class="code" href="classbdm_1_1eWishartCh.html#cc664035d70d2622bf264a29270f8339">00977</a> mat <a class="code" href="classbdm_1_1eWishartCh.html#cc664035d70d2622bf264a29270f8339" title="Sample matrix argument.">sample_mat</a>()<span class="keyword"> const </span>{ |
| 684 | <a name="l00978"></a>00978 mat X = zeros (<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>, <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>); |
| 685 | <a name="l00979"></a>00979 |
| 686 | <a name="l00980"></a>00980 <span class="comment">//sample diagonal</span> |
| 687 | <a name="l00981"></a>00981 <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i < <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>;i++) { |
| 688 | <a name="l00982"></a>00982 GamRNG.setup (0.5* (<a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a> - i) , 0.5); <span class="comment">// no +1 !! index if from 0</span> |
| 689 | <a name="l00983"></a>00983 <span class="preprocessor">#pragma omp critical</span> |
| 690 | <a name="l00984"></a>00984 <span class="preprocessor"></span> X (i, i) = sqrt (GamRNG()); |
| 691 | <a name="l00985"></a>00985 } |
| 692 | <a name="l00986"></a>00986 <span class="comment">//do the rest</span> |
| 693 | <a name="l00987"></a>00987 <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i < p;i++) { |
| 694 | <a name="l00988"></a>00988 <span class="keywordflow">for</span> (<span class="keywordtype">int</span> j = i + 1;j < p;j++) { |
| 695 | <a name="l00989"></a>00989 <span class="preprocessor">#pragma omp critical</span> |
| 696 | <a name="l00990"></a>00990 <span class="preprocessor"></span> X (i, j) = NorRNG.sample(); |
| 697 | <a name="l00991"></a>00991 } |
| 698 | <a name="l00992"></a>00992 } |
| 699 | <a name="l00993"></a>00993 <span class="keywordflow">return</span> X*<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classbdm_1_1chmat.html#17daa8c5c5914bd3194cb3053c5793a5" title="Access function.">_Ch</a>();<span class="comment">// return upper triangular part of the decomposition</span> |
| 700 | <a name="l00994"></a>00994 } |
| 701 | <a name="l00995"></a><a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a">00995</a> vec <a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a" title="Returns a sample, from density .">sample</a> ()<span class="keyword"> const </span>{ |
| 702 | <a name="l00996"></a>00996 <span class="keywordflow">return</span> vec (<a class="code" href="classbdm_1_1eWishartCh.html#cc664035d70d2622bf264a29270f8339" title="Sample matrix argument.">sample_mat</a>()._data(), <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>*<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>); |
| 703 | <a name="l00997"></a>00997 } |
| 704 | <a name="l00999"></a><a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981">00999</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981" title="fast access function y0 will be copied into Y.Ch.">setY</a> (<span class="keyword">const</span> mat &Ch0) {copy_vector (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, Ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classbdm_1_1chmat.html#17daa8c5c5914bd3194cb3053c5793a5" title="Access function.">_Ch</a>()._data());} |
| 705 | <a name="l01001"></a><a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a">01001</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a" title="fast access function y0 will be copied into Y.Ch.">_setY</a> (<span class="keyword">const</span> vec &ch0) {copy_vector (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classbdm_1_1chmat.html#17daa8c5c5914bd3194cb3053c5793a5" title="Access function.">_Ch</a>()._data()); } |
| 706 | <a name="l01003"></a><a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e">01003</a> <span class="keyword">const</span> <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>& <a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e" title="access function">getY</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>;} |
| 707 | <a name="l01004"></a>01004 }; |
| 708 | <a name="l01005"></a>01005 |
| 709 | <a name="l01007"></a>01007 |
| 710 | <a name="l01009"></a><a class="code" href="classbdm_1_1eiWishartCh.html">01009</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eiWishartCh.html" title="Inverse Wishart on Choleski decomposition.">eiWishartCh</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
| 711 | <a name="l01010"></a>01010 { |
| 712 | <a name="l01011"></a>01011 <span class="keyword">protected</span>: |
| 713 | <a name="l01013"></a><a class="code" href="classbdm_1_1eiWishartCh.html#c6b684b52dc62b8d46e67d5992f98b9a">01013</a> <a class="code" href="classbdm_1_1eWishartCh.html">eWishartCh</a> <a class="code" href="classbdm_1_1eiWishartCh.html#c6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>; |
| 714 | <a name="l01015"></a><a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd">01015</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>; |
| 715 | <a name="l01017"></a><a class="code" href="classbdm_1_1eiWishartCh.html#ca3035f7bd5e4597cc1843cf07af8464">01017</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eiWishartCh.html#ca3035f7bd5e4597cc1843cf07af8464" title="parameter delta">delta</a>; |
| 716 | <a name="l01018"></a>01018 <span class="keyword">public</span>: |
| 717 | <a name="l01020"></a><a class="code" href="classbdm_1_1eiWishartCh.html#f463caed9d22d9949f3ee67614e7dcd3">01020</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eiWishartCh.html#f463caed9d22d9949f3ee67614e7dcd3" title="constructor function">set_parameters</a> (<span class="keyword">const</span> mat &Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0) { |
| 718 | <a name="l01021"></a>01021 <a class="code" href="classbdm_1_1eiWishartCh.html#ca3035f7bd5e4597cc1843cf07af8464" title="parameter delta">delta</a> = delta0; |
| 719 | <a name="l01022"></a>01022 <a class="code" href="classbdm_1_1eiWishartCh.html#c6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>.<a class="code" href="classbdm_1_1eWishartCh.html#183d961532ee97b7dc5ec81701aa59a0" title="Set internal structures.">set_parameters</a> (inv (Y0), delta0); |
| 720 | <a name="l01023"></a>01023 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eiWishartCh.html#c6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>.<a class="code" href="classbdm_1_1epdf.html#7083a65f7b7a0d0d13b2c516bd2ec29c" title="Size of the random variable.">dimension</a>(); <a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a> = Y0.rows(); |
| 721 | <a name="l01024"></a>01024 } |
| 722 | <a name="l01025"></a><a class="code" href="classbdm_1_1eiWishartCh.html#2f668192cc9c2e3a5b7e608164685a3e">01025</a> vec <a class="code" href="classbdm_1_1eiWishartCh.html#2f668192cc9c2e3a5b7e608164685a3e" title="Returns a sample, from density .">sample</a>()<span class="keyword"> const </span>{mat iCh; iCh = inv (<a class="code" href="classbdm_1_1eiWishartCh.html#c6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>.<a class="code" href="classbdm_1_1eWishartCh.html#cc664035d70d2622bf264a29270f8339" title="Sample matrix argument.">sample_mat</a>()); <span class="keywordflow">return</span> vec (iCh._data(), <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>);} |
| 723 | <a name="l01027"></a><a class="code" href="classbdm_1_1eiWishartCh.html#d9947933dfc94546cbd6a81f95ec5af5">01027</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eiWishartCh.html#d9947933dfc94546cbd6a81f95ec5af5" title="access function">_setY</a> (<span class="keyword">const</span> vec &y0) { |
| 724 | <a name="l01028"></a>01028 mat Ch (<a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>, <a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>); |
| 725 | <a name="l01029"></a>01029 mat iCh (<a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>, <a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>); |
| 726 | <a name="l01030"></a>01030 copy_vector (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, y0._data(), Ch._data()); |
| 727 | <a name="l01031"></a>01031 |
| 728 | <a name="l01032"></a>01032 iCh = inv (Ch); |
| 729 | <a name="l01033"></a>01033 <a class="code" href="classbdm_1_1eiWishartCh.html#c6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>.<a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981" title="fast access function y0 will be copied into Y.Ch.">setY</a> (iCh); |
| 730 | <a name="l01034"></a>01034 } |
| 731 | <a name="l01035"></a><a class="code" href="classbdm_1_1eiWishartCh.html#a6ddbd815b8b666dd542e97f009f89bb">01035</a> <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eiWishartCh.html#a6ddbd815b8b666dd542e97f009f89bb">evallog</a> (<span class="keyword">const</span> vec &val)<span class="keyword"> const </span>{ |
| 732 | <a name="l01036"></a>01036 <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> X (<a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>); |
| 733 | <a name="l01037"></a>01037 <span class="keyword">const</span> <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>& Y = <a class="code" href="classbdm_1_1eiWishartCh.html#c6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>.<a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e" title="access function">getY</a>(); |
| 734 | <a name="l01038"></a>01038 |
| 735 | <a name="l01039"></a>01039 copy_vector (<a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>*<a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>, val._data(), X.<a class="code" href="classbdm_1_1chmat.html#17daa8c5c5914bd3194cb3053c5793a5" title="Access function.">_Ch</a>()._data()); |
| 736 | <a name="l01040"></a>01040 <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> iX (p);X.<a class="code" href="classbdm_1_1chmat.html#cbf3389db96dff41fb2e9532d59b13c0" title="Inversion in the same form, i.e. cholesky.">inv</a> (iX); |
| 737 | <a name="l01041"></a>01041 <span class="comment">// compute</span> |
| 738 | <a name="l01042"></a>01042 <span class="comment">// \frac{ |\Psi|^{m/2}|X|^{-(m+p+1)/2}e^{-tr(\Psi X^{-1})/2} }{ 2^{mp/2}\Gamma_p(m/2)},</span> |
| 739 | <a name="l01043"></a>01043 mat M = Y.<a class="code" href="classbdm_1_1chmat.html#4b4c5d4dbb8a3d585b68d936cb6df31b" title="Conversion to full matrix.">to_mat</a>() * iX.to_mat(); |
| 740 | <a name="l01044"></a>01044 |
| 741 | <a name="l01045"></a>01045 <span class="keywordtype">double</span> log1 = 0.5 * p * (2 * Y.<a class="code" href="classbdm_1_1chmat.html#949ccd174ed19f9cfe36366cbd5c56a4" title="Logarithm of a determinant.">logdet</a>()) - 0.5 * (<a class="code" href="classbdm_1_1eiWishartCh.html#ca3035f7bd5e4597cc1843cf07af8464" title="parameter delta">delta</a> + p + 1) * (2 * X.<a class="code" href="classbdm_1_1chmat.html#949ccd174ed19f9cfe36366cbd5c56a4" title="Logarithm of a determinant.">logdet</a>()) - 0.5 * trace (M); |
| 742 | <a name="l01046"></a>01046 <span class="comment">//Fixme! Multivariate gamma omitted!! it is ok for sampling, but not otherwise!!</span> |
| 743 | <a name="l01047"></a>01047 |
| 744 | <a name="l01048"></a>01048 <span class="comment">/* if (0) {</span> |
| 745 | <a name="l01049"></a>01049 <span class="comment"> mat XX=X.to_mat();</span> |
| 746 | <a name="l01050"></a>01050 <span class="comment"> mat YY=Y.to_mat();</span> |
| 747 | <a name="l01051"></a>01051 <span class="comment"></span> |
| 748 | <a name="l01052"></a>01052 <span class="comment"> double log2 = 0.5*p*log(det(YY))-0.5*(delta+p+1)*log(det(XX))-0.5*trace(YY*inv(XX));</span> |
| 749 | <a name="l01053"></a>01053 <span class="comment"> cout << log1 << "," << log2 << endl;</span> |
| 750 | <a name="l01054"></a>01054 <span class="comment"> }*/</span> |
| 751 | <a name="l01055"></a>01055 <span class="keywordflow">return</span> log1; |
| 752 | <a name="l01056"></a>01056 }; |
| 753 | <a name="l01057"></a>01057 |
| 754 | <a name="l01058"></a>01058 }; |
| 755 | <a name="l01059"></a>01059 |
| 756 | <a name="l01061"></a><a class="code" href="classbdm_1_1rwiWishartCh.html">01061</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1rwiWishartCh.html" title="Random Walk on inverse Wishart.">rwiWishartCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a><eiWishartCh> |
| 757 | <a name="l01062"></a>01062 { |
| 758 | <a name="l01063"></a>01063 <span class="keyword">protected</span>: |
| 759 | <a name="l01065"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#2004675b37f712abe3913057bae97cfb">01065</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1rwiWishartCh.html#2004675b37f712abe3913057bae97cfb" title="square root of - needed for computation of from conditions">sqd</a>; |
| 760 | <a name="l01067"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#239b26c71ebcc118ba6925dfb6efc50a">01067</a> vec <a class="code" href="classbdm_1_1rwiWishartCh.html#239b26c71ebcc118ba6925dfb6efc50a" title="reference point for diagonal">refl</a>; |
| 761 | <a name="l01069"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#758cd05efa67c60b4bf4f7554b9ba861">01069</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1rwiWishartCh.html#758cd05efa67c60b4bf4f7554b9ba861" title="power of the reference">l</a>; |
| 762 | <a name="l01071"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663">01071</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a>; |
| 763 | <a name="l01072"></a>01072 |
| 764 | <a name="l01073"></a>01073 <span class="keyword">public</span>: |
| 765 | <a name="l01074"></a>01074 <a class="code" href="classbdm_1_1rwiWishartCh.html" title="Random Walk on inverse Wishart.">rwiWishartCh</a>() : <a class="code" href="classbdm_1_1rwiWishartCh.html#2004675b37f712abe3913057bae97cfb" title="square root of - needed for computation of from conditions">sqd</a> (0), <a class="code" href="classbdm_1_1rwiWishartCh.html#758cd05efa67c60b4bf4f7554b9ba861" title="power of the reference">l</a> (0), <a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a> (0) {} |
| 766 | <a name="l01076"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#28549ee3ce1ff8509360171ea3cf717c">01076</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1rwiWishartCh.html#28549ee3ce1ff8509360171ea3cf717c" title="constructor function">set_parameters</a> (<span class="keywordtype">int</span> p0, <span class="keywordtype">double</span> k, vec ref0, <span class="keywordtype">double</span> l0) { |
| 767 | <a name="l01077"></a>01077 <a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a> = p0; |
| 768 | <a name="l01078"></a>01078 <span class="keywordtype">double</span> delta = 2 / (k * k) + <a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a> + 3; |
| 769 | <a name="l01079"></a>01079 <a class="code" href="classbdm_1_1rwiWishartCh.html#2004675b37f712abe3913057bae97cfb" title="square root of - needed for computation of from conditions">sqd</a> = sqrt (delta - <a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a> - 1); |
| 770 | <a name="l01080"></a>01080 <a class="code" href="classbdm_1_1rwiWishartCh.html#758cd05efa67c60b4bf4f7554b9ba861" title="power of the reference">l</a> = l0; |
| 771 | <a name="l01081"></a>01081 <a class="code" href="classbdm_1_1rwiWishartCh.html#239b26c71ebcc118ba6925dfb6efc50a" title="reference point for diagonal">refl</a> = pow (ref0, 1 - <a class="code" href="classbdm_1_1rwiWishartCh.html#758cd05efa67c60b4bf4f7554b9ba861" title="power of the reference">l</a>); |
| 772 | <a name="l01082"></a>01082 |
| 773 | <a name="l01083"></a>01083 <a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1eiWishartCh.html#f463caed9d22d9949f3ee67614e7dcd3" title="constructor function">set_parameters</a> (eye (<a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a>), delta); |
| 774 | <a name="l01084"></a>01084 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = <a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1epdf.html#7083a65f7b7a0d0d13b2c516bd2ec29c" title="Size of the random variable.">dimension</a>(); |
| 775 | <a name="l01085"></a>01085 } |
| 776 | <a name="l01086"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#ac087ba6c885d3faeda9171229f9b4e6">01086</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1rwiWishartCh.html#ac087ba6c885d3faeda9171229f9b4e6">condition</a> (<span class="keyword">const</span> vec &c) { |
| 777 | <a name="l01087"></a>01087 vec z = c; |
| 778 | <a name="l01088"></a>01088 <span class="keywordtype">int</span> ri = 0; |
| 779 | <a name="l01089"></a>01089 <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i < <a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a>*<a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a>;i += (p + 1)) {<span class="comment">//trace diagonal element</span> |
| 780 | <a name="l01090"></a>01090 z (i) = pow (z (i), <a class="code" href="classbdm_1_1rwiWishartCh.html#758cd05efa67c60b4bf4f7554b9ba861" title="power of the reference">l</a>) * <a class="code" href="classbdm_1_1rwiWishartCh.html#239b26c71ebcc118ba6925dfb6efc50a" title="reference point for diagonal">refl</a> (ri); |
| 781 | <a name="l01091"></a>01091 ri++; |
| 782 | <a name="l01092"></a>01092 } |
| 783 | <a name="l01093"></a>01093 |
| 784 | <a name="l01094"></a>01094 <a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1eiWishartCh.html#d9947933dfc94546cbd6a81f95ec5af5" title="access function">_setY</a> (<a class="code" href="classbdm_1_1rwiWishartCh.html#2004675b37f712abe3913057bae97cfb" title="square root of - needed for computation of from conditions">sqd</a>*z); |
| 785 | <a name="l01095"></a>01095 } |
| 786 | <a name="l01096"></a>01096 }; |
| 787 | <a name="l01097"></a>01097 |
| 788 | <a name="l01099"></a>01099 <span class="keyword">enum</span> RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; |
| 789 | <a name="l01105"></a><a class="code" href="classbdm_1_1eEmp.html">01105</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> |
| 790 | <a name="l01106"></a>01106 { |
| 791 | <a name="l01107"></a>01107 <span class="keyword">protected</span> : |
| 792 | <a name="l01109"></a><a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031">01109</a> <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>; |
| 793 | <a name="l01111"></a><a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d">01111</a> vec <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>; |
| 794 | <a name="l01113"></a><a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3">01113</a> Array<vec> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>; |
| 795 | <a name="l01114"></a>01114 <span class="keyword">public</span>: |
| 796 | <a name="l01117"></a>01117 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> () : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> (), <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> (), <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> () {}; |
| 797 | <a name="l01119"></a><a class="code" href="classbdm_1_1eEmp.html#a3daf6363455af099921715e1233c076">01119</a> <a class="code" href="classbdm_1_1eEmp.html#a3daf6363455af099921715e1233c076" title="copy constructor">eEmp</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> &e) : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> (e), <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> (e.<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>), <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (e.<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>) {}; |
| 798 | <a name="l01121"></a>01121 |
| 799 | <a name="l01123"></a>01123 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#e7f8f98310c1de51bd5c8a1c87528f72" title="Set samples and weights.">set_statistics</a> (<span class="keyword">const</span> vec &w0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> &pdf0); |
| 800 | <a name="l01125"></a><a class="code" href="classbdm_1_1eEmp.html#4f7e6ba7183972e3c7ae399613861b95">01125</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#4f7e6ba7183972e3c7ae399613861b95" title="Set samples and weights.">set_statistics</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> &pdf0 , <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>) {<a class="code" href="classbdm_1_1eEmp.html#4f7e6ba7183972e3c7ae399613861b95" title="Set samples and weights.">set_statistics</a> (ones (n) / n, pdf0);}; |
| 801 | <a name="l01127"></a>01127 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b62d802b8ef39f7c4dcbeb366c90951a" title="Set sample.">set_samples</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0); |
| 802 | <a name="l01129"></a><a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1">01129</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1" title="Set sample.">set_parameters</a> (<span class="keywordtype">int</span> n0, <span class="keywordtype">bool</span> copy = <span class="keyword">true</span>) {<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> = n0; <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>.set_size (n0, copy);<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>.set_size (n0, copy);}; |
| 803 | <a name="l01131"></a><a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef">01131</a> vec& <a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
| 804 | <a name="l01133"></a><a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714">01133</a> <span class="keyword">const</span> vec& <a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714" title="Potentially dangerous, use with care.">_w</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; |
| 805 | <a name="l01135"></a><a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2">01135</a> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
| 806 | <a name="l01137"></a><a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2">01137</a> <span class="keyword">const</span> Array<vec>& <a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2" title="access function">_samples</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; |
| 807 | <a name="l01139"></a>01139 ivec <a class="code" href="classbdm_1_1eEmp.html#f06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> (RESAMPLING_METHOD method = SYSTEMATIC); |
| 808 | <a name="l01141"></a><a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270">01141</a> vec <a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error (<span class="stringliteral">"Not implemented"</span>);<span class="keywordflow">return</span> 0;} |
| 809 | <a name="l01143"></a><a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09">01143</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09" title="inherited operation : NOT implemneted">evallog</a> (<span class="keyword">const</span> vec &val)<span class="keyword"> const </span>{it_error (<span class="stringliteral">"Not implemented"</span>);<span class="keywordflow">return</span> 0.0;} |
| 810 | <a name="l01144"></a><a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9">01144</a> vec <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>()<span class="keyword"> const </span>{ |
| 811 | <a name="l01145"></a>01145 vec pom = zeros (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>); |
| 812 | <a name="l01146"></a>01146 <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i < <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++) {pom += <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i) * <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> (i);} |
| 813 | <a name="l01147"></a>01147 <span class="keywordflow">return</span> pom; |
| 814 | <a name="l01148"></a>01148 } |
| 815 | <a name="l01149"></a><a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87">01149</a> vec <a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{ |
| 816 | <a name="l01150"></a>01150 vec pom = zeros (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>); |
| 817 | <a name="l01151"></a>01151 <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i < <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++) {pom += pow (<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i), 2) * <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> (i);} |
| 818 | <a name="l01152"></a>01152 <span class="keywordflow">return</span> pom -pow (<a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>(), 2); |
| 819 | <a name="l01153"></a>01153 } |
| 820 | <a name="l01155"></a><a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f">01155</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f" title="For this class, qbounds are minimum and maximum value of the population!">qbounds</a> (vec &lb, vec &ub, <span class="keywordtype">double</span> perc = 0.95)<span class="keyword"> const </span>{ |
| 821 | <a name="l01156"></a>01156 <span class="comment">// lb in inf so than it will be pushed below;</span> |
| 822 | <a name="l01157"></a>01157 lb.set_size (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>); |
| 823 | <a name="l01158"></a>01158 ub.set_size (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>); |
| 824 | <a name="l01159"></a>01159 lb = std::numeric_limits<double>::infinity(); |
| 825 | <a name="l01160"></a>01160 ub = -std::numeric_limits<double>::infinity(); |
| 826 | <a name="l01161"></a>01161 <span class="keywordtype">int</span> j; |
| 827 | <a name="l01162"></a>01162 <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i < <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++) { |
| 828 | <a name="l01163"></a>01163 <span class="keywordflow">for</span> (j = 0;j < <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>; j++) { |
| 829 | <a name="l01164"></a>01164 <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i) (j) < lb (j)) {lb (j) = <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i) (j);} |
| 830 | <a name="l01165"></a>01165 <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i) (j) > ub (j)) {ub (j) = <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i) (j);} |
| 831 | <a name="l01166"></a>01166 } |
| 832 | <a name="l01167"></a>01167 } |
| 833 | <a name="l01168"></a>01168 } |
| 834 | <a name="l01169"></a>01169 }; |
| 835 | <a name="l01170"></a>01170 |
930 | | <a name="l01252"></a>01252 <span class="comment">// vec mlnorm<sq_T>::samplecond (const vec &cond, double &lik ) {</span> |
931 | | <a name="l01253"></a>01253 <span class="comment">// this->condition ( cond );</span> |
932 | | <a name="l01254"></a>01254 <span class="comment">// vec smp = epdf.sample();</span> |
933 | | <a name="l01255"></a>01255 <span class="comment">// lik = epdf.eval ( smp );</span> |
934 | | <a name="l01256"></a>01256 <span class="comment">// return smp;</span> |
935 | | <a name="l01257"></a>01257 <span class="comment">// }</span> |
936 | | <a name="l01258"></a>01258 |
937 | | <a name="l01259"></a>01259 <span class="comment">// template<class sq_T></span> |
938 | | <a name="l01260"></a>01260 <span class="comment">// mat mlnorm<sq_T>::samplecond (const vec &cond, vec &lik, int n ) {</span> |
939 | | <a name="l01261"></a>01261 <span class="comment">// int i;</span> |
940 | | <a name="l01262"></a>01262 <span class="comment">// int dim = rv.count();</span> |
941 | | <a name="l01263"></a>01263 <span class="comment">// mat Smp ( dim,n );</span> |
942 | | <a name="l01264"></a>01264 <span class="comment">// vec smp ( dim );</span> |
943 | | <a name="l01265"></a>01265 <span class="comment">// this->condition ( cond );</span> |
944 | | <a name="l01266"></a>01266 <span class="comment">//</span> |
945 | | <a name="l01267"></a>01267 <span class="comment">// for ( i=0; i<n; i++ ) {</span> |
946 | | <a name="l01268"></a>01268 <span class="comment">// smp = epdf.sample();</span> |
947 | | <a name="l01269"></a>01269 <span class="comment">// lik ( i ) = epdf.eval ( smp );</span> |
948 | | <a name="l01270"></a>01270 <span class="comment">// Smp.set_col ( i ,smp );</span> |
949 | | <a name="l01271"></a>01271 <span class="comment">// }</span> |
950 | | <a name="l01272"></a>01272 <span class="comment">//</span> |
951 | | <a name="l01273"></a>01273 <span class="comment">// return Smp;</span> |
952 | | <a name="l01274"></a>01274 <span class="comment">// }</span> |
953 | | <a name="l01275"></a>01275 |
954 | | <a name="l01276"></a>01276 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
955 | | <a name="l01277"></a><a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">01277</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">mlnorm<sq_T>::condition</a> ( <span class="keyword">const</span> vec &cond ) |
956 | | <a name="l01278"></a>01278 { |
957 | | <a name="l01279"></a>01279 _mu = A*cond + mu_const; |
958 | | <a name="l01280"></a>01280 <span class="comment">//R is already assigned;</span> |
959 | | <a name="l01281"></a>01281 } |
960 | | <a name="l01282"></a>01282 |
961 | | <a name="l01283"></a>01283 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
962 | | <a name="l01284"></a><a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80">01284</a> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>* <a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">enorm<sq_T>::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const</span> |
963 | | <a name="l01285"></a>01285 <span class="keyword"> </span>{ |
964 | | <a name="l01286"></a>01286 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(), <span class="stringliteral">"rv description is not assigned"</span> ); |
965 | | <a name="l01287"></a>01287 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
966 | | <a name="l01288"></a>01288 |
967 | | <a name="l01289"></a>01289 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,irvn ); <span class="comment">//select rows and columns of R</span> |
968 | | <a name="l01290"></a>01290 |
969 | | <a name="l01291"></a>01291 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>* tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a>; |
970 | | <a name="l01292"></a>01292 tmp-><a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a> ( rvn ); |
971 | | <a name="l01293"></a>01293 tmp-><a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ), Rn ); |
972 | | <a name="l01294"></a>01294 <span class="keywordflow">return</span> tmp; |
973 | | <a name="l01295"></a>01295 } |
974 | | <a name="l01296"></a>01296 |
975 | | <a name="l01297"></a>01297 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
976 | | <a name="l01298"></a><a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26">01298</a> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">enorm<sq_T>::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const</span> |
977 | | <a name="l01299"></a>01299 <span class="keyword"> </span>{ |
978 | | <a name="l01300"></a>01300 |
979 | | <a name="l01301"></a>01301 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(),<span class="stringliteral">"rvs are not assigned"</span> ); |
980 | | <a name="l01302"></a>01302 |
981 | | <a name="l01303"></a>01303 <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvc = <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#aec44dabdf0a6d90fbae95e1356eda39" title="Subtract another variable from the current one.">subt</a> ( rvn ); |
982 | | <a name="l01304"></a>01304 it_assert_debug ( ( rvc.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() +rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ==<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ),<span class="stringliteral">"wrong rvn"</span> ); |
983 | | <a name="l01305"></a>01305 <span class="comment">//Permutation vector of the new R</span> |
984 | | <a name="l01306"></a>01306 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
985 | | <a name="l01307"></a>01307 ivec irvc = rvc.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); |
986 | | <a name="l01308"></a>01308 ivec perm=concat ( irvn , irvc ); |
987 | | <a name="l01309"></a>01309 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,perm ); |
988 | | <a name="l01310"></a>01310 |
989 | | <a name="l01311"></a>01311 <span class="comment">//fixme - could this be done in general for all sq_T?</span> |
990 | | <a name="l01312"></a>01312 mat S=Rn.to_mat(); |
991 | | <a name="l01313"></a>01313 <span class="comment">//fixme</span> |
992 | | <a name="l01314"></a>01314 <span class="keywordtype">int</span> n=rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>()-1; |
993 | | <a name="l01315"></a>01315 <span class="keywordtype">int</span> end=<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows()-1; |
994 | | <a name="l01316"></a>01316 mat S11 = S.get ( 0,n, 0, n ); |
995 | | <a name="l01317"></a>01317 mat S12 = S.get ( 0, n , rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); |
996 | | <a name="l01318"></a>01318 mat S22 = S.get ( rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end, rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); |
997 | | <a name="l01319"></a>01319 |
998 | | <a name="l01320"></a>01320 vec mu1 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ); |
999 | | <a name="l01321"></a>01321 vec mu2 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvc ); |
1000 | | <a name="l01322"></a>01322 mat A=S12*inv ( S22 ); |
1001 | | <a name="l01323"></a>01323 sq_T R_n ( S11 - A *S12.T() ); |
1002 | | <a name="l01324"></a>01324 |
1003 | | <a name="l01325"></a>01325 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a>* tmp=<span class="keyword">new</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a> ( ); |
1004 | | <a name="l01326"></a>01326 tmp->set_rv ( rvn ); tmp->set_rvc ( rvc ); |
1005 | | <a name="l01327"></a>01327 tmp->set_parameters ( A,mu1-A*mu2,R_n ); |
1006 | | <a name="l01328"></a>01328 <span class="keywordflow">return</span> tmp; |
1007 | | <a name="l01329"></a>01329 } |
1008 | | <a name="l01330"></a>01330 |
1009 | | <a name="l01332"></a>01332 |
1010 | | <a name="l01333"></a>01333 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
1011 | | <a name="l01334"></a>01334 std::ostream &operator<< ( std::ostream &os, mlnorm<sq_T> &ml ) |
1012 | | <a name="l01335"></a>01335 { |
1013 | | <a name="l01336"></a>01336 os << <span class="stringliteral">"A:"</span><< ml.A<<endl; |
1014 | | <a name="l01337"></a>01337 os << <span class="stringliteral">"mu:"</span><< ml.mu_const<<endl; |
1015 | | <a name="l01338"></a>01338 os << <span class="stringliteral">"R:"</span> << ml.epdf._R().to_mat() <<endl; |
1016 | | <a name="l01339"></a>01339 <span class="keywordflow">return</span> os; |
1017 | | <a name="l01340"></a>01340 }; |
| 916 | <a name="l01252"></a>01252 <span class="comment">// mat mlnorm<sq_T>::samplecond (const vec &cond, vec &lik, int n ) {</span> |
| 917 | <a name="l01253"></a>01253 <span class="comment">// int i;</span> |
| 918 | <a name="l01254"></a>01254 <span class="comment">// int dim = rv.count();</span> |
| 919 | <a name="l01255"></a>01255 <span class="comment">// mat Smp ( dim,n );</span> |
| 920 | <a name="l01256"></a>01256 <span class="comment">// vec smp ( dim );</span> |
| 921 | <a name="l01257"></a>01257 <span class="comment">// this->condition ( cond );</span> |
| 922 | <a name="l01258"></a>01258 <span class="comment">//</span> |
| 923 | <a name="l01259"></a>01259 <span class="comment">// for ( i=0; i<n; i++ ) {</span> |
| 924 | <a name="l01260"></a>01260 <span class="comment">// smp = epdf.sample();</span> |
| 925 | <a name="l01261"></a>01261 <span class="comment">// lik ( i ) = epdf.eval ( smp );</span> |
| 926 | <a name="l01262"></a>01262 <span class="comment">// Smp.set_col ( i ,smp );</span> |
| 927 | <a name="l01263"></a>01263 <span class="comment">// }</span> |
| 928 | <a name="l01264"></a>01264 <span class="comment">//</span> |
| 929 | <a name="l01265"></a>01265 <span class="comment">// return Smp;</span> |
| 930 | <a name="l01266"></a>01266 <span class="comment">// }</span> |
| 931 | <a name="l01267"></a>01267 |
| 932 | <a name="l01268"></a>01268 |
| 933 | <a name="l01269"></a>01269 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 934 | <a name="l01270"></a><a class="code" href="classbdm_1_1enorm.html#dcb739443669ba0a8faf634196284c08">01270</a> <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr<epdf></a> <a class="code" href="classbdm_1_1enorm.html#dcb739443669ba0a8faf634196284c08" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">enorm<sq_T>::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const</span> |
| 935 | <a name="l01271"></a>01271 <span class="keyword"></span>{ |
| 936 | <a name="l01272"></a>01272 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> *tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> (); |
| 937 | <a name="l01273"></a>01273 <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr<epdf></a> narrow(tmp); |
| 938 | <a name="l01274"></a>01274 <a class="code" href="classbdm_1_1enorm.html#dcb739443669ba0a8faf634196284c08" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">marginal</a> ( rvn, *tmp ); |
| 939 | <a name="l01275"></a>01275 <span class="keywordflow">return</span> narrow; |
| 940 | <a name="l01276"></a>01276 } |
| 941 | <a name="l01277"></a>01277 |
| 942 | <a name="l01278"></a>01278 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 943 | <a name="l01279"></a>01279 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#dcb739443669ba0a8faf634196284c08" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">enorm<sq_T>::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn, <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm<sq_T></a> &target )<span class="keyword"> const</span> |
| 944 | <a name="l01280"></a>01280 <span class="keyword"></span>{ |
| 945 | <a name="l01281"></a>01281 it_assert_debug (<a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(), <span class="stringliteral">"rv description is not assigned"</span>); |
| 946 | <a name="l01282"></a>01282 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> (<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>); |
| 947 | <a name="l01283"></a>01283 |
| 948 | <a name="l01284"></a>01284 sq_T Rn (<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>, irvn); <span class="comment">// select rows and columns of R</span> |
| 949 | <a name="l01285"></a>01285 |
| 950 | <a name="l01286"></a>01286 target.<a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a> ( rvn ); |
| 951 | <a name="l01287"></a>01287 target.<a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> (<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> (irvn), Rn); |
| 952 | <a name="l01288"></a>01288 } |
| 953 | <a name="l01289"></a>01289 |
| 954 | <a name="l01290"></a>01290 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 955 | <a name="l01291"></a><a class="code" href="classbdm_1_1enorm.html#40201ca12c6900f7aeb493bb7c582e20">01291</a> <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr<mpdf></a> <a class="code" href="classbdm_1_1enorm.html#40201ca12c6900f7aeb493bb7c582e20" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">enorm<sq_T>::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn )<span class="keyword"> const</span> |
| 956 | <a name="l01292"></a>01292 <span class="keyword"></span>{ |
| 957 | <a name="l01293"></a>01293 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a> *tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a> (); |
| 958 | <a name="l01294"></a>01294 <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr<mpdf></a> narrow(tmp); |
| 959 | <a name="l01295"></a>01295 <a class="code" href="classbdm_1_1enorm.html#40201ca12c6900f7aeb493bb7c582e20" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">condition</a> ( rvn, *tmp ); |
| 960 | <a name="l01296"></a>01296 <span class="keywordflow">return</span> narrow; |
| 961 | <a name="l01297"></a>01297 } |
| 962 | <a name="l01298"></a>01298 |
| 963 | <a name="l01299"></a>01299 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 964 | <a name="l01300"></a>01300 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#40201ca12c6900f7aeb493bb7c582e20" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">enorm<sq_T>::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &rvn, <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling , where is random variable, rv, and...">mpdf</a> &target )<span class="keyword"> const</span> |
| 965 | <a name="l01301"></a>01301 <span class="keyword"></span>{ |
| 966 | <a name="l01302"></a>01302 <span class="keyword">typedef</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm<sq_T></a> TMlnorm; |
| 967 | <a name="l01303"></a>01303 |
| 968 | <a name="l01304"></a>01304 it_assert_debug (<a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(), <span class="stringliteral">"rvs are not assigned"</span>); |
| 969 | <a name="l01305"></a>01305 TMlnorm &uptarget = <span class="keyword">dynamic_cast<</span>TMlnorm &<span class="keyword">></span>(target); |
| 970 | <a name="l01306"></a>01306 |
| 971 | <a name="l01307"></a>01307 <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvc = <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#aec44dabdf0a6d90fbae95e1356eda39" title="Subtract another variable from the current one.">subt</a> (rvn); |
| 972 | <a name="l01308"></a>01308 it_assert_debug ( (rvc.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() + rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() == <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>()), <span class="stringliteral">"wrong rvn"</span>); |
| 973 | <a name="l01309"></a>01309 <span class="comment">//Permutation vector of the new R</span> |
| 974 | <a name="l01310"></a>01310 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> (<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>); |
| 975 | <a name="l01311"></a>01311 ivec irvc = rvc.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> (<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>); |
| 976 | <a name="l01312"></a>01312 ivec perm = concat (irvn , irvc); |
| 977 | <a name="l01313"></a>01313 sq_T Rn (<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>, perm); |
| 978 | <a name="l01314"></a>01314 |
| 979 | <a name="l01315"></a>01315 <span class="comment">//fixme - could this be done in general for all sq_T?</span> |
| 980 | <a name="l01316"></a>01316 mat S = Rn.to_mat(); |
| 981 | <a name="l01317"></a>01317 <span class="comment">//fixme</span> |
| 982 | <a name="l01318"></a>01318 <span class="keywordtype">int</span> n = rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() - 1; |
| 983 | <a name="l01319"></a>01319 <span class="keywordtype">int</span> end = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows() - 1; |
| 984 | <a name="l01320"></a>01320 mat S11 = S.get (0, n, 0, n); |
| 985 | <a name="l01321"></a>01321 mat S12 = S.get (0, n , rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end); |
| 986 | <a name="l01322"></a>01322 mat S22 = S.get (rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end, rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end); |
| 987 | <a name="l01323"></a>01323 |
| 988 | <a name="l01324"></a>01324 vec mu1 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> (irvn); |
| 989 | <a name="l01325"></a>01325 vec mu2 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> (irvc); |
| 990 | <a name="l01326"></a>01326 mat A = S12 * inv (S22); |
| 991 | <a name="l01327"></a>01327 sq_T R_n (S11 - A *S12.T()); |
| 992 | <a name="l01328"></a>01328 |
| 993 | <a name="l01329"></a>01329 uptarget.set_rv (rvn); |
| 994 | <a name="l01330"></a>01330 uptarget.set_rvc (rvc); |
| 995 | <a name="l01331"></a>01331 uptarget.set_parameters (A, mu1 - A*mu2, R_n); |
| 996 | <a name="l01332"></a>01332 } |
| 997 | <a name="l01333"></a>01333 |
| 998 | <a name="l01336"></a>01336 <span class="keyword">template</span><<span class="keyword">class</span> sq_T> |
| 999 | <a name="l01337"></a><a class="code" href="classbdm_1_1mgnorm.html#b736332d20e418bf50d45836e129f339">01337</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#b736332d20e418bf50d45836e129f339" title="set mean function">mgnorm<sq_T >::set_parameters</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr<fnc></a> &g0, <span class="keyword">const</span> sq_T &R0) { |
| 1000 | <a name="l01338"></a>01338 g = g0; |
| 1001 | <a name="l01339"></a>01339 this-><a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.set_parameters (zeros (g->dimension()), R0); |
| 1002 | <a name="l01340"></a>01340 } |