Show
Ignore:
Timestamp:
08/16/09 18:14:04 (15 years ago)
Author:
smidl
Message:

Documentation regenerated

Files:
1 modified

Legend:

Unmodified
Added
Removed
  • library/doc/html/exp__family_8h-source.html

    r401 r538  
    5252      <li><a href="main.html"><span>Main&nbsp;Page</span></a></li> 
    5353      <li><a href="pages.html"><span>Related&nbsp;Pages</span></a></li> 
    54       <li><a href="modules.html"><span>Modules</span></a></li> 
    5554      <li><a href="annotated.html"><span>Classes</span></a></li> 
    5655      <li class="current"><a href="files.html"><span>Files</span></a></li> 
     
    6867<a name="l00015"></a>00015 <span class="preprocessor"></span> 
    6968<a name="l00016"></a>00016  
    70 <a name="l00017"></a>00017 <span class="preprocessor">#include "../base/bdmbase.h"</span> 
    71 <a name="l00018"></a>00018 <span class="preprocessor">#include "../math/chmat.h"</span> 
    72 <a name="l00019"></a>00019  
    73 <a name="l00020"></a>00020 <span class="keyword">namespace </span>bdm 
    74 <a name="l00021"></a>00021 { 
    75 <a name="l00022"></a>00022  
     69<a name="l00017"></a>00017 <span class="preprocessor">#include "../shared_ptr.h"</span> 
     70<a name="l00018"></a>00018 <span class="preprocessor">#include "../base/bdmbase.h"</span> 
     71<a name="l00019"></a>00019 <span class="preprocessor">#include "../math/chmat.h"</span> 
     72<a name="l00020"></a>00020  
     73<a name="l00021"></a>00021 <span class="keyword">namespace </span>bdm 
     74<a name="l00022"></a>00022 { 
    7675<a name="l00023"></a>00023  
    77 <a name="l00025"></a>00025         <span class="keyword">extern</span> Uniform_RNG UniRNG; 
    78 <a name="l00027"></a>00027         <span class="keyword">extern</span> Normal_RNG NorRNG; 
    79 <a name="l00029"></a>00029         <span class="keyword">extern</span> Gamma_RNG GamRNG; 
    80 <a name="l00030"></a>00030  
    81 <a name="l00037"></a><a class="code" href="classbdm_1_1eEF.html">00037</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> 
    82 <a name="l00038"></a>00038         { 
    83 <a name="l00039"></a>00039                 <span class="keyword">public</span>: 
    84 <a name="l00040"></a>00040 <span class="comment">//      eEF() :epdf() {};</span> 
    85 <a name="l00042"></a><a class="code" href="classbdm_1_1eEF.html#d5459d472d0feca7cf1fb5f65c4b9ef4">00042</a> <span class="comment"></span>                        <a class="code" href="classbdm_1_1eEF.html#d5459d472d0feca7cf1fb5f65c4b9ef4" title="default constructor">eEF</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ) {}; 
    86 <a name="l00044"></a>00044                         <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>() <span class="keyword">const</span> =0; 
    87 <a name="l00046"></a><a class="code" href="classbdm_1_1eEF.html#deef7d6273ba4d5a5cf0bbd91ec7277a">00046</a>                         <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#deef7d6273ba4d5a5cf0bbd91ec7277a" title="TODO decide if it is really needed.">dupdate</a> ( mat &amp;v ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; 
    88 <a name="l00048"></a><a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6">00048</a>                         <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const</span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;}; 
    89 <a name="l00050"></a><a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692">00050</a>                         <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const </span>{ 
    90 <a name="l00051"></a>00051                                 <span class="keywordtype">double</span> tmp; 
    91 <a name="l00052"></a>00052                                 tmp= <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( val )-<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>(); 
    92 <a name="l00053"></a>00053                                 it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> );  
    93 <a name="l00054"></a>00054                                 <span class="keywordflow">return</span> tmp;} 
    94 <a name="l00056"></a><a class="code" href="classbdm_1_1eEF.html#79a7c8ea8c02e45d410bd1d7ffd72b41">00056</a>                         <span class="keyword">virtual</span> vec <a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> ( <span class="keyword">const</span> mat &amp;Val )<span class="keyword"> const</span> 
    95 <a name="l00057"></a>00057 <span class="keyword">                        </span>{ 
    96 <a name="l00058"></a>00058                                 vec x ( Val.cols() ); 
    97 <a name="l00059"></a>00059                                 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i&lt;Val.cols();i++ ) {x ( i ) =<a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> ( Val.get_col ( i ) ) ;} 
    98 <a name="l00060"></a>00060                                 <span class="keywordflow">return</span> x-<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>(); 
    99 <a name="l00061"></a>00061                         } 
    100 <a name="l00063"></a><a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053">00063</a>                         <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; 
    101 <a name="l00064"></a>00064         }; 
    102 <a name="l00065"></a>00065  
    103 <a name="l00072"></a><a class="code" href="classbdm_1_1mEF.html">00072</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> 
    104 <a name="l00073"></a>00073         { 
    105 <a name="l00074"></a>00074  
    106 <a name="l00075"></a>00075                 <span class="keyword">public</span>: 
    107 <a name="l00077"></a><a class="code" href="classbdm_1_1mEF.html#dd7caad7026b778af66e34480eec6f9e">00077</a>                         <a class="code" href="classbdm_1_1mEF.html#dd7caad7026b778af66e34480eec6f9e" title="Default constructor.">mEF</a> ( ) :<a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> ( ) {}; 
    108 <a name="l00078"></a>00078         }; 
    109 <a name="l00079"></a>00079  
    110 <a name="l00081"></a><a class="code" href="classbdm_1_1BMEF.html">00081</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> 
    111 <a name="l00082"></a>00082         { 
    112 <a name="l00083"></a>00083                 <span class="keyword">protected</span>: 
    113 <a name="l00085"></a><a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64">00085</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>; 
    114 <a name="l00087"></a><a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865">00087</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>; 
    115 <a name="l00088"></a>00088                 <span class="keyword">public</span>: 
    116 <a name="l00090"></a><a class="code" href="classbdm_1_1BMEF.html#2def512872ed8a4fc3b702371ec0be55">00090</a>                         <a class="code" href="classbdm_1_1BMEF.html#2def512872ed8a4fc3b702371ec0be55" title="Default constructor (=empty constructor).">BMEF</a> ( <span class="keywordtype">double</span> frg0=1.0 ) :<a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> ( ), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ( frg0 ) {} 
    117 <a name="l00092"></a><a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62">00092</a>                         <a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62" title="Copy constructor.">BMEF</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> &amp;B ) :<a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> ( B ), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ( B.<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> ), <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ( B.<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> ) {} 
    118 <a name="l00094"></a><a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051">00094</a>                         <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051" title="get statistics from another model">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* BM0 ) {it_error ( <span class="stringliteral">"Not implemented"</span> );}; 
    119 <a name="l00096"></a><a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6">00096</a>                         <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &amp;data, <span class="keyword">const</span> <span class="keywordtype">double</span> w ) {}; 
    120 <a name="l00097"></a>00097                         <span class="comment">//original Bayes</span> 
    121 <a name="l00098"></a>00098                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> ( <span class="keyword">const</span> vec &amp;dt ); 
    122 <a name="l00100"></a><a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749">00100</a>                         <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> * B ) {it_error ( <span class="stringliteral">"Not implemented"</span> );} 
    123 <a name="l00102"></a>00102 <span class="comment">//      virtual void flatten ( double nu0 ) {it_error ( "Not implemented" );}</span> 
    124 <a name="l00103"></a>00103  
    125 <a name="l00104"></a><a class="code" href="classbdm_1_1BMEF.html#62d2e4691bed41a1efa6b9c2e35e5c67">00104</a>                         <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* <a class="code" href="classbdm_1_1BMEF.html#62d2e4691bed41a1efa6b9c2e35e5c67" title="Flatten the posterior as if to keep nu0 data.">_copy_</a> ()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"function _copy_ not implemented for this BM"</span> ); <span class="keywordflow">return</span> NULL;}; 
    126 <a name="l00105"></a>00105         }; 
    127 <a name="l00106"></a>00106  
    128 <a name="l00107"></a>00107         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    129 <a name="l00108"></a>00108         <span class="keyword">class </span>mlnorm; 
    130 <a name="l00109"></a>00109  
    131 <a name="l00115"></a>00115         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    132 <a name="l00116"></a><a class="code" href="classbdm_1_1enorm.html">00116</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> 
    133 <a name="l00117"></a>00117         { 
    134 <a name="l00118"></a>00118                 <span class="keyword">protected</span>: 
    135 <a name="l00120"></a><a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7">00120</a>                         vec <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; 
    136 <a name="l00122"></a><a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2">00122</a>                         sq_T <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>; 
    137 <a name="l00123"></a>00123                 <span class="keyword">public</span>: 
    138 <a name="l00126"></a>00126  
    139 <a name="l00127"></a>00127                         <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> ( ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ), <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( ),<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ( ) {}; 
    140 <a name="l00128"></a>00128                         <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> ( <span class="keyword">const</span> vec &amp;<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &amp;<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ) {set_parameters ( mu,R );} 
    141 <a name="l00129"></a>00129                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &amp;<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>,<span class="keyword">const</span> sq_T &amp;<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> ); 
    142 <a name="l00130"></a>00130                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">from_setting</a>(<span class="keyword">const</span> Setting &amp;root); 
    143 <a name="l00131"></a><a class="code" href="classbdm_1_1enorm.html#38eb17ecb75d94a50b6782fcf735cfea">00131</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#38eb17ecb75d94a50b6782fcf735cfea" title="This method TODO.">validate</a>() { 
    144 <a name="l00132"></a>00132                                 it_assert(<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>.length()==<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows(),<span class="stringliteral">"parameters mismatch"</span>); 
    145 <a name="l00133"></a>00133                                 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>.length(); 
    146 <a name="l00134"></a>00134                         } 
     76<a name="l00024"></a>00024  
     77<a name="l00026"></a>00026 <span class="keyword">extern</span> Uniform_RNG UniRNG; 
     78<a name="l00028"></a>00028 <span class="keyword">extern</span> Normal_RNG NorRNG; 
     79<a name="l00030"></a>00030 <span class="keyword">extern</span> Gamma_RNG GamRNG; 
     80<a name="l00031"></a>00031  
     81<a name="l00038"></a><a class="code" href="classbdm_1_1eEF.html">00038</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> 
     82<a name="l00039"></a>00039 { 
     83<a name="l00040"></a>00040         <span class="keyword">public</span>: 
     84<a name="l00041"></a>00041 <span class="comment">//      eEF() :epdf() {};</span> 
     85<a name="l00043"></a><a class="code" href="classbdm_1_1eEF.html#d5459d472d0feca7cf1fb5f65c4b9ef4">00043</a> <span class="comment"></span>                <a class="code" href="classbdm_1_1eEF.html#d5459d472d0feca7cf1fb5f65c4b9ef4" title="default constructor">eEF</a> () : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> () {}; 
     86<a name="l00045"></a>00045                 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>() <span class="keyword">const</span> = 0; 
     87<a name="l00047"></a><a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6">00047</a>                 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> (<span class="keyword">const</span> vec &amp;val)<span class="keyword"> const</span>{it_error (<span class="stringliteral">"Not implemented"</span>);<span class="keywordflow">return</span> 0.0;}; 
     88<a name="l00049"></a><a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692">00049</a>                 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEF.html#a36d06ecdd6f4c79dc122510eaccc692" title="Evaluate normalized log-probability.">evallog</a> (<span class="keyword">const</span> vec &amp;val)<span class="keyword"> const </span>{ 
     89<a name="l00050"></a>00050                         <span class="keywordtype">double</span> tmp; 
     90<a name="l00051"></a>00051                         tmp = <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> (val) - <a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>(); 
     91<a name="l00052"></a>00052 <span class="comment">//                              it_assert_debug ( std::isfinite ( tmp ),"Infinite value" );</span> 
     92<a name="l00053"></a>00053                         <span class="keywordflow">return</span> tmp; 
     93<a name="l00054"></a>00054                 } 
     94<a name="l00056"></a><a class="code" href="classbdm_1_1eEF.html#6886c60b6b690e503913240db5de0c6f">00056</a>                 <span class="keyword">virtual</span> vec <a class="code" href="classbdm_1_1eEF.html#6886c60b6b690e503913240db5de0c6f" title="Evaluate normalized log-probability for many samples.">evallog_m</a> (<span class="keyword">const</span> mat &amp;Val)<span class="keyword"> const </span>{ 
     95<a name="l00057"></a>00057                         vec x (Val.cols()); 
     96<a name="l00058"></a>00058                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; Val.cols();i++) {x (i) = <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> (Val.get_col (i)) ;} 
     97<a name="l00059"></a>00059                         <span class="keywordflow">return</span> x -<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>(); 
     98<a name="l00060"></a>00060                 } 
     99<a name="l00062"></a><a class="code" href="classbdm_1_1eEF.html#d793f4fd6d0dcec5f16bff0ae45fc7d5">00062</a>                 <span class="keyword">virtual</span> vec <a class="code" href="classbdm_1_1eEF.html#d793f4fd6d0dcec5f16bff0ae45fc7d5" title="Evaluate normalized log-probability for many samples.">evallog_m</a> (<span class="keyword">const</span> Array&lt;vec&gt; &amp;Val)<span class="keyword"> const </span>{ 
     100<a name="l00063"></a>00063                         vec x (Val.length()); 
     101<a name="l00064"></a>00064                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; Val.length();i++) {x (i) = <a class="code" href="classbdm_1_1eEF.html#a4135778ecd9ab774762936c82a097c6" title="Evaluate normalized log-probability.">evallog_nn</a> (Val (i)) ;} 
     102<a name="l00065"></a>00065                         <span class="keywordflow">return</span> x -<a class="code" href="classbdm_1_1eEF.html#cd678fc9b02007a4b8d6692e746f1bf8" title="logarithm of the normalizing constant, ">lognc</a>(); 
     103<a name="l00066"></a>00066                 } 
     104<a name="l00068"></a><a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053">00068</a>                 <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEF.html#cf38af29e8e3d650c640509a52396053" title="Power of the density, used e.g. to flatten the density.">pow</a> (<span class="keywordtype">double</span> p) {it_error (<span class="stringliteral">"Not implemented"</span>);}; 
     105<a name="l00069"></a>00069 }; 
     106<a name="l00070"></a>00070  
     107<a name="l00071"></a>00071  
     108<a name="l00073"></a><a class="code" href="classbdm_1_1BMEF.html">00073</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> 
     109<a name="l00074"></a>00074 { 
     110<a name="l00075"></a>00075         <span class="keyword">protected</span>: 
     111<a name="l00077"></a><a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64">00077</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>; 
     112<a name="l00079"></a><a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865">00079</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>; 
     113<a name="l00080"></a>00080         <span class="keyword">public</span>: 
     114<a name="l00082"></a><a class="code" href="classbdm_1_1BMEF.html#2def512872ed8a4fc3b702371ec0be55">00082</a>                 <a class="code" href="classbdm_1_1BMEF.html#2def512872ed8a4fc3b702371ec0be55" title="Default constructor (=empty constructor).">BMEF</a> (<span class="keywordtype">double</span> frg0 = 1.0) : <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> (), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> (frg0) {} 
     115<a name="l00084"></a><a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62">00084</a>                 <a class="code" href="classbdm_1_1BMEF.html#9662379513101405e159e76717104e62" title="Copy constructor.">BMEF</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> &amp;B) : <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> (B), <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> (B.<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>), <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> (B.<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>) {} 
     116<a name="l00086"></a><a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051">00086</a>                 <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#d2b528b7a41ca67163152142f5404051" title="get statistics from another model">set_statistics</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* BM0) {it_error (<span class="stringliteral">"Not implemented"</span>);}; 
     117<a name="l00088"></a><a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6">00088</a>                 <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> (<span class="keyword">const</span> vec &amp;data, <span class="keyword">const</span> <span class="keywordtype">double</span> w) {}; 
     118<a name="l00089"></a>00089                 <span class="comment">//original Bayes</span> 
     119<a name="l00090"></a>00090                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#bf58deb99af2a6cc674f13ff90300de6" title="Weighted update of sufficient statistics (Bayes rule).">bayes</a> (<span class="keyword">const</span> vec &amp;dt); 
     120<a name="l00092"></a><a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749">00092</a>                 <span class="keyword">virtual</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1BMEF.html#b2916a2e71a958665054473124d5e749" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> * B) {it_error (<span class="stringliteral">"Not implemented"</span>);} 
     121<a name="l00094"></a>00094 <span class="comment">//      virtual void flatten ( double nu0 ) {it_error ( "Not implemented" );}</span> 
     122<a name="l00095"></a>00095  
     123<a name="l00096"></a><a class="code" href="classbdm_1_1BMEF.html#62d2e4691bed41a1efa6b9c2e35e5c67">00096</a>                 <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* <a class="code" href="classbdm_1_1BMEF.html#62d2e4691bed41a1efa6b9c2e35e5c67" title="Flatten the posterior as if to keep nu0 data.">_copy_</a> ()<span class="keyword"> const </span>{it_error (<span class="stringliteral">"function _copy_ not implemented for this BM"</span>); <span class="keywordflow">return</span> NULL;}; 
     124<a name="l00097"></a>00097 }; 
     125<a name="l00098"></a>00098  
     126<a name="l00099"></a>00099 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T, <span class="keyword">template</span> &lt;<span class="keyword">typename</span>&gt; <span class="keyword">class </span>TEpdf&gt; 
     127<a name="l00100"></a>00100 <span class="keyword">class </span>mlnorm; 
     128<a name="l00101"></a>00101  
     129<a name="l00107"></a>00107 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     130<a name="l00108"></a><a class="code" href="classbdm_1_1enorm.html">00108</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> 
     131<a name="l00109"></a>00109 { 
     132<a name="l00110"></a>00110         <span class="keyword">protected</span>: 
     133<a name="l00112"></a><a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7">00112</a>                 vec <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; 
     134<a name="l00114"></a><a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2">00114</a>                 sq_T <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>; 
     135<a name="l00115"></a>00115         <span class="keyword">public</span>: 
     136<a name="l00118"></a>00118  
     137<a name="l00119"></a>00119                 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> (), <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> (), <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> () {}; 
     138<a name="l00120"></a>00120                 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a> (<span class="keyword">const</span> vec &amp;<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>, <span class="keyword">const</span> sq_T &amp;<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>) {set_parameters (mu, R);} 
     139<a name="l00121"></a>00121                 <span class="keywordtype">void</span> set_parameters (<span class="keyword">const</span> vec &amp;<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>, <span class="keyword">const</span> sq_T &amp;<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>); 
     140<a name="l00122"></a>00122                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">from_setting</a> (<span class="keyword">const</span> Setting &amp;root); 
     141<a name="l00123"></a><a class="code" href="classbdm_1_1enorm.html#38eb17ecb75d94a50b6782fcf735cfea">00123</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#38eb17ecb75d94a50b6782fcf735cfea" title="This method TODO.">validate</a>() { 
     142<a name="l00124"></a>00124                         it_assert (<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>.length() == <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows(), <span class="stringliteral">"parameters mismatch"</span>); 
     143<a name="l00125"></a>00125                         <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>.length(); 
     144<a name="l00126"></a>00126                 } 
     145<a name="l00128"></a>00128  
     146<a name="l00131"></a>00131  
     147<a name="l00133"></a>00133                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">dupdate</a> (mat &amp;v, <span class="keywordtype">double</span> nu = 1.0); 
     148<a name="l00134"></a>00134  
     149<a name="l00135"></a>00135                 vec <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample,  from density .">sample</a>() <span class="keyword">const</span>; 
    147150<a name="l00136"></a>00136  
    148 <a name="l00139"></a>00139  
    149 <a name="l00141"></a>00141                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">dupdate</a> ( mat &amp;v,<span class="keywordtype">double</span> nu=1.0 ); 
    150 <a name="l00142"></a>00142  
    151 <a name="l00143"></a>00143                         vec <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample,  from density .">sample</a>() <span class="keyword">const</span>; 
    152 <a name="l00144"></a>00144                         mat <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample,  from density .">sample</a> ( <span class="keywordtype">int</span> N ) <span class="keyword">const</span>; 
    153 <a name="l00145"></a>00145                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">evallog_nn</a> ( <span class="keyword">const</span> vec &amp;val ) <span class="keyword">const</span>; 
    154 <a name="l00146"></a>00146                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; 
    155 <a name="l00147"></a><a class="code" href="classbdm_1_1enorm.html#b2fa2915c35366392fe9bb022ca1a600">00147</a>                         vec <a class="code" href="classbdm_1_1enorm.html#b2fa2915c35366392fe9bb022ca1a600" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;} 
    156 <a name="l00148"></a><a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773">00148</a>                         vec <a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> diag ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.to_mat() );} 
    157 <a name="l00149"></a>00149 <span class="comment">//      mlnorm&lt;sq_T&gt;* condition ( const RV &amp;rvn ) const ; &lt;=========== fails to cmpile. Why?</span> 
    158 <a name="l00150"></a>00150                         <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn ) <span class="keyword">const</span> ; 
    159 <a name="l00151"></a>00151                         <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a>* <a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ) <span class="keyword">const</span>; 
    160 <a name="l00152"></a>00152 <span class="comment">//                      epdf* marginal ( const RV &amp;rv ) const;</span> 
    161 <a name="l00154"></a>00154 <span class="comment"></span> 
    162 <a name="l00157"></a>00157  
    163 <a name="l00158"></a>00158                         vec&amp; _mu() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;} 
    164 <a name="l00159"></a>00159                         <span class="keywordtype">void</span> set_mu ( <span class="keyword">const</span> vec mu0 ) { <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>=mu0;} 
    165 <a name="l00160"></a>00160                         sq_T&amp; _R() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;} 
    166 <a name="l00161"></a>00161                         <span class="keyword">const</span> sq_T&amp; _R()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;} 
    167 <a name="l00163"></a>00163  
    168 <a name="l00164"></a>00164         }; 
    169 <a name="l00165"></a>00165         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(enorm&lt;chmat&gt;); 
    170 <a name="l00166"></a>00166         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(enorm&lt;ldmat&gt;); 
    171 <a name="l00167"></a>00167         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(enorm&lt;fsqmat&gt;); 
    172 <a name="l00168"></a>00168  
    173 <a name="l00169"></a>00169  
    174 <a name="l00176"></a><a class="code" href="classbdm_1_1egiw.html">00176</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> 
    175 <a name="l00177"></a>00177         { 
    176 <a name="l00178"></a>00178                 <span class="keyword">protected</span>: 
    177 <a name="l00180"></a><a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52">00180</a>                         <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>; 
    178 <a name="l00182"></a><a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4">00182</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>; 
    179 <a name="l00184"></a><a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a">00184</a>                         <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>; 
    180 <a name="l00186"></a><a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd">00186</a>                         <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a>; 
    181 <a name="l00187"></a>00187                 <span class="keyword">public</span>: 
    182 <a name="l00190"></a>00190                         <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a>() :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {}; 
    183 <a name="l00191"></a>00191                         <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> ( <span class="keywordtype">int</span> dimx0, <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0=-1.0 ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {set_parameters ( dimx0,V0, nu0 );}; 
    184 <a name="l00192"></a>00192  
    185 <a name="l00193"></a>00193                         <span class="keywordtype">void</span> set_parameters ( <span class="keywordtype">int</span> dimx0, <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0=-1.0 ) 
    186 <a name="l00194"></a>00194                         { 
    187 <a name="l00195"></a>00195                                 <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>=dimx0; 
    188 <a name="l00196"></a>00196                                 <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> = V0.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>()-<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>; 
    189 <a name="l00197"></a>00197                                 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>* ( <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>+<a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> ); <span class="comment">// size(R) + size(Theta)</span> 
    190 <a name="l00198"></a>00198  
    191 <a name="l00199"></a>00199                                 <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>=V0; 
    192 <a name="l00200"></a>00200                                 <span class="keywordflow">if</span> ( nu0&lt;0 ) 
    193 <a name="l00201"></a>00201                                 { 
    194 <a name="l00202"></a>00202                                         <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> = 0.1 +<a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> +2*<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> +2; <span class="comment">// +2 assures finite expected value of R</span> 
    195 <a name="l00203"></a>00203                                         <span class="comment">// terms before that are sufficient for finite normalization</span> 
    196 <a name="l00204"></a>00204                                 } 
    197 <a name="l00205"></a>00205                                 <span class="keywordflow">else</span> 
    198 <a name="l00206"></a>00206                                 { 
    199 <a name="l00207"></a>00207                                         <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>=nu0; 
    200 <a name="l00208"></a>00208                                 } 
    201 <a name="l00209"></a>00209                         } 
    202 <a name="l00211"></a>00211  
    203 <a name="l00212"></a>00212                         vec <a class="code" href="classbdm_1_1egiw.html#920f21548b7a3723923dd108fe514c61" title="Returns a sample,  from density .">sample</a>() <span class="keyword">const</span>; 
    204 <a name="l00213"></a>00213                         vec <a class="code" href="classbdm_1_1egiw.html#df70c05f918c3a6f86d60f10c1fd6ba2" title="return expected value">mean</a>() <span class="keyword">const</span>; 
    205 <a name="l00214"></a>00214                         vec <a class="code" href="classbdm_1_1egiw.html#c1ecc406613cc2341225dc10c3d3b46a" title="return expected variance (not covariance!)">variance</a>() <span class="keyword">const</span>; 
    206 <a name="l00215"></a>00215  
    207 <a name="l00217"></a>00217                         vec <a class="code" href="classbdm_1_1egiw.html#66d2ba9295c306012b309efcc9e516f0" title="LS estimate of .">est_theta</a>() <span class="keyword">const</span>; 
    208 <a name="l00218"></a>00218  
    209 <a name="l00220"></a>00220                         <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1egiw.html#88c321a2051d1afdbb31a098896a717b" title="Covariance of the LS estimate.">est_theta_cov</a>() <span class="keyword">const</span>; 
    210 <a name="l00221"></a>00221  
    211 <a name="l00222"></a>00222                         <span class="keywordtype">void</span> mean_mat ( mat &amp;M, mat&amp;R ) <span class="keyword">const</span>; 
    212 <a name="l00224"></a>00224                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#bfb8e7c619b34ad804a73bff71742b5e" title="In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise...">evallog_nn</a> ( <span class="keyword">const</span> vec &amp;val ) <span class="keyword">const</span>; 
    213 <a name="l00225"></a>00225                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#41d72ba7b2abc8a9a4209ffa98ed5633" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; 
    214 <a name="l00226"></a><a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be">00226</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be" title="Power of the density, used e.g. to flatten the density.">pow</a> ( <span class="keywordtype">double</span> p ) {V*=p;<a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>*=p;}; 
    215 <a name="l00227"></a>00227  
    216 <a name="l00230"></a>00230  
    217 <a name="l00231"></a>00231                         <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>&amp; _V() {<span class="keywordflow">return</span> V;} 
    218 <a name="l00232"></a>00232                         <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>&amp; _V()<span class="keyword"> const </span>{<span class="keywordflow">return</span> V;} 
    219 <a name="l00233"></a>00233                         <span class="keywordtype">double</span>&amp; _nu()  {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} 
    220 <a name="l00234"></a>00234                         <span class="keyword">const</span> <span class="keywordtype">double</span>&amp; _nu()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} 
    221 <a name="l00235"></a><a class="code" href="classbdm_1_1egiw.html#55b76ec75bd2df5ef9cab3be20a33bbb">00235</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#55b76ec75bd2df5ef9cab3be20a33bbb">from_setting</a>(<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>){ 
    222 <a name="l00236"></a>00236                                 <span class="keyword">set</span>.lookupValue(<span class="stringliteral">"nu"</span>,<a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>); 
    223 <a name="l00237"></a>00237                                 <span class="keyword">set</span>.lookupValue(<span class="stringliteral">"dimx"</span>,<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>); 
    224 <a name="l00238"></a>00238                                 mat V; 
    225 <a name="l00239"></a>00239                                 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(V,<span class="keyword">set</span>,<span class="stringliteral">"V"</span>); 
    226 <a name="l00240"></a>00240                                 set_parameters(<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>, V, <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>); 
    227 <a name="l00241"></a>00241                                 <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a>* <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>=UI::build&lt;RV&gt;(<span class="keyword">set</span>,<span class="stringliteral">"rv"</span>); 
    228 <a name="l00242"></a>00242                                 <a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a>(*rv); 
    229 <a name="l00243"></a>00243                                 <span class="keyword">delete</span> rv; 
    230 <a name="l00244"></a>00244                         } 
    231 <a name="l00246"></a>00246         }; 
    232 <a name="l00247"></a>00247         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(egiw); 
    233 <a name="l00248"></a>00248  
    234 <a name="l00257"></a><a class="code" href="classbdm_1_1eDirich.html">00257</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> 
    235 <a name="l00258"></a>00258         { 
    236 <a name="l00259"></a>00259                 <span class="keyword">protected</span>: 
    237 <a name="l00261"></a><a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2">00261</a>                         vec <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>; 
    238 <a name="l00262"></a>00262                 <span class="keyword">public</span>: 
    239 <a name="l00265"></a>00265  
    240 <a name="l00266"></a>00266                         <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ) {}; 
    241 <a name="l00267"></a>00267                         <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> &amp;D0 ) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> () {set_parameters ( D0.<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> );}; 
    242 <a name="l00268"></a>00268                         eDirich ( <span class="keyword">const</span> vec &amp;beta0 ) {set_parameters ( beta0 );}; 
    243 <a name="l00269"></a>00269                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &amp;beta0 ) 
    244 <a name="l00270"></a>00270                         { 
    245 <a name="l00271"></a>00271                                 <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>= beta0; 
    246 <a name="l00272"></a>00272                                 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length(); 
    247 <a name="l00273"></a>00273                         } 
    248 <a name="l00275"></a>00275  
    249 <a name="l00276"></a><a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc">00276</a>                         vec <a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> vec_1 ( 0.0 );}; 
    250 <a name="l00277"></a><a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6">00277</a>                         vec <a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>/sum(<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>);}; 
    251 <a name="l00278"></a><a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc">00278</a>                         vec <a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordtype">double</span> gamma =sum(<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>); <span class="keywordflow">return</span> elem_mult ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>, ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>+1 ) ) / ( gamma* ( gamma+1 ) );} 
    252 <a name="l00280"></a><a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318">00280</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318" title="In this instance, val is ...">evallog_nn</a> ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const</span> 
    253 <a name="l00281"></a>00281 <span class="keyword">                        </span>{ 
    254 <a name="l00282"></a>00282                                 <span class="keywordtype">double</span> tmp; tmp= ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>-1 ) *log ( val );               it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> ); 
    255 <a name="l00283"></a>00283                                 <span class="keywordflow">return</span> tmp; 
    256 <a name="l00284"></a>00284                         }; 
    257 <a name="l00285"></a><a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2">00285</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a> ()<span class="keyword"> const</span> 
    258 <a name="l00286"></a>00286 <span class="keyword">                        </span>{ 
    259 <a name="l00287"></a>00287                                 <span class="keywordtype">double</span> tmp; 
    260 <a name="l00288"></a>00288                                 <span class="keywordtype">double</span> gam=sum ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ); 
    261 <a name="l00289"></a>00289                                 <span class="keywordtype">double</span> lgb=0.0; 
    262 <a name="l00290"></a>00290                                 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i&lt;<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length();i++ ) {lgb+=lgamma ( <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> ( i ) );} 
    263 <a name="l00291"></a>00291                                 tmp= lgb-lgamma ( gam ); 
    264 <a name="l00292"></a>00292                                 it_assert_debug ( std::isfinite ( tmp ),<span class="stringliteral">"Infinite value"</span> ); 
    265 <a name="l00293"></a>00293                                 <span class="keywordflow">return</span> tmp; 
    266 <a name="l00294"></a>00294                         }; 
    267 <a name="l00296"></a><a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324">00296</a>                         vec&amp; <a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>()  {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>;} 
    268 <a name="l00298"></a>00298         }; 
    269 <a name="l00299"></a>00299  
    270 <a name="l00301"></a><a class="code" href="classbdm_1_1multiBM.html">00301</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> 
    271 <a name="l00302"></a>00302         { 
    272 <a name="l00303"></a>00303                 <span class="keyword">protected</span>: 
    273 <a name="l00305"></a><a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a">00305</a>                         <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>; 
    274 <a name="l00307"></a><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25">00307</a>                         vec &amp;<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>; 
    275 <a name="l00308"></a>00308                 <span class="keyword">public</span>: 
    276 <a name="l00310"></a><a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf">00310</a>                         <a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf" title="Default constructor.">multiBM</a> ( ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) 
    277 <a name="l00311"></a>00311                         { 
    278 <a name="l00312"></a>00312                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>.length() &gt;0 ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} 
    279 <a name="l00313"></a>00313                                 <span class="keywordflow">else</span>{<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=0.0;} 
    280 <a name="l00314"></a>00314                         } 
    281 <a name="l00316"></a><a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31">00316</a>                         <a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31" title="Copy constructor.">multiBM</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> &amp;B ) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> ( B ),<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ( B.<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ),<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta() ) {} 
    282 <a name="l00318"></a><a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52">00318</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52" title="Sets sufficient statistics to match that of givefrom mB0.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a>* mB0 ) {<span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* mB=<span class="keyword">dynamic_cast&lt;</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">&gt;</span> ( mB0 ); <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>=mB-&gt;<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;} 
    283 <a name="l00319"></a><a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95">00319</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95" title="Incremental Bayes rule.">bayes</a> ( <span class="keyword">const</span> vec &amp;dt ) 
    284 <a name="l00320"></a>00320                         { 
    285 <a name="l00321"></a>00321                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>&lt;1.0 ) {<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} 
    286 <a name="l00322"></a>00322                                 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>+=dt; 
    287 <a name="l00323"></a>00323                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BM.html#4064b6559d962633e4372b12f4cd204a" title="Logarithm of marginalized data likelihood.">ll</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} 
    288 <a name="l00324"></a>00324                         } 
    289 <a name="l00325"></a><a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">00325</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">logpred</a> ( <span class="keyword">const</span> vec &amp;dt )<span class="keyword"> const</span> 
    290 <a name="l00326"></a>00326 <span class="keyword">                        </span>{ 
    291 <a name="l00327"></a>00327                                 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> pred ( <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> ); 
    292 <a name="l00328"></a>00328                                 vec &amp;<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> = pred.<a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>(); 
    293 <a name="l00329"></a>00329  
    294 <a name="l00330"></a>00330                                 <span class="keywordtype">double</span> lll; 
    295 <a name="l00331"></a>00331                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>&lt;1.0 ) 
    296 <a name="l00332"></a>00332                                         {beta*=<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} 
    297 <a name="l00333"></a>00333                                 <span class="keywordflow">else</span> 
    298 <a name="l00334"></a>00334                                         <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {lll=<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} 
    299 <a name="l00335"></a>00335                                         <span class="keywordflow">else</span>{lll=pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} 
    300 <a name="l00336"></a>00336  
    301 <a name="l00337"></a>00337                                 beta+=dt; 
    302 <a name="l00338"></a>00338                                 <span class="keywordflow">return</span> pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>()-lll; 
    303 <a name="l00339"></a>00339                         } 
    304 <a name="l00340"></a><a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732">00340</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* B ) 
    305 <a name="l00341"></a>00341                         { 
    306 <a name="l00342"></a>00342                                 <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* E=<span class="keyword">dynamic_cast&lt;</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">&gt;</span> ( B ); 
    307 <a name="l00343"></a>00343                                 <span class="comment">// sum(beta) should be equal to sum(B.beta)</span> 
    308 <a name="l00344"></a>00344                                 <span class="keyword">const</span> vec &amp;Eb=E-&gt;<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;<span class="comment">//const_cast&lt;multiBM*&gt; ( E )-&gt;_beta();</span> 
    309 <a name="l00345"></a>00345                                 <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>*= ( sum ( Eb ) /sum ( <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> ) ); 
    310 <a name="l00346"></a>00346                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} 
    311 <a name="l00347"></a>00347                         } 
    312 <a name="l00348"></a>00348                         <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>&amp; posterior()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; 
    313 <a name="l00349"></a>00349                         <span class="keyword">const</span> eDirich* _e()<span class="keyword"> const </span>{<span class="keywordflow">return</span> &amp;<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; 
    314 <a name="l00350"></a>00350                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &amp;beta0 ) 
    315 <a name="l00351"></a>00351                         { 
    316 <a name="l00352"></a>00352                                 <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.set_parameters ( beta0 ); 
    317 <a name="l00353"></a>00353                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a> ) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>=<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.lognc();} 
    318 <a name="l00354"></a>00354                         } 
    319 <a name="l00355"></a>00355         }; 
    320 <a name="l00356"></a>00356  
    321 <a name="l00366"></a><a class="code" href="classbdm_1_1egamma.html">00366</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> 
    322 <a name="l00367"></a>00367         { 
    323 <a name="l00368"></a>00368                 <span class="keyword">protected</span>: 
    324 <a name="l00370"></a><a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa">00370</a>                         vec <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>; 
    325 <a name="l00372"></a><a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1">00372</a>                         vec <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>; 
    326 <a name="l00373"></a>00373                 <span class="keyword">public</span> : 
    327 <a name="l00376"></a>00376                         <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> ( ) :<a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> ( ), <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> ( 0 ), <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a> ( 0 ) {}; 
    328 <a name="l00377"></a>00377                         <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> ( <span class="keyword">const</span> vec &amp;a, <span class="keyword">const</span> vec &amp;b ) {set_parameters ( a, b );}; 
    329 <a name="l00378"></a>00378                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &amp;a, <span class="keyword">const</span> vec &amp;b ) {<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>=a,<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>=b;<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length();}; 
    330 <a name="l00380"></a>00380  
    331 <a name="l00381"></a>00381                         vec <a class="code" href="classbdm_1_1egamma.html#6ed82f0fd05f6002487256d8e75a0bbd" title="Returns a sample,  from density .">sample</a>() <span class="keyword">const</span>; 
    332 <a name="l00383"></a>00383 <span class="comment">//      mat sample ( int N ) const;</span> 
    333 <a name="l00384"></a>00384                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#a8e11e5a580ff42a1b205974c60768c6" title="TODO: is it used anywhere?">evallog</a> ( <span class="keyword">const</span> vec &amp;val ) <span class="keyword">const</span>; 
    334 <a name="l00385"></a>00385                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#9a66cbd100e8520c769ccb3c451f86f8" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; 
    335 <a name="l00387"></a><a class="code" href="classbdm_1_1egamma.html#0865cb3d6339fdc7410806cf70a329ed">00387</a>                         vec&amp; <a class="code" href="classbdm_1_1egamma.html#0865cb3d6339fdc7410806cf70a329ed" title="Returns poiter to alpha and beta. Potentially dengerous: use with care!">_alpha</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>;} 
    336 <a name="l00388"></a>00388                         vec&amp; _beta() {<span class="keywordflow">return</span> beta;} 
    337 <a name="l00389"></a><a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85">00389</a>                         vec <a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,beta );} 
    338 <a name="l00390"></a><a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1">00390</a>                         vec <a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,elem_mult ( beta,beta ) ); } 
    339 <a name="l00391"></a>00391                          
    340 <a name="l00400"></a><a class="code" href="classbdm_1_1egamma.html#8a6fd1a1c0190f3e0d95a2a1f99aafc1">00400</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#8a6fd1a1c0190f3e0d95a2a1f99aafc1">from_setting</a>(<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>){ 
    341 <a name="l00401"></a>00401                                 <a class="code" href="classbdm_1_1egamma.html#8a6fd1a1c0190f3e0d95a2a1f99aafc1">epdf::from_setting</a>(<span class="keyword">set</span>); <span class="comment">// reads rv</span> 
    342 <a name="l00402"></a>00402                                 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>,<span class="keyword">set</span>,<span class="stringliteral">"alpha"</span>); 
    343 <a name="l00403"></a>00403                                 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(beta,<span class="keyword">set</span>,<span class="stringliteral">"beta"</span>); 
    344 <a name="l00404"></a>00404                                 <a class="code" href="classbdm_1_1egamma.html#c3a8d8ae8ba79d0fb35036711fa7d127" title="This method TODO.">validate</a>(); 
    345 <a name="l00405"></a>00405                         } 
    346 <a name="l00406"></a><a class="code" href="classbdm_1_1egamma.html#c3a8d8ae8ba79d0fb35036711fa7d127">00406</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#c3a8d8ae8ba79d0fb35036711fa7d127" title="This method TODO.">validate</a>(){ 
    347 <a name="l00407"></a>00407                                 it_assert(<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length() ==beta.length(), <span class="stringliteral">"parameters do not match"</span>); 
    348 <a name="l00408"></a>00408                                 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> =<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length(); 
    349 <a name="l00409"></a>00409                         } 
    350 <a name="l00410"></a>00410         }; 
    351 <a name="l00411"></a>00411 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(egamma); 
    352 <a name="l00428"></a><a class="code" href="classbdm_1_1eigamma.html">00428</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> 
    353 <a name="l00429"></a>00429         { 
    354 <a name="l00430"></a>00430                 <span class="keyword">protected</span>: 
    355 <a name="l00431"></a>00431                 <span class="keyword">public</span> : 
    356 <a name="l00436"></a>00436  
    357 <a name="l00437"></a><a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f">00437</a>                         vec <a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> 1.0/<a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample,  from density .">egamma::sample</a>();}; 
    358 <a name="l00439"></a><a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb">00439</a>                         vec <a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div ( <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>,<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>-1 );} 
    359 <a name="l00440"></a><a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133">00440</a>                         vec <a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{vec mea=<a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>(); <span class="keywordflow">return</span> elem_div ( elem_mult ( mea,mea ),<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>-2 );} 
    360 <a name="l00441"></a>00441         }; 
    361 <a name="l00442"></a>00442         <span class="comment">/*</span> 
    362 <a name="l00444"></a>00444 <span class="comment">        class emix : public epdf {</span> 
    363 <a name="l00445"></a>00445 <span class="comment">        protected:</span> 
    364 <a name="l00446"></a>00446 <span class="comment">                int n;</span> 
    365 <a name="l00447"></a>00447 <span class="comment">                vec &amp;w;</span> 
    366 <a name="l00448"></a>00448 <span class="comment">                Array&lt;epdf*&gt; Coms;</span> 
    367 <a name="l00449"></a>00449 <span class="comment">        public:</span> 
    368 <a name="l00451"></a>00451 <span class="comment">                emix ( const RV &amp;rv, vec &amp;w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span> 
    369 <a name="l00452"></a>00452 <span class="comment">                void set_parameters( int &amp;i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span> 
    370 <a name="l00453"></a>00453 <span class="comment">                vec mean(){vec pom; for(int i=0;i&lt;n;i++){pom+=Coms(i)-&gt;mean()*w(i);} return pom;};</span> 
    371 <a name="l00454"></a>00454 <span class="comment">                vec sample() {it_error ( "Not implemented" );return 0;}</span> 
    372 <a name="l00455"></a>00455 <span class="comment">        };</span> 
    373 <a name="l00456"></a>00456 <span class="comment">        */</span> 
    374 <a name="l00457"></a>00457  
    375 <a name="l00459"></a>00459  
    376 <a name="l00460"></a><a class="code" href="classbdm_1_1euni.html">00460</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> 
    377 <a name="l00461"></a>00461         { 
    378 <a name="l00462"></a>00462                 <span class="keyword">protected</span>: 
    379 <a name="l00464"></a><a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32">00464</a>                         vec <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>; 
    380 <a name="l00466"></a><a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1">00466</a>                         vec <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>; 
    381 <a name="l00468"></a><a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c">00468</a>                         vec <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>; 
    382 <a name="l00470"></a><a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20">00470</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>; 
    383 <a name="l00472"></a><a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476">00472</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>; 
    384 <a name="l00473"></a>00473                 <span class="keyword">public</span>: 
    385 <a name="l00476"></a>00476                         <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ) {} 
    386 <a name="l00477"></a>00477                         <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> ( <span class="keyword">const</span> vec &amp;low0, <span class="keyword">const</span> vec &amp;high0 ) {set_parameters ( low0,high0 );} 
    387 <a name="l00478"></a>00478                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> vec &amp;low0, <span class="keyword">const</span> vec &amp;high0 ) 
    388 <a name="l00479"></a>00479                         { 
    389 <a name="l00480"></a>00480                                 <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> = high0-low0; 
    390 <a name="l00481"></a>00481                                 it_assert_debug ( min ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ) &gt;0.0,<span class="stringliteral">"bad support"</span> ); 
    391 <a name="l00482"></a>00482                                 <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> = low0; 
    392 <a name="l00483"></a>00483                                 <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a> = high0; 
    393 <a name="l00484"></a>00484                                 <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> = prod ( 1.0/<a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> ); 
    394 <a name="l00485"></a>00485                                 <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a> = log ( <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> ); 
    395 <a name="l00486"></a>00486                                 <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>.length(); 
    396 <a name="l00487"></a>00487                         } 
    397 <a name="l00489"></a>00489  
    398 <a name="l00490"></a>00490                         <span class="keywordtype">double</span> eval ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const  </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>;} 
    399 <a name="l00491"></a><a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81">00491</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81" title="Compute log-probability of argument val.">evallog</a> ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const  </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>;} 
    400 <a name="l00492"></a><a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194">00492</a>                         vec <a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const</span> 
    401 <a name="l00493"></a>00493 <span class="keyword">                        </span>{ 
    402 <a name="l00494"></a>00494                                 vec smp ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); 
    403 <a name="l00495"></a>00495 <span class="preprocessor">#pragma omp critical</span> 
    404 <a name="l00496"></a>00496 <span class="preprocessor"></span>                                UniRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ,smp ); 
    405 <a name="l00497"></a>00497                                 <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>+elem_mult ( <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>,smp ); 
    406 <a name="l00498"></a>00498                         } 
    407 <a name="l00500"></a><a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226">00500</a>                         vec <a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226" title="set values of low and high ">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>-<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> ) /2.0;} 
    408 <a name="l00501"></a><a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c">00501</a>                         vec <a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> ( pow ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,2 ) +pow ( <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>,2 ) +elem_mult ( <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> ) ) /3.0;} 
    409 <a name="l00510"></a><a class="code" href="classbdm_1_1euni.html#77f5fef1f006fe056066da23b9e5f042">00510</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1euni.html#77f5fef1f006fe056066da23b9e5f042">from_setting</a>(<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>){ 
    410 <a name="l00511"></a>00511                                 <a class="code" href="classbdm_1_1euni.html#77f5fef1f006fe056066da23b9e5f042">epdf::from_setting</a>(<span class="keyword">set</span>); <span class="comment">// reads rv and rvc</span> 
    411 <a name="l00512"></a>00512                                 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>,<span class="keyword">set</span>,<span class="stringliteral">"high"</span>); 
    412 <a name="l00513"></a>00513                                 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>,<span class="keyword">set</span>,<span class="stringliteral">"low"</span>); 
    413 <a name="l00514"></a>00514                         } 
    414 <a name="l00515"></a>00515         }; 
    415 <a name="l00516"></a>00516  
    416 <a name="l00517"></a>00517  
    417 <a name="l00523"></a>00523         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    418 <a name="l00524"></a><a class="code" href="classbdm_1_1mlnorm.html">00524</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> 
    419 <a name="l00525"></a>00525         { 
    420 <a name="l00526"></a>00526                 <span class="keyword">protected</span>: 
    421 <a name="l00528"></a><a class="code" href="classbdm_1_1mlnorm.html#150ad6acb223b0a0abeaf92346686dcd">00528</a>                         <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; 
    422 <a name="l00529"></a>00529                         mat A; 
    423 <a name="l00530"></a>00530                         vec mu_const; 
    424 <a name="l00531"></a>00531                         vec&amp; _mu; <span class="comment">//cached epdf.mu;</span> 
    425 <a name="l00532"></a>00532                 <span class="keyword">public</span>: 
    426 <a name="l00535"></a>00535                         <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> ( ) :<a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (),<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),A ( ),_mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a> =&amp;<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; }; 
    427 <a name="l00536"></a>00536                         <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> ( <span class="keyword">const</span>  mat &amp;A, <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;R ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),_mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) 
    428 <a name="l00537"></a>00537                         { 
    429 <a name="l00538"></a>00538                                 <a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a> =&amp;<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( A,mu0,R ); 
    430 <a name="l00539"></a>00539                         }; 
    431 <a name="l00541"></a>00541                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">set_parameters</a> ( <span class="keyword">const</span>  mat &amp;A, <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;R ); 
    432 <a name="l00544"></a>00544                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">condition</a> ( <span class="keyword">const</span> vec &amp;cond ); 
    433 <a name="l00545"></a>00545  
    434 <a name="l00547"></a><a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced">00547</a>                         vec&amp; <a class="code" href="classbdm_1_1mlnorm.html#56e587952f94fcac6cfc999eae6dbced" title="access function">_mu_const</a>() {<span class="keywordflow">return</span> mu_const;} 
    435 <a name="l00549"></a><a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614">00549</a>                         mat&amp; <a class="code" href="classbdm_1_1mlnorm.html#262a2a486bff585f34bb6a5005b02614" title="access function">_A</a>() {<span class="keywordflow">return</span> A;} 
    436 <a name="l00551"></a><a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604">00551</a>                         mat <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R().to_mat();} 
    437 <a name="l00552"></a>00552  
    438 <a name="l00553"></a>00553                         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_M&gt; 
    439 <a name="l00554"></a>00554                         <span class="keyword">friend</span> std::ostream &amp;operator&lt;&lt; ( std::ostream &amp;os,  mlnorm&lt;sq_M&gt; &amp;ml ); 
    440 <a name="l00555"></a>00555         }; 
    441 <a name="l00556"></a>00556  
    442 <a name="l00558"></a>00558         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    443 <a name="l00559"></a><a class="code" href="classbdm_1_1mgnorm.html">00559</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1mgnorm.html" title="Mpdf with general function for mean value.">mgnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> 
    444 <a name="l00560"></a>00560         { 
    445 <a name="l00561"></a>00561                 <span class="keyword">protected</span>: 
    446 <a name="l00563"></a><a class="code" href="classbdm_1_1mgnorm.html#8f7a376a1d2197e0634557e88e03104a">00563</a>                         <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; 
    447 <a name="l00564"></a>00564                         vec &amp;mu; 
    448 <a name="l00565"></a>00565                         <a class="code" href="classbdm_1_1fnc.html" title="Class representing function  of variable  represented by rv.">fnc</a>* g; 
    449 <a name="l00566"></a>00566                 <span class="keyword">public</span>: 
    450 <a name="l00568"></a><a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d">00568</a>                         <a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d" title="default constructor">mgnorm</a>() :mu ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&amp;<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;} 
    451 <a name="l00570"></a><a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564">00570</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564" title="set mean function">set_parameters</a> ( <a class="code" href="classbdm_1_1fnc.html" title="Class representing function  of variable  represented by rv.">fnc</a>* g0, <span class="keyword">const</span> sq_T &amp;R0 ) {g=g0; <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( g-&gt;<a class="code" href="classbdm_1_1fnc.html#083832294da9d1e40804158b979c4341" title="access function">dimension</a>() ), R0 );} 
    452 <a name="l00571"></a><a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d">00571</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &amp;cond ) {mu=g-&gt;<a class="code" href="classbdm_1_1fnc.html#6277b11d7fffc7ef8a2fa3e84ae5bad4" title="function evaluates numerical value of  at  cond ">eval</a> ( cond );}; 
    453 <a name="l00572"></a>00572  
    454 <a name="l00573"></a>00573  
    455 <a name="l00601"></a><a class="code" href="classbdm_1_1mgnorm.html#d717dacc6a9eb967f8410994dc6dc6f9">00601</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#d717dacc6a9eb967f8410994dc6dc6f9">from_setting</a>( <span class="keyword">const</span> Setting &amp;<span class="keyword">set</span> )  
    456 <a name="l00602"></a>00602                         {        
    457 <a name="l00603"></a>00603                                 <a class="code" href="classbdm_1_1fnc.html" title="Class representing function  of variable  represented by rv.">fnc</a>* g = UI::build&lt;fnc&gt;( <span class="keyword">set</span>, <span class="stringliteral">"g"</span> ); 
    458 <a name="l00604"></a>00604  
    459 <a name="l00605"></a>00605                                 mat R; 
    460 <a name="l00606"></a>00606                                 <span class="keywordflow">if</span> ( <span class="keyword">set</span>.exists( <span class="stringliteral">"dR"</span> ) ) 
    461 <a name="l00607"></a>00607                                 { 
    462 <a name="l00608"></a>00608                                         vec dR; 
    463 <a name="l00609"></a>00609                                         <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>( dR, <span class="keyword">set</span>, <span class="stringliteral">"dR"</span> ); 
    464 <a name="l00610"></a>00610                                         R=diag(dR); 
    465 <a name="l00611"></a>00611                                 } 
    466 <a name="l00612"></a>00612                                 <span class="keywordflow">else</span>  
    467 <a name="l00613"></a>00613                                         <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>( R, <span class="keyword">set</span>, <span class="stringliteral">"R"</span>);                                   
    468 <a name="l00614"></a>00614                  
    469 <a name="l00615"></a>00615                                 <a class="code" href="classbdm_1_1mgnorm.html#578e02458e2a0d17f3864826b6ebd564" title="set mean function">set_parameters</a>(g,R); 
    470 <a name="l00616"></a>00616                         } 
    471 <a name="l00617"></a>00617  
    472 <a name="l00618"></a>00618                         <span class="comment">/*void mgnorm::to_setting( Setting &amp;set ) const</span> 
    473 <a name="l00619"></a>00619 <span class="comment">                        {       </span> 
    474 <a name="l00620"></a>00620 <span class="comment">                                Transport::to_setting( set );</span> 
    475 <a name="l00621"></a>00621 <span class="comment"></span> 
    476 <a name="l00622"></a>00622 <span class="comment">                                Setting &amp;kilometers_setting = set.add("kilometers", Setting::TypeInt );</span> 
    477 <a name="l00623"></a>00623 <span class="comment">                                kilometers_setting = kilometers;</span> 
    478 <a name="l00624"></a>00624 <span class="comment"></span> 
    479 <a name="l00625"></a>00625 <span class="comment">                                UI::save( passengers, set, "passengers" );</span> 
    480 <a name="l00626"></a>00626 <span class="comment">                        }*/</span> 
    481 <a name="l00627"></a>00627  
    482 <a name="l00628"></a>00628         }; 
    483 <a name="l00629"></a>00629  
    484 <a name="l00630"></a>00630         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(mgnorm&lt;chmat&gt;); 
    485 <a name="l00631"></a>00631  
     151<a name="l00137"></a>00137                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">evallog_nn</a> (<span class="keyword">const</span> vec &amp;val) <span class="keyword">const</span>; 
     152<a name="l00138"></a>00138                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; 
     153<a name="l00139"></a><a class="code" href="classbdm_1_1enorm.html#b2fa2915c35366392fe9bb022ca1a600">00139</a>                 vec <a class="code" href="classbdm_1_1enorm.html#b2fa2915c35366392fe9bb022ca1a600" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;} 
     154<a name="l00140"></a><a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773">00140</a>                 vec <a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> diag (<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.to_mat());} 
     155<a name="l00141"></a>00141 <span class="comment">//      mlnorm&lt;sq_T&gt;* condition ( const RV &amp;rvn ) const ; &lt;=========== fails to cmpile. Why?</span> 
     156<a name="l00142"></a>00142                 <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;mpdf&gt;</a> <a class="code" href="classbdm_1_1enorm.html#40201ca12c6900f7aeb493bb7c582e20" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn ) <span class="keyword">const</span>; 
     157<a name="l00143"></a>00143  
     158<a name="l00144"></a>00144                 <span class="comment">// target not typed to mlnorm&lt;sq_T, enorm&lt;sq_T&gt; &gt; &amp;</span> 
     159<a name="l00145"></a>00145                 <span class="comment">// because that doesn't compile (perhaps because we</span> 
     160<a name="l00146"></a>00146                 <span class="comment">// haven't finished defining enorm yet), but the type</span> 
     161<a name="l00147"></a>00147                 <span class="comment">// is required</span> 
     162<a name="l00148"></a>00148                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#40201ca12c6900f7aeb493bb7c582e20" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn, <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling , where  is random variable, rv, and...">mpdf</a> &amp;target ) <span class="keyword">const</span>; 
     163<a name="l00149"></a>00149  
     164<a name="l00150"></a>00150                 <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;epdf&gt;</a> <a class="code" href="classbdm_1_1enorm.html#dcb739443669ba0a8faf634196284c08" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">marginal</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn ) <span class="keyword">const</span>; 
     165<a name="l00151"></a>00151                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#dcb739443669ba0a8faf634196284c08" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn, <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a> &amp;target ) <span class="keyword">const</span>; 
     166<a name="l00153"></a>00153  
     167<a name="l00156"></a>00156  
     168<a name="l00157"></a>00157                 vec&amp; _mu() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>;} 
     169<a name="l00158"></a>00158                 <span class="keywordtype">void</span> set_mu (<span class="keyword">const</span> vec mu0) { <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> = mu0;} 
     170<a name="l00159"></a>00159                 sq_T&amp; _R() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;} 
     171<a name="l00160"></a>00160                 <span class="keyword">const</span> sq_T&amp; _R()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>;} 
     172<a name="l00162"></a>00162  
     173<a name="l00163"></a>00163 }; 
     174<a name="l00164"></a>00164 <a class="code" href="user__info_8h.html#b06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (enorm, chmat); 
     175<a name="l00165"></a>00165 SHAREDPTR2 ( enorm, chmat ); 
     176<a name="l00166"></a>00166 <a class="code" href="user__info_8h.html#b06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (enorm, ldmat); 
     177<a name="l00167"></a>00167 SHAREDPTR2 ( enorm, ldmat ); 
     178<a name="l00168"></a>00168 <a class="code" href="user__info_8h.html#b06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (enorm, fsqmat); 
     179<a name="l00169"></a>00169 SHAREDPTR2 ( enorm, fsqmat ); 
     180<a name="l00170"></a>00170  
     181<a name="l00171"></a>00171  
     182<a name="l00178"></a><a class="code" href="classbdm_1_1egiw.html">00178</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> 
     183<a name="l00179"></a>00179 { 
     184<a name="l00180"></a>00180         <span class="keyword">protected</span>: 
     185<a name="l00182"></a><a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52">00182</a>                 <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a>; 
     186<a name="l00184"></a><a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4">00184</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>; 
     187<a name="l00186"></a><a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a">00186</a>                 <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>; 
     188<a name="l00188"></a><a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd">00188</a>                 <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a>; 
     189<a name="l00189"></a>00189         <span class="keyword">public</span>: 
     190<a name="l00192"></a>00192                 <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a>() : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {}; 
     191<a name="l00193"></a>00193                 <a class="code" href="classbdm_1_1egiw.html" title="Gauss-inverse-Wishart density stored in LD form.">egiw</a> (<span class="keywordtype">int</span> dimx0, <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> V0, <span class="keywordtype">double</span> nu0 = -1.0) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a>() {set_parameters (dimx0, V0, nu0);}; 
     192<a name="l00194"></a>00194  
     193<a name="l00195"></a>00195                 <span class="keywordtype">void</span> set_parameters (<span class="keywordtype">int</span> dimx0, ldmat V0, <span class="keywordtype">double</span> nu0 = -1.0) { 
     194<a name="l00196"></a>00196                         <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> = dimx0; 
     195<a name="l00197"></a>00197                         <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> = V0.rows() - <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>; 
     196<a name="l00198"></a>00198                         <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> * (<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> + <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a>); <span class="comment">// size(R) + size(Theta)</span> 
     197<a name="l00199"></a>00199  
     198<a name="l00200"></a>00200                         <a class="code" href="classbdm_1_1egiw.html#ae56852845c6af176fd9017dbebbbd52" title="Extended information matrix of sufficient statistics.">V</a> = V0; 
     199<a name="l00201"></a>00201                         <span class="keywordflow">if</span> (nu0 &lt; 0) { 
     200<a name="l00202"></a>00202                                 <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> = 0.1 + <a class="code" href="classbdm_1_1egiw.html#322414c32d9a21a006a5aab0311f64fd" title="Dimension of the regressor.">nPsi</a> + 2 * <a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a> + 2; <span class="comment">// +2 assures finite expected value of R</span> 
     201<a name="l00203"></a>00203                                 <span class="comment">// terms before that are sufficient for finite normalization</span> 
     202<a name="l00204"></a>00204                         } <span class="keywordflow">else</span> { 
     203<a name="l00205"></a>00205                                 <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> = nu0; 
     204<a name="l00206"></a>00206                         } 
     205<a name="l00207"></a>00207                 } 
     206<a name="l00209"></a>00209  
     207<a name="l00210"></a>00210                 vec <a class="code" href="classbdm_1_1egiw.html#920f21548b7a3723923dd108fe514c61" title="Returns a sample,  from density .">sample</a>() <span class="keyword">const</span>; 
     208<a name="l00211"></a>00211                 vec <a class="code" href="classbdm_1_1egiw.html#df70c05f918c3a6f86d60f10c1fd6ba2" title="return expected value">mean</a>() <span class="keyword">const</span>; 
     209<a name="l00212"></a>00212                 vec <a class="code" href="classbdm_1_1egiw.html#c1ecc406613cc2341225dc10c3d3b46a" title="return expected variance (not covariance!)">variance</a>() <span class="keyword">const</span>; 
     210<a name="l00213"></a>00213  
     211<a name="l00215"></a>00215                 vec <a class="code" href="classbdm_1_1egiw.html#66d2ba9295c306012b309efcc9e516f0" title="LS estimate of .">est_theta</a>() <span class="keyword">const</span>; 
     212<a name="l00216"></a>00216  
     213<a name="l00218"></a>00218                 ldmat <a class="code" href="classbdm_1_1egiw.html#88c321a2051d1afdbb31a098896a717b" title="Covariance of the LS estimate.">est_theta_cov</a>() <span class="keyword">const</span>; 
     214<a name="l00219"></a>00219  
     215<a name="l00221"></a>00221                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#d2075aa2306648b3e4fe40bb86628d5c" title="expected values of the linear coefficient and the covariance matrix are written to...">mean_mat</a> (mat &amp;M, mat&amp;R) <span class="keyword">const</span>; 
     216<a name="l00223"></a>00223                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#bfb8e7c619b34ad804a73bff71742b5e" title="In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise...">evallog_nn</a> (<span class="keyword">const</span> vec &amp;val) <span class="keyword">const</span>; 
     217<a name="l00224"></a>00224                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egiw.html#41d72ba7b2abc8a9a4209ffa98ed5633" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; 
     218<a name="l00225"></a><a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be">00225</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#8e610e95401a11baf34f65e16ecd87be" title="Power of the density, used e.g. to flatten the density.">pow</a> (<span class="keywordtype">double</span> p) {V *= p;<a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a> *= p;}; 
     219<a name="l00226"></a>00226  
     220<a name="l00229"></a>00229  
     221<a name="l00230"></a>00230                 <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>&amp; _V() {<span class="keywordflow">return</span> V;} 
     222<a name="l00231"></a>00231                 <span class="keyword">const</span> ldmat&amp; _V()<span class="keyword"> const </span>{<span class="keywordflow">return</span> V;} 
     223<a name="l00232"></a>00232                 <span class="keywordtype">double</span>&amp; _nu()  {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} 
     224<a name="l00233"></a>00233                 <span class="keyword">const</span> <span class="keywordtype">double</span>&amp; _nu()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>;} 
     225<a name="l00234"></a><a class="code" href="classbdm_1_1egiw.html#55b76ec75bd2df5ef9cab3be20a33bbb">00234</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egiw.html#55b76ec75bd2df5ef9cab3be20a33bbb">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>) { 
     226<a name="l00235"></a>00235                         <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>, <span class="keyword">set</span>, <span class="stringliteral">"nu"</span>, UI::compulsory); 
     227<a name="l00236"></a>00236                         <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>, <span class="keyword">set</span>, <span class="stringliteral">"dimx"</span>, UI::compulsory); 
     228<a name="l00237"></a>00237                         mat V; 
     229<a name="l00238"></a>00238                         <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (V, <span class="keyword">set</span>, <span class="stringliteral">"V"</span>, UI::compulsory); 
     230<a name="l00239"></a>00239                         set_parameters (<a class="code" href="classbdm_1_1egiw.html#23e4d78bea7e98840f3da30e76a2b57a" title="Dimension of the output.">dimx</a>, V, <a class="code" href="classbdm_1_1egiw.html#447eacf19d4f4083872686f044814dc4" title="Number of data records (degrees of freedom) of sufficient statistics.">nu</a>); 
     231<a name="l00240"></a>00240                         <a class="code" href="classbdm_1_1shared__ptr.html" title="A naive implementation of roughly a subset of the std::tr1:shared_ptr spec.">shared_ptr&lt;RV&gt;</a> <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> = UI::build&lt;RV&gt; (<span class="keyword">set</span>, <span class="stringliteral">"rv"</span>, UI::compulsory); 
     232<a name="l00241"></a>00241                         <a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a> (*rv); 
     233<a name="l00242"></a>00242                 } 
     234<a name="l00244"></a>00244 }; 
     235<a name="l00245"></a>00245 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a> ( egiw ); 
     236<a name="l00246"></a>00246 SHAREDPTR ( egiw ); 
     237<a name="l00247"></a>00247  
     238<a name="l00256"></a><a class="code" href="classbdm_1_1eDirich.html">00256</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> 
     239<a name="l00257"></a>00257 { 
     240<a name="l00258"></a>00258         <span class="keyword">protected</span>: 
     241<a name="l00260"></a><a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2">00260</a>                 vec <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>; 
     242<a name="l00261"></a>00261         <span class="keyword">public</span>: 
     243<a name="l00264"></a>00264  
     244<a name="l00265"></a>00265                 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> () {}; 
     245<a name="l00266"></a>00266                 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> &amp;D0) : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> () {set_parameters (D0.<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>);}; 
     246<a name="l00267"></a>00267                 eDirich (<span class="keyword">const</span> vec &amp;beta0) {set_parameters (beta0);}; 
     247<a name="l00268"></a>00268                 <span class="keywordtype">void</span> set_parameters (<span class="keyword">const</span> vec &amp;beta0) { 
     248<a name="l00269"></a>00269                         <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> = beta0; 
     249<a name="l00270"></a>00270                         <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length(); 
     250<a name="l00271"></a>00271                 } 
     251<a name="l00273"></a>00273  
     252<a name="l00274"></a><a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc">00274</a>                 vec <a class="code" href="classbdm_1_1eDirich.html#3290613d31d58daa8a45a54b003871fc" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{it_error (<span class="stringliteral">"Not implemented"</span>);<span class="keywordflow">return</span> vec_1 (0.0);}; 
     253<a name="l00275"></a><a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6">00275</a>                 vec <a class="code" href="classbdm_1_1eDirich.html#cb343355ec791298bb5a3404cd482fb6" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> / sum (<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>);}; 
     254<a name="l00276"></a><a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc">00276</a>                 vec <a class="code" href="classbdm_1_1eDirich.html#43c547a2507e233706f92712d8c2aacc" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordtype">double</span> gamma = sum (<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>); <span class="keywordflow">return</span> elem_mult (<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>, (<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> + 1)) / (gamma* (gamma + 1));} 
     255<a name="l00278"></a><a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318">00278</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#e09a24938e80c3d94b0ee842d1552318" title="In this instance, val is ...">evallog_nn</a> (<span class="keyword">const</span> vec &amp;val)<span class="keyword"> const </span>{ 
     256<a name="l00279"></a>00279                         <span class="keywordtype">double</span> tmp; tmp = (<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> - 1) * log (val); 
     257<a name="l00280"></a>00280 <span class="comment">//                              it_assert_debug ( std::isfinite ( tmp ),"Infinite value" );</span> 
     258<a name="l00281"></a>00281                         <span class="keywordflow">return</span> tmp; 
     259<a name="l00282"></a>00282                 }; 
     260<a name="l00283"></a><a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2">00283</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a> ()<span class="keyword"> const </span>{ 
     261<a name="l00284"></a>00284                         <span class="keywordtype">double</span> tmp; 
     262<a name="l00285"></a>00285                         <span class="keywordtype">double</span> gam = sum (<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>); 
     263<a name="l00286"></a>00286                         <span class="keywordtype">double</span> lgb = 0.0; 
     264<a name="l00287"></a>00287                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>.length();i++) {lgb += lgamma (<a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a> (i));} 
     265<a name="l00288"></a>00288                         tmp = lgb - lgamma (gam); 
     266<a name="l00289"></a>00289 <span class="comment">//                              it_assert_debug ( std::isfinite ( tmp ),"Infinite value" );</span> 
     267<a name="l00290"></a>00290                         <span class="keywordflow">return</span> tmp; 
     268<a name="l00291"></a>00291                 }; 
     269<a name="l00293"></a><a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324">00293</a>                 vec&amp; <a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>()  {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eDirich.html#f25886a49b4667af61245de81c83b5d2" title="sufficient statistics">beta</a>;} 
     270<a name="l00295"></a>00295 }; 
     271<a name="l00296"></a>00296  
     272<a name="l00298"></a><a class="code" href="classbdm_1_1multiBM.html">00298</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> 
     273<a name="l00299"></a>00299 { 
     274<a name="l00300"></a>00300         <span class="keyword">protected</span>: 
     275<a name="l00302"></a><a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a">00302</a>                 <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>; 
     276<a name="l00304"></a><a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25">00304</a>                 vec &amp;<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>; 
     277<a name="l00305"></a>00305         <span class="keyword">public</span>: 
     278<a name="l00307"></a><a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf">00307</a>                 <a class="code" href="classbdm_1_1multiBM.html#c4dd6d9522a8a605776d21bac9bd9daf" title="Default constructor.">multiBM</a> () : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> (), <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> (), <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> (<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta()) { 
     279<a name="l00308"></a>00308                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>.length() &gt; 0) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> = <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} 
     280<a name="l00309"></a>00309                         <span class="keywordflow">else</span>{<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> = 0.0;} 
     281<a name="l00310"></a>00310                 } 
     282<a name="l00312"></a><a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31">00312</a>                 <a class="code" href="classbdm_1_1multiBM.html#c4378cf8037f6bed29c74eea63344b31" title="Copy constructor.">multiBM</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a> &amp;B) : <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a> (B), <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a> (B.<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>), <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> (<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>._beta()) {} 
     283<a name="l00314"></a><a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52">00314</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#dbe6b90d410dc062a233d1dc09eeba52" title="Sets sufficient statistics to match that of givefrom mB0.">set_statistics</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a>* mB0) {<span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* mB = <span class="keyword">dynamic_cast&lt;</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">&gt;</span> (mB0); <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> = mB-&gt;<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;} 
     284<a name="l00315"></a><a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95">00315</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#1e4bf41b61937fd80f34049742e23f95" title="Incremental Bayes rule.">bayes</a> (<span class="keyword">const</span> vec &amp;dt) { 
     285<a name="l00316"></a>00316                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> &lt; 1.0) {<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> *= <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> = <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} 
     286<a name="l00317"></a>00317                         <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> += dt; 
     287<a name="l00318"></a>00318                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) {<a class="code" href="classbdm_1_1BM.html#4064b6559d962633e4372b12f4cd204a" title="Logarithm of marginalized data likelihood.">ll</a> = <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>() - <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} 
     288<a name="l00319"></a>00319                 } 
     289<a name="l00320"></a><a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">00320</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1multiBM.html#e157b607c1e3fa91d42aeea44458e2bf">logpred</a> (<span class="keyword">const</span> vec &amp;dt)<span class="keyword"> const </span>{ 
     290<a name="l00321"></a>00321                         <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a> pred (<a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>); 
     291<a name="l00322"></a>00322                         vec &amp;<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> = pred.<a class="code" href="classbdm_1_1eDirich.html#175e0add26d2105c28d8121eefb9e324" title="access function">_beta</a>(); 
     292<a name="l00323"></a>00323  
     293<a name="l00324"></a>00324                         <span class="keywordtype">double</span> lll; 
     294<a name="l00325"></a>00325                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a> &lt; 1.0) 
     295<a name="l00326"></a>00326                                 {beta *= <a class="code" href="classbdm_1_1BMEF.html#1331865e10fb1ccef65bb4c47fa3be64" title="forgetting factor">frg</a>;lll = pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} 
     296<a name="l00327"></a>00327                         <span class="keywordflow">else</span> 
     297<a name="l00328"></a>00328                                 <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) {lll = <a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a>;} 
     298<a name="l00329"></a>00329                                 <span class="keywordflow">else</span>{lll = pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} 
     299<a name="l00330"></a>00330  
     300<a name="l00331"></a>00331                         beta += dt; 
     301<a name="l00332"></a>00332                         <span class="keywordflow">return</span> pred.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>() - lll; 
     302<a name="l00333"></a>00333                 } 
     303<a name="l00334"></a><a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732">00334</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#aaeb18c989088feb8d26d300e4971732" title="Flatten the posterior according to the given BMEF (of the same type!).">flatten</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">BMEF</a>* B) { 
     304<a name="l00335"></a>00335                         <span class="keyword">const</span> <a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>* E = <span class="keyword">dynamic_cast&lt;</span><span class="keyword">const </span><a class="code" href="classbdm_1_1multiBM.html" title="Estimator for Multinomial density.">multiBM</a>*<span class="keyword">&gt;</span> (B); 
     305<a name="l00336"></a>00336                         <span class="comment">// sum(beta) should be equal to sum(B.beta)</span> 
     306<a name="l00337"></a>00337                         <span class="keyword">const</span> vec &amp;Eb = E-&gt;<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>;<span class="comment">//const_cast&lt;multiBM*&gt; ( E )-&gt;_beta();</span> 
     307<a name="l00338"></a>00338                         <a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a> *= (sum (Eb) / sum (<a class="code" href="classbdm_1_1multiBM.html#044263356944c92209eecd39a5187d25" title="Pointer inside est to sufficient statistics.">beta</a>)); 
     308<a name="l00339"></a>00339                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> = <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} 
     309<a name="l00340"></a>00340                 } 
     310<a name="l00342"></a><a class="code" href="classbdm_1_1multiBM.html#31ff93f89473f099e489b9e1dc8d9513">00342</a>                 <span class="keyword">const</span> <a class="code" href="classbdm_1_1eDirich.html" title="Dirichlet posterior density.">eDirich</a>&amp; <a class="code" href="classbdm_1_1multiBM.html#31ff93f89473f099e489b9e1dc8d9513" title="reimplemnetation of BM::posterior()">posterior</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>;}; 
     311<a name="l00344"></a><a class="code" href="classbdm_1_1multiBM.html#7a480eace4446661bacca94c57499f01">00344</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1multiBM.html#7a480eace4446661bacca94c57499f01" title="constructor function">set_parameters</a> (<span class="keyword">const</span> vec &amp;beta0) { 
     312<a name="l00345"></a>00345                         <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#a06af2376976a33e1eceaed7e8da75a5">set_parameters</a> (beta0); 
     313<a name="l00346"></a>00346                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1BM.html#faff0ad12556fe7dc0e2807d4fd938ee" title="If true, the filter will compute likelihood of the data record and store it in ll...">evalll</a>) {<a class="code" href="classbdm_1_1BMEF.html#06e7b3ac03e10017d4288c76888e2865" title="cached value of lognc() in the previous step (used in evaluation of ll )">last_lognc</a> = <a class="code" href="classbdm_1_1multiBM.html#9ecc6878abbd20eb8d8e43b6ab3f941a" title="Conjugate prior and posterior.">est</a>.<a class="code" href="classbdm_1_1eDirich.html#279a99f6266c82fe2273e83841f19eb2" title="logarithm of the normalizing constant, ">lognc</a>();} 
     314<a name="l00347"></a>00347                 } 
     315<a name="l00348"></a>00348 }; 
     316<a name="l00349"></a>00349  
     317<a name="l00359"></a><a class="code" href="classbdm_1_1egamma.html">00359</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> 
     318<a name="l00360"></a>00360 { 
     319<a name="l00361"></a>00361         <span class="keyword">protected</span>: 
     320<a name="l00363"></a><a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa">00363</a>                 vec <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>; 
     321<a name="l00365"></a><a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1">00365</a>                 vec <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>; 
     322<a name="l00366"></a>00366         <span class="keyword">public</span> : 
     323<a name="l00369"></a>00369                 <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> () : <a class="code" href="classbdm_1_1eEF.html" title="General conjugate exponential family posterior density.">eEF</a> (), <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> (0), <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a> (0) {}; 
     324<a name="l00370"></a>00370                 <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> (<span class="keyword">const</span> vec &amp;a, <span class="keyword">const</span> vec &amp;b) {set_parameters (a, b);}; 
     325<a name="l00371"></a>00371                 <span class="keywordtype">void</span> set_parameters (<span class="keyword">const</span> vec &amp;a, <span class="keyword">const</span> vec &amp;b) {<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> = a, <a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a> = b;<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length();}; 
     326<a name="l00373"></a>00373  
     327<a name="l00374"></a>00374                 vec <a class="code" href="classbdm_1_1egamma.html#6ed82f0fd05f6002487256d8e75a0bbd" title="Returns a sample,  from density .">sample</a>() <span class="keyword">const</span>; 
     328<a name="l00375"></a>00375                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#a8e11e5a580ff42a1b205974c60768c6" title="Evaluate normalized log-probability.">evallog</a> (<span class="keyword">const</span> vec &amp;val) <span class="keyword">const</span>; 
     329<a name="l00376"></a>00376                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1egamma.html#9a66cbd100e8520c769ccb3c451f86f8" title="logarithm of the normalizing constant, ">lognc</a> () <span class="keyword">const</span>; 
     330<a name="l00378"></a><a class="code" href="classbdm_1_1egamma.html#0865cb3d6339fdc7410806cf70a329ed">00378</a>                 vec&amp; <a class="code" href="classbdm_1_1egamma.html#0865cb3d6339fdc7410806cf70a329ed" title="Returns pointer to internal alpha. Potentially dengerous: use with care!">_alpha</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>;} 
     331<a name="l00380"></a><a class="code" href="classbdm_1_1egamma.html#c42cadd9cbd344caaa69b0b433cd16ca">00380</a>                 vec&amp; <a class="code" href="classbdm_1_1egamma.html#c42cadd9cbd344caaa69b0b433cd16ca" title="Returns pointer to internal beta. Potentially dengerous: use with care!">_beta</a>() {<span class="keywordflow">return</span> beta;} 
     332<a name="l00381"></a><a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85">00381</a>                 vec <a class="code" href="classbdm_1_1egamma.html#49d256c42cce14c6faa56ec242b57e85" title="return expected value">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div (<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>, beta);} 
     333<a name="l00382"></a><a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1">00382</a>                 vec <a class="code" href="classbdm_1_1egamma.html#36986cc01917cd0796fadc17125bdec1" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div (<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>, elem_mult (beta, beta)); } 
     334<a name="l00383"></a>00383  
     335<a name="l00392"></a><a class="code" href="classbdm_1_1egamma.html#8a6fd1a1c0190f3e0d95a2a1f99aafc1">00392</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#8a6fd1a1c0190f3e0d95a2a1f99aafc1">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>) { 
     336<a name="l00393"></a>00393                         <a class="code" href="classbdm_1_1egamma.html#8a6fd1a1c0190f3e0d95a2a1f99aafc1">epdf::from_setting</a> (<span class="keyword">set</span>); <span class="comment">// reads rv</span> 
     337<a name="l00394"></a>00394                         <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>, <span class="keyword">set</span>, <span class="stringliteral">"alpha"</span>, UI::compulsory); 
     338<a name="l00395"></a>00395                         <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (beta, <span class="keyword">set</span>, <span class="stringliteral">"beta"</span>, UI::compulsory); 
     339<a name="l00396"></a>00396                         <a class="code" href="classbdm_1_1egamma.html#c3a8d8ae8ba79d0fb35036711fa7d127" title="This method TODO.">validate</a>(); 
     340<a name="l00397"></a>00397                 } 
     341<a name="l00398"></a><a class="code" href="classbdm_1_1egamma.html#c3a8d8ae8ba79d0fb35036711fa7d127">00398</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1egamma.html#c3a8d8ae8ba79d0fb35036711fa7d127" title="This method TODO.">validate</a>() { 
     342<a name="l00399"></a>00399                         it_assert (<a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length() == beta.length(), <span class="stringliteral">"parameters do not match"</span>); 
     343<a name="l00400"></a>00400                         <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a>.length(); 
     344<a name="l00401"></a>00401                 } 
     345<a name="l00402"></a>00402 }; 
     346<a name="l00403"></a>00403 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a> (egamma); 
     347<a name="l00404"></a>00404 SHAREDPTR ( egamma ); 
     348<a name="l00405"></a>00405  
     349<a name="l00422"></a><a class="code" href="classbdm_1_1eigamma.html">00422</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> 
     350<a name="l00423"></a>00423 { 
     351<a name="l00424"></a>00424         <span class="keyword">protected</span>: 
     352<a name="l00425"></a>00425         <span class="keyword">public</span> : 
     353<a name="l00430"></a>00430  
     354<a name="l00431"></a><a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f">00431</a>                 vec <a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> 1.0 / <a class="code" href="classbdm_1_1eigamma.html#3aff7bf25ddac27731c60826fcfd878f" title="Returns a sample,  from density .">egamma::sample</a>();}; 
     355<a name="l00433"></a><a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb">00433</a>                 vec <a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> elem_div (<a class="code" href="classbdm_1_1egamma.html#457bfb1ccb2057df85073e519a15ccc1" title="Vector .">beta</a>, <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> - 1);} 
     356<a name="l00434"></a><a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133">00434</a>                 vec <a class="code" href="classbdm_1_1eigamma.html#c2c696f8c668e9f65392c9449f6a5133" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{vec mea = <a class="code" href="classbdm_1_1eigamma.html#46cecb295edbabd28120cb0f6f572bcb" title="Returns poiter to alpha and beta. Potentially dangerous: use with care!">mean</a>(); <span class="keywordflow">return</span> elem_div (elem_mult (mea, mea), <a class="code" href="classbdm_1_1egamma.html#0901ec983e66b8337aaa506e13b122fa" title="Vector .">alpha</a> - 2);} 
     357<a name="l00435"></a>00435 }; 
     358<a name="l00436"></a>00436 <span class="comment">/*</span> 
     359<a name="l00438"></a>00438 <span class="comment">class emix : public epdf {</span> 
     360<a name="l00439"></a>00439 <span class="comment">protected:</span> 
     361<a name="l00440"></a>00440 <span class="comment">        int n;</span> 
     362<a name="l00441"></a>00441 <span class="comment">        vec &amp;w;</span> 
     363<a name="l00442"></a>00442 <span class="comment">        Array&lt;epdf*&gt; Coms;</span> 
     364<a name="l00443"></a>00443 <span class="comment">public:</span> 
     365<a name="l00445"></a>00445 <span class="comment">        emix ( const RV &amp;rv, vec &amp;w0): epdf(rv), n(w0.length()), w(w0), Coms(n) {};</span> 
     366<a name="l00446"></a>00446 <span class="comment">        void set_parameters( int &amp;i, double wi, epdf* ep){w(i)=wi;Coms(i)=ep;}</span> 
     367<a name="l00447"></a>00447 <span class="comment">        vec mean(){vec pom; for(int i=0;i&lt;n;i++){pom+=Coms(i)-&gt;mean()*w(i);} return pom;};</span> 
     368<a name="l00448"></a>00448 <span class="comment">        vec sample() {it_error ( "Not implemented" );return 0;}</span> 
     369<a name="l00449"></a>00449 <span class="comment">};</span> 
     370<a name="l00450"></a>00450 <span class="comment">*/</span> 
     371<a name="l00451"></a>00451  
     372<a name="l00453"></a>00453  
     373<a name="l00454"></a><a class="code" href="classbdm_1_1euni.html">00454</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> 
     374<a name="l00455"></a>00455 { 
     375<a name="l00456"></a>00456         <span class="keyword">protected</span>: 
     376<a name="l00458"></a><a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32">00458</a>                 vec <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>; 
     377<a name="l00460"></a><a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1">00460</a>                 vec <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>; 
     378<a name="l00462"></a><a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c">00462</a>                 vec <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>; 
     379<a name="l00464"></a><a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20">00464</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>; 
     380<a name="l00466"></a><a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476">00466</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>; 
     381<a name="l00467"></a>00467         <span class="keyword">public</span>: 
     382<a name="l00470"></a>00470                 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> () : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> () {} 
     383<a name="l00471"></a>00471                 <a class="code" href="classbdm_1_1euni.html" title="Uniform distributed density on a rectangular support.">euni</a> (<span class="keyword">const</span> vec &amp;low0, <span class="keyword">const</span> vec &amp;high0) {set_parameters (low0, high0);} 
     384<a name="l00472"></a>00472                 <span class="keywordtype">void</span> set_parameters (<span class="keyword">const</span> vec &amp;low0, <span class="keyword">const</span> vec &amp;high0) { 
     385<a name="l00473"></a>00473                         <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a> = high0 - low0; 
     386<a name="l00474"></a>00474                         it_assert_debug (min (<a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>) &gt; 0.0, <span class="stringliteral">"bad support"</span>); 
     387<a name="l00475"></a>00475                         <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> = low0; 
     388<a name="l00476"></a>00476                         <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a> = high0; 
     389<a name="l00477"></a>00477                         <a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a> = prod (1.0 / <a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>); 
     390<a name="l00478"></a>00478                         <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a> = log (<a class="code" href="classbdm_1_1euni.html#31bb13e8449a8eff35246d46dae35c20" title="normalizing coefficients">nk</a>); 
     391<a name="l00479"></a>00479                         <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>.length(); 
     392<a name="l00480"></a>00480                 } 
     393<a name="l00482"></a>00482  
     394<a name="l00483"></a><a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81">00483</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1euni.html#caa07b8307bd793d5339d6583e0aba81">evallog</a> (<span class="keyword">const</span> vec &amp;val)<span class="keyword"> const  </span>{ 
     395<a name="l00484"></a>00484                         <span class="keywordflow">if</span> (any (val &lt; <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>) &amp;&amp; any (val &gt; <a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>)) {<span class="keywordflow">return</span> inf;} 
     396<a name="l00485"></a>00485                         <span class="keywordflow">else</span> <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#3e63be48dd58659663ca60cd18700476" title="cache of log( nk )">lnk</a>; 
     397<a name="l00486"></a>00486                 } 
     398<a name="l00487"></a><a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194">00487</a>                 vec <a class="code" href="classbdm_1_1euni.html#fc5df80359ead2918384b2004ce67194" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{ 
     399<a name="l00488"></a>00488                         vec smp (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>); 
     400<a name="l00489"></a>00489 <span class="preprocessor">#pragma omp critical</span> 
     401<a name="l00490"></a>00490 <span class="preprocessor"></span>                        UniRNG.sample_vector (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> , smp); 
     402<a name="l00491"></a>00491                         <span class="keywordflow">return</span> <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a> + elem_mult (<a class="code" href="classbdm_1_1euni.html#d3c27e331f90c754d80228108de8ed4c" title="internal">distance</a>, smp); 
     403<a name="l00492"></a>00492                 } 
     404<a name="l00494"></a><a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226">00494</a>                 vec <a class="code" href="classbdm_1_1euni.html#46caa8c13aba2e6228f964208918b226" title="set values of low and high ">mean</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> (<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a> -<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>) / 2.0;} 
     405<a name="l00495"></a><a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c">00495</a>                 vec <a class="code" href="classbdm_1_1euni.html#951f932155111f6053c980f672b4c22c" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> (pow (<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>, 2) + pow (<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>, 2) + elem_mult (<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>, <a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>)) / 3.0;} 
     406<a name="l00504"></a><a class="code" href="classbdm_1_1euni.html#77f5fef1f006fe056066da23b9e5f042">00504</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1euni.html#77f5fef1f006fe056066da23b9e5f042">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>) { 
     407<a name="l00505"></a>00505                         <a class="code" href="classbdm_1_1euni.html#77f5fef1f006fe056066da23b9e5f042">epdf::from_setting</a> (<span class="keyword">set</span>); <span class="comment">// reads rv and rvc</span> 
     408<a name="l00506"></a>00506  
     409<a name="l00507"></a>00507                         <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1euni.html#cfad2dea4a62db6872bda8abd75f0de1" title="upper bound on support">high</a>, <span class="keyword">set</span>, <span class="stringliteral">"high"</span>, UI::compulsory); 
     410<a name="l00508"></a>00508                         <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1euni.html#ff7ce6a2ef5ef0015bbd1398bed12f32" title="lower bound on support">low</a>, <span class="keyword">set</span>, <span class="stringliteral">"low"</span>, UI::compulsory); 
     411<a name="l00509"></a>00509                 } 
     412<a name="l00510"></a>00510 }; 
     413<a name="l00511"></a>00511  
     414<a name="l00512"></a>00512  
     415<a name="l00518"></a>00518 <span class="keyword">template</span> &lt; <span class="keyword">class</span> sq_T, <span class="keyword">template</span> &lt;<span class="keyword">typename</span>&gt; <span class="keyword">class </span>TEpdf = enorm &gt; 
     416<a name="l00519"></a><a class="code" href="classbdm_1_1mlnorm.html">00519</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt; TEpdf&lt;sq_T&gt; &gt; 
     417<a name="l00520"></a>00520 { 
     418<a name="l00521"></a>00521         <span class="keyword">protected</span>: 
     419<a name="l00523"></a><a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42">00523</a>                 mat <a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a>; 
     420<a name="l00525"></a><a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6">00525</a>                 vec <a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>; 
     421<a name="l00526"></a>00526 <span class="comment">//                      vec&amp; _mu; //cached epdf.mu; !!!!!! WHY NOT?</span> 
     422<a name="l00527"></a>00527         <span class="keyword">public</span>: 
     423<a name="l00530"></a>00530                 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a>() : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt; TEpdf&lt;sq_T&gt; &gt;() {}; 
     424<a name="l00531"></a>00531                 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a> (<span class="keyword">const</span> mat &amp;<a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a>, <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;R) : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt; TEpdf&lt;sq_T&gt; &gt;() { 
     425<a name="l00532"></a>00532                         <a class="code" href="classbdm_1_1mlnorm.html#04f7c6cda7b2f95161dd5fbcf15d1fd5" title="Set A and R.">set_parameters</a> (A, mu0, R); 
     426<a name="l00533"></a>00533                 } 
     427<a name="l00534"></a>00534  
     428<a name="l00536"></a><a class="code" href="classbdm_1_1mlnorm.html#04f7c6cda7b2f95161dd5fbcf15d1fd5">00536</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#04f7c6cda7b2f95161dd5fbcf15d1fd5" title="Set A and R.">set_parameters</a> (<span class="keyword">const</span>  mat &amp;A0, <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;R0) { 
     429<a name="l00537"></a>00537                         it_assert_debug (A0.rows() == mu0.length(), <span class="stringliteral">""</span>); 
     430<a name="l00538"></a>00538                         it_assert_debug (A0.rows() == R0.rows(), <span class="stringliteral">""</span>); 
     431<a name="l00539"></a>00539  
     432<a name="l00540"></a>00540                         this-&gt;<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.set_parameters (zeros (A0.rows()), R0); 
     433<a name="l00541"></a>00541                         <a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a> = A0; 
     434<a name="l00542"></a>00542                         <a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a> = mu0; 
     435<a name="l00543"></a>00543                         this-&gt;<a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = A0.cols(); 
     436<a name="l00544"></a>00544                 } 
     437<a name="l00547"></a><a class="code" href="classbdm_1_1mlnorm.html#c2895ae549ee76d961be98d7061bd110">00547</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#c2895ae549ee76d961be98d7061bd110">condition</a> (<span class="keyword">const</span> vec &amp;cond) { 
     438<a name="l00548"></a>00548                         this-&gt;<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>._mu() = <a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a> * cond + <a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>; 
     439<a name="l00549"></a>00549 <span class="comment">//R is already assigned;</span> 
     440<a name="l00550"></a>00550                 } 
     441<a name="l00551"></a>00551  
     442<a name="l00553"></a><a class="code" href="classbdm_1_1mlnorm.html#6332e5200f3afa15db3f7f4bca09b17f">00553</a>                 vec&amp; <a class="code" href="classbdm_1_1mlnorm.html#6332e5200f3afa15db3f7f4bca09b17f" title="access function">_mu_const</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>;} 
     443<a name="l00555"></a><a class="code" href="classbdm_1_1mlnorm.html#b256b547c5156b5898a3a1e5462f9540">00555</a>                 mat&amp; <a class="code" href="classbdm_1_1mlnorm.html#b256b547c5156b5898a3a1e5462f9540" title="access function">_A</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a>;} 
     444<a name="l00557"></a><a class="code" href="classbdm_1_1mlnorm.html#564715dea56f7bbff0083aec295ce97e">00557</a>                 mat <a class="code" href="classbdm_1_1mlnorm.html#564715dea56f7bbff0083aec295ce97e" title="access function">_R</a>() { <span class="keywordflow">return</span> this-&gt;<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>._R().to_mat(); } 
     445<a name="l00558"></a>00558  
     446<a name="l00560"></a>00560                 <span class="keyword">template</span>&lt;<span class="keyword">typename</span> sq_M&gt; 
     447<a name="l00561"></a>00561                 <span class="keyword">friend</span> std::ostream &amp;operator&lt;&lt; (std::ostream &amp;os,  mlnorm&lt;sq_M, enorm&gt; &amp;ml); 
     448<a name="l00562"></a>00562  
     449<a name="l00563"></a><a class="code" href="classbdm_1_1mlnorm.html#52980f13d80162d00b30d5864343f564">00563</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#52980f13d80162d00b30d5864343f564">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>) { 
     450<a name="l00564"></a>00564                         <a class="code" href="classbdm_1_1mlnorm.html#52980f13d80162d00b30d5864343f564">mpdf::from_setting</a> (<span class="keyword">set</span>); 
     451<a name="l00565"></a>00565  
     452<a name="l00566"></a>00566                         <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a>, <span class="keyword">set</span>, <span class="stringliteral">"A"</span>, UI::compulsory); 
     453<a name="l00567"></a>00567                         <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>, <span class="keyword">set</span>, <span class="stringliteral">"const"</span>, UI::compulsory); 
     454<a name="l00568"></a>00568                         mat R0; 
     455<a name="l00569"></a>00569                         <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (R0, <span class="keyword">set</span>, <span class="stringliteral">"R"</span>, UI::compulsory); 
     456<a name="l00570"></a>00570                         <a class="code" href="classbdm_1_1mlnorm.html#04f7c6cda7b2f95161dd5fbcf15d1fd5" title="Set A and R.">set_parameters</a> (<a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a>, <a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>, R0); 
     457<a name="l00571"></a>00571                 }; 
     458<a name="l00572"></a>00572 }; 
     459<a name="l00573"></a>00573 <a class="code" href="user__info_8h.html#b06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (mlnorm,ldmat); 
     460<a name="l00574"></a>00574 SHAREDPTR2 ( mlnorm, ldmat ); 
     461<a name="l00575"></a>00575 <a class="code" href="user__info_8h.html#b06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (mlnorm,fsqmat); 
     462<a name="l00576"></a>00576 SHAREDPTR2 ( mlnorm, fsqmat ); 
     463<a name="l00577"></a>00577 <a class="code" href="user__info_8h.html#b06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (mlnorm, chmat); 
     464<a name="l00578"></a>00578 SHAREDPTR2 ( mlnorm, chmat ); 
     465<a name="l00579"></a>00579  
     466<a name="l00581"></a>00581 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     467<a name="l00582"></a><a class="code" href="classbdm_1_1mgnorm.html">00582</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgnorm.html" title="Mpdf with general function for mean value.">mgnorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt; enorm&lt; sq_T &gt; &gt; 
     468<a name="l00583"></a>00583 { 
     469<a name="l00584"></a>00584         <span class="keyword">private</span>: 
     470<a name="l00585"></a>00585 <span class="comment">//                      vec &amp;mu; WHY NOT?</span> 
     471<a name="l00586"></a>00586                 <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;fnc&gt;</a> g; 
     472<a name="l00587"></a>00587  
     473<a name="l00588"></a>00588         <span class="keyword">public</span>: 
     474<a name="l00590"></a><a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d">00590</a>                 <a class="code" href="classbdm_1_1mgnorm.html#1b014915d74470d3efab74e07cacb97d" title="default constructor">mgnorm</a>() : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;<a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a>&lt;sq_T&gt; &gt;() { } 
     475<a name="l00592"></a>00592                 <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#b736332d20e418bf50d45836e129f339" title="set mean function">set_parameters</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;fnc&gt;</a> &amp;g0, <span class="keyword">const</span> sq_T &amp;R0); 
     476<a name="l00593"></a>00593                 <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d">condition</a> (<span class="keyword">const</span> vec &amp;cond); 
     477<a name="l00594"></a>00594  
     478<a name="l00595"></a>00595  
     479<a name="l00623"></a><a class="code" href="classbdm_1_1mgnorm.html#d717dacc6a9eb967f8410994dc6dc6f9">00623</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#d717dacc6a9eb967f8410994dc6dc6f9">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>) { 
     480<a name="l00624"></a>00624                         <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;fnc&gt;</a> g = UI::build&lt;fnc&gt; (<span class="keyword">set</span>, <span class="stringliteral">"g"</span>, UI::compulsory); 
     481<a name="l00625"></a>00625  
     482<a name="l00626"></a>00626                         mat R; 
     483<a name="l00627"></a>00627                         vec dR; 
     484<a name="l00628"></a>00628                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (dR, <span class="keyword">set</span>, <span class="stringliteral">"dR"</span>)) 
     485<a name="l00629"></a>00629                                 R = diag (dR); 
     486<a name="l00630"></a>00630                         <span class="keywordflow">else</span> 
     487<a name="l00631"></a>00631                                 <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (R, <span class="keyword">set</span>, <span class="stringliteral">"R"</span>, UI::compulsory); 
    486488<a name="l00632"></a>00632  
    487 <a name="l00640"></a><a class="code" href="classbdm_1_1mlstudent.html">00640</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a>&lt;ldmat&gt; 
    488 <a name="l00641"></a>00641         { 
    489 <a name="l00642"></a>00642                 <span class="keyword">protected</span>: 
    490 <a name="l00643"></a>00643                         <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Lambda; 
    491 <a name="l00644"></a>00644                         <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &amp;<a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>; 
    492 <a name="l00645"></a>00645                         <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> Re; 
    493 <a name="l00646"></a>00646                 <span class="keyword">public</span>: 
    494 <a name="l00647"></a>00647                         <a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> ( ) :<a class="code" href="classbdm_1_1mlnorm.html">mlnorm&lt;ldmat&gt;</a> (), 
    495 <a name="l00648"></a>00648                                         Lambda (),      <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>._R() ) {} 
    496 <a name="l00649"></a>00649                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &amp;A0, <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &amp;R0, <span class="keyword">const</span> <a class="code" href="classldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>&amp; Lambda0 ) 
    497 <a name="l00650"></a>00650                         { 
    498 <a name="l00651"></a>00651                                 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> ); 
    499 <a name="l00652"></a>00652                                 it_assert_debug ( R0.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>() ==A0.rows(),<span class="stringliteral">""</span> ); 
    500 <a name="l00653"></a>00653  
    501 <a name="l00654"></a>00654                                 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( mu0,Lambda ); <span class="comment">//</span> 
    502 <a name="l00655"></a>00655                                 A = A0; 
    503 <a name="l00656"></a>00656                                 mu_const = mu0; 
    504 <a name="l00657"></a>00657                                 Re=R0; 
    505 <a name="l00658"></a>00658                                 Lambda = Lambda0; 
    506 <a name="l00659"></a>00659                         } 
    507 <a name="l00660"></a><a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">00660</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">condition</a> ( <span class="keyword">const</span> vec &amp;cond ) 
    508 <a name="l00661"></a>00661                         { 
    509 <a name="l00662"></a>00662                                 _mu = A*cond + mu_const; 
    510 <a name="l00663"></a>00663                                 <span class="keywordtype">double</span> zeta; 
    511 <a name="l00664"></a>00664                                 <span class="comment">//ugly hack!</span> 
    512 <a name="l00665"></a>00665                                 <span class="keywordflow">if</span> ( ( cond.length() +1 ) ==Lambda.<a class="code" href="group__math.html#g96dfb21865db4f5bd36fa70f9b0b1163" title="access function">rows</a>() ) 
    513 <a name="l00666"></a>00666                                 { 
    514 <a name="l00667"></a>00667                                         zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( concat ( cond, vec_1 ( 1.0 ) ) ); 
    515 <a name="l00668"></a>00668                                 } 
    516 <a name="l00669"></a>00669                                 <span class="keywordflow">else</span> 
    517 <a name="l00670"></a>00670                                 { 
    518 <a name="l00671"></a>00671                                         zeta = Lambda.<a class="code" href="classldmat.html#d876c5f83e02b3e809b35c9de5068f14" title="Evaluates quadratic form ;.">invqform</a> ( cond ); 
    519 <a name="l00672"></a>00672                                 } 
    520 <a name="l00673"></a>00673                                 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a> = Re; 
    521 <a name="l00674"></a>00674                                 <a class="code" href="classbdm_1_1mlnorm.html#78120ecd1c2b1d7e80124b4603504604" title="access function">_R</a>*= ( 1+zeta );<span class="comment">// / ( nu ); &lt;&lt; nu is in Re!!!!!!</span> 
    522 <a name="l00675"></a>00675                         }; 
    523 <a name="l00676"></a>00676  
    524 <a name="l00677"></a>00677         }; 
    525 <a name="l00687"></a><a class="code" href="classbdm_1_1mgamma.html">00687</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> 
    526 <a name="l00688"></a>00688         { 
    527 <a name="l00689"></a>00689                 <span class="keyword">protected</span>: 
    528 <a name="l00691"></a><a class="code" href="classbdm_1_1mgamma.html#bdc9f1e9e03c09e91103fee269864438">00691</a>                         <a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; 
    529 <a name="l00693"></a><a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09">00693</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>; 
    530 <a name="l00695"></a><a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312">00695</a>                         vec &amp;<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>; 
    531 <a name="l00696"></a>00696  
    532 <a name="l00697"></a>00697                 <span class="keyword">public</span>: 
    533 <a name="l00699"></a><a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1">00699</a>                         <a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1" title="Constructor.">mgamma</a> ( ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> ( ), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> (), <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&amp;<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; 
    534 <a name="l00701"></a>00701                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, <span class="keyword">const</span> vec &amp;beta0 ); 
    535 <a name="l00702"></a><a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff">00702</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &amp;val ) {<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/val;}; 
    536 <a name="l00712"></a><a class="code" href="classbdm_1_1mgamma.html#da2af0f327e5452bee71d1bf97452ae4">00712</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#da2af0f327e5452bee71d1bf97452ae4">from_setting</a>(<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>){ 
    537 <a name="l00713"></a>00713                                 <a class="code" href="classbdm_1_1mgamma.html#da2af0f327e5452bee71d1bf97452ae4">mpdf::from_setting</a>(<span class="keyword">set</span>); <span class="comment">// reads rv and rvc</span> 
    538 <a name="l00714"></a>00714                                 vec betatmp; <span class="comment">// ugly but necessary</span> 
    539 <a name="l00715"></a>00715                                 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(betatmp,<span class="keyword">set</span>,<span class="stringliteral">"beta"</span>); 
    540 <a name="l00716"></a>00716                                 <span class="keyword">set</span>.lookupValue(<span class="stringliteral">"k"</span>,<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>); 
    541 <a name="l00717"></a>00717                                 <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a>(<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>,betatmp); 
    542 <a name="l00718"></a>00718                         } 
    543 <a name="l00719"></a>00719         }; 
    544 <a name="l00720"></a>00720         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(mgamma); 
    545 <a name="l00721"></a>00721          
    546 <a name="l00731"></a><a class="code" href="classbdm_1_1migamma.html">00731</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> 
    547 <a name="l00732"></a>00732         { 
    548 <a name="l00733"></a>00733                 <span class="keyword">protected</span>: 
    549 <a name="l00735"></a><a class="code" href="classbdm_1_1migamma.html#a31b39d4179551b593c9e0d7d756783a">00735</a>                         <a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>; 
    550 <a name="l00737"></a><a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c">00737</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>; 
    551 <a name="l00739"></a><a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc">00739</a>                         vec &amp;<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>; 
    552 <a name="l00741"></a><a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5">00741</a>                         vec &amp;<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>; 
    553 <a name="l00742"></a>00742  
    554 <a name="l00743"></a>00743                 <span class="keyword">public</span>: 
    555 <a name="l00746"></a>00746                         <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ), <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>() ), <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&amp;<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; 
    556 <a name="l00747"></a>00747                         <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> &amp;m ) : <a class="code" href="classbdm_1_1mEF.html" title="Exponential family model.">mEF</a> (), <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( m.<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ), <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>() ), <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a> ( <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&amp;<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>;}; 
    557 <a name="l00749"></a>00749  
    558 <a name="l00751"></a><a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151">00751</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> len, <span class="keywordtype">double</span> k0 ) 
    559 <a name="l00752"></a>00752                         { 
    560 <a name="l00753"></a>00753                                 <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>=k0; 
    561 <a name="l00754"></a>00754                                 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( ( 1.0/ ( <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>*<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> ) +2.0 ) *ones ( len ) <span class="comment">/*alpha*/</span>, ones ( len ) <span class="comment">/*beta*/</span> ); 
    562 <a name="l00755"></a>00755                                 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); 
    563 <a name="l00756"></a>00756                         }; 
    564 <a name="l00757"></a><a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c">00757</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &amp;val ) 
    565 <a name="l00758"></a>00758                         { 
    566 <a name="l00759"></a>00759                                 <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of epdf.beta">_beta</a>=elem_mult ( val, ( <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of epdf.alpha">_alpha</a>-1.0 ) ); 
    567 <a name="l00760"></a>00760                         }; 
    568 <a name="l00761"></a>00761         }; 
    569 <a name="l00762"></a>00762  
     489<a name="l00633"></a>00633                         <a class="code" href="classbdm_1_1mgnorm.html#b736332d20e418bf50d45836e129f339" title="set mean function">set_parameters</a> (g, R); 
     490<a name="l00634"></a>00634                 } 
     491<a name="l00635"></a>00635 }; 
     492<a name="l00636"></a>00636  
     493<a name="l00637"></a>00637 <a class="code" href="user__info_8h.html#b06f1e7c44a8306e321f62a0099210b9" title="Variant of UIREGISTER for templated classes.">UIREGISTER2</a> (mgnorm, chmat); 
     494<a name="l00638"></a>00638 SHAREDPTR2 ( mgnorm, chmat ); 
     495<a name="l00639"></a>00639  
     496<a name="l00640"></a>00640  
     497<a name="l00648"></a><a class="code" href="classbdm_1_1mlstudent.html">00648</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a>&lt;ldmat, enorm&gt; 
     498<a name="l00649"></a>00649 { 
     499<a name="l00650"></a>00650         <span class="keyword">protected</span>: 
     500<a name="l00652"></a><a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657">00652</a>                 <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657" title="Variable  from theory.">Lambda</a>; 
     501<a name="l00654"></a><a class="code" href="classbdm_1_1mlstudent.html#72e9bda4d6684e07faafc4b2192daf39">00654</a>                 <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &amp;<a class="code" href="classbdm_1_1mlnorm.html#564715dea56f7bbff0083aec295ce97e" title="access function">_R</a>; 
     502<a name="l00656"></a><a class="code" href="classbdm_1_1mlstudent.html#1c063ad6cb6e079ee11bc4128c2c9fe8">00656</a>                 <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> <a class="code" href="classbdm_1_1mlstudent.html#1c063ad6cb6e079ee11bc4128c2c9fe8" title="Variable .">Re</a>; 
     503<a name="l00657"></a>00657         <span class="keyword">public</span>: 
     504<a name="l00658"></a>00658                 <a class="code" href="classbdm_1_1mlstudent.html">mlstudent</a> () : <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm</a>&lt;<a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>, <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a>&gt; (), 
     505<a name="l00659"></a>00659                                 <a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657" title="Variable  from theory.">Lambda</a> (),      <a class="code" href="classbdm_1_1mlnorm.html#564715dea56f7bbff0083aec295ce97e" title="access function">_R</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1mlnorm.html#564715dea56f7bbff0083aec295ce97e" title="access function">_R</a>()) {} 
     506<a name="l00661"></a><a class="code" href="classbdm_1_1mlstudent.html#4cdf79aac1b2165c0290e73810a0e4a3">00661</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#4cdf79aac1b2165c0290e73810a0e4a3" title="constructor function">set_parameters</a> (<span class="keyword">const</span> mat &amp;A0, <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a> &amp;R0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1ldmat.html" title="Matrix stored in LD form, (commonly known as UD).">ldmat</a>&amp; Lambda0) { 
     507<a name="l00662"></a>00662                         it_assert_debug (A0.rows() == mu0.length(), <span class="stringliteral">""</span>); 
     508<a name="l00663"></a>00663                         it_assert_debug (R0.<a class="code" href="classbdm_1_1sqmat.html#73e639221343dcce76c3305524d67590" title="Reimplementing common functions of mat: rows().">rows</a>() == A0.rows(), <span class="stringliteral">""</span>); 
     509<a name="l00664"></a>00664  
     510<a name="l00665"></a>00665                         <a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> (mu0, <a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657" title="Variable  from theory.">Lambda</a>);  <span class="comment">//</span> 
     511<a name="l00666"></a>00666                         <a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a> = A0; 
     512<a name="l00667"></a>00667                         <a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a> = mu0; 
     513<a name="l00668"></a>00668                         <a class="code" href="classbdm_1_1mlstudent.html#1c063ad6cb6e079ee11bc4128c2c9fe8" title="Variable .">Re</a> = R0; 
     514<a name="l00669"></a>00669                         <a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657" title="Variable  from theory.">Lambda</a> = Lambda0; 
     515<a name="l00670"></a>00670                 } 
     516<a name="l00671"></a><a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">00671</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlstudent.html#efd37560585c8613897f30d3c2f58d0d">condition</a> (<span class="keyword">const</span> vec &amp;cond) { 
     517<a name="l00672"></a>00672                         <a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1enorm.html#766127847e9482aea9226ea157295ea2">_mu</a>() = <a class="code" href="classbdm_1_1mlnorm.html#c71bbf59fc732beb2b459d7117bd6e42" title="Internal epdf that arise by conditioning on rvc.">A</a> * cond + <a class="code" href="classbdm_1_1mlnorm.html#831b50121cad10aa03a16682bd0c3ed6" title="Constant additive term.">mu_const</a>; 
     518<a name="l00673"></a>00673                         <span class="keywordtype">double</span> zeta; 
     519<a name="l00674"></a>00674                         <span class="comment">//ugly hack!</span> 
     520<a name="l00675"></a>00675                         <span class="keywordflow">if</span> ( (cond.length() + 1) == <a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657" title="Variable  from theory.">Lambda</a>.<a class="code" href="classbdm_1_1sqmat.html#73e639221343dcce76c3305524d67590" title="Reimplementing common functions of mat: rows().">rows</a>()) { 
     521<a name="l00676"></a>00676                                 zeta = <a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657" title="Variable  from theory.">Lambda</a>.<a class="code" href="classbdm_1_1ldmat.html#f743de194aadb8515cf18226fadf365f" title="Evaluates quadratic form ;.">invqform</a> (concat (cond, vec_1 (1.0))); 
     522<a name="l00677"></a>00677                         } <span class="keywordflow">else</span> { 
     523<a name="l00678"></a>00678                                 zeta = <a class="code" href="classbdm_1_1mlstudent.html#41595144a79594acbe288c6b59412657" title="Variable  from theory.">Lambda</a>.<a class="code" href="classbdm_1_1ldmat.html#f743de194aadb8515cf18226fadf365f" title="Evaluates quadratic form ;.">invqform</a> (cond); 
     524<a name="l00679"></a>00679                         } 
     525<a name="l00680"></a>00680                         <a class="code" href="classbdm_1_1mlnorm.html#564715dea56f7bbff0083aec295ce97e" title="access function">_R</a> = <a class="code" href="classbdm_1_1mlstudent.html#1c063ad6cb6e079ee11bc4128c2c9fe8" title="Variable .">Re</a>; 
     526<a name="l00681"></a>00681                         <a class="code" href="classbdm_1_1mlnorm.html#564715dea56f7bbff0083aec295ce97e" title="access function">_R</a> *= (1 + zeta);<span class="comment">// / ( nu ); &lt;&lt; nu is in Re!!!!!!</span> 
     527<a name="l00682"></a>00682                 }; 
     528<a name="l00683"></a>00683  
     529<a name="l00684"></a>00684 }; 
     530<a name="l00694"></a><a class="code" href="classbdm_1_1mgamma.html">00694</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;egamma&gt; 
     531<a name="l00695"></a>00695 { 
     532<a name="l00696"></a>00696         <span class="keyword">protected</span>: 
     533<a name="l00697"></a>00697  
     534<a name="l00699"></a><a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09">00699</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>; 
     535<a name="l00700"></a>00700  
     536<a name="l00702"></a><a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312">00702</a>                 vec &amp;<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a>; 
     537<a name="l00703"></a>00703  
     538<a name="l00704"></a>00704         <span class="keyword">public</span>: 
     539<a name="l00706"></a><a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1">00706</a>                 <a class="code" href="classbdm_1_1mgamma.html#1a9dc8661e5b214a8185d6e6b9956eb1" title="Constructor.">mgamma</a>() : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;<a class="code" href="classbdm_1_1egamma.html" title="Gamma posterior density.">egamma</a>&gt;(), <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a> (0), 
     540<a name="l00707"></a>00707                                 <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a>()) { 
     541<a name="l00708"></a>00708                 } 
     542<a name="l00709"></a>00709  
     543<a name="l00711"></a>00711                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a> (<span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, <span class="keyword">const</span> vec &amp;beta0); 
     544<a name="l00712"></a>00712  
     545<a name="l00713"></a><a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff">00713</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#8996500f1885e39cde30221b20900bff">condition</a> (<span class="keyword">const</span> vec &amp;val) {<a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a> = <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a> / val;}; 
     546<a name="l00723"></a><a class="code" href="classbdm_1_1mgamma.html#da2af0f327e5452bee71d1bf97452ae4">00723</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma.html#da2af0f327e5452bee71d1bf97452ae4">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>) { 
     547<a name="l00724"></a>00724                         <a class="code" href="classbdm_1_1mgamma.html#da2af0f327e5452bee71d1bf97452ae4">mpdf::from_setting</a> (<span class="keyword">set</span>); <span class="comment">// reads rv and rvc</span> 
     548<a name="l00725"></a>00725                         vec betatmp; <span class="comment">// ugly but necessary</span> 
     549<a name="l00726"></a>00726                         <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (betatmp, <span class="keyword">set</span>, <span class="stringliteral">"beta"</span>, UI::compulsory); 
     550<a name="l00727"></a>00727                         <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, <span class="keyword">set</span>, <span class="stringliteral">"k"</span>, UI::compulsory); 
     551<a name="l00728"></a>00728                         <a class="code" href="classbdm_1_1mgamma.html#a0f21c2557b233a85838b497d040ab14" title="Set value of k.">set_parameters</a> (<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>, betatmp); 
     552<a name="l00729"></a>00729                 } 
     553<a name="l00730"></a>00730 }; 
     554<a name="l00731"></a>00731 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a> (mgamma); 
     555<a name="l00732"></a>00732 SHAREDPTR (mgamma); 
     556<a name="l00733"></a>00733  
     557<a name="l00743"></a><a class="code" href="classbdm_1_1migamma.html">00743</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;eigamma&gt; 
     558<a name="l00744"></a>00744 { 
     559<a name="l00745"></a>00745         <span class="keyword">protected</span>: 
     560<a name="l00747"></a><a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c">00747</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>; 
     561<a name="l00748"></a>00748  
     562<a name="l00750"></a><a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc">00750</a>                 vec &amp;<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a>; 
     563<a name="l00751"></a>00751  
     564<a name="l00753"></a><a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5">00753</a>                 vec &amp;<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a>; 
     565<a name="l00754"></a>00754  
     566<a name="l00755"></a>00755         <span class="keyword">public</span>: 
     567<a name="l00758"></a>00758                 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a>() : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;<a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a>&gt;(), 
     568<a name="l00759"></a>00759                                 <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> (0), 
     569<a name="l00760"></a>00760                                 <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a>()), 
     570<a name="l00761"></a>00761                                 <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a>()) { 
     571<a name="l00762"></a>00762                 } 
    570572<a name="l00763"></a>00763  
    571 <a name="l00775"></a><a class="code" href="classbdm_1_1mgamma__fix.html">00775</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> 
    572 <a name="l00776"></a>00776         { 
    573 <a name="l00777"></a>00777                 <span class="keyword">protected</span>: 
    574 <a name="l00779"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa">00779</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>; 
    575 <a name="l00781"></a><a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2">00781</a>                         vec <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>; 
    576 <a name="l00782"></a>00782                 <span class="keyword">public</span>: 
    577 <a name="l00784"></a><a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d">00784</a>                         <a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d" title="Constructor.">mgamma_fix</a> ( ) : <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> ( ),<a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a> () {}; 
    578 <a name="l00786"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2">00786</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) 
    579 <a name="l00787"></a>00787                         { 
    580 <a name="l00788"></a>00788                                 <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">mgamma::set_parameters</a> ( k0, ref0 ); 
    581 <a name="l00789"></a>00789                                 <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>=pow ( ref0,1.0-l0 );<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>=l0; 
    582 <a name="l00790"></a>00790                                 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=dimension(); 
    583 <a name="l00791"></a>00791                         }; 
    584 <a name="l00792"></a>00792  
    585 <a name="l00793"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7">00793</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &amp;val ) {vec mean=elem_mult ( <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a> ) ); <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of epdf.beta">_beta</a>=<a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a>/mean;}; 
    586 <a name="l00794"></a>00794         }; 
    587 <a name="l00795"></a>00795  
    588 <a name="l00796"></a>00796  
    589 <a name="l00809"></a><a class="code" href="classbdm_1_1migamma__ref.html">00809</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma__ref.html" title="Inverse-Gamma random walk around a fixed point.">migamma_ref</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> 
    590 <a name="l00810"></a>00810         { 
    591 <a name="l00811"></a>00811                 <span class="keyword">protected</span>: 
    592 <a name="l00813"></a><a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d">00813</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>; 
    593 <a name="l00815"></a><a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6">00815</a>                         vec <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>; 
    594 <a name="l00816"></a>00816                 <span class="keyword">public</span>: 
    595 <a name="l00818"></a><a class="code" href="classbdm_1_1migamma__ref.html#f45b15a10f084991ba6b48295f10421f">00818</a>                         <a class="code" href="classbdm_1_1migamma__ref.html#f45b15a10f084991ba6b48295f10421f" title="Constructor.">migamma_ref</a> ( ) : <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> (),<a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a> ( ) {}; 
    596 <a name="l00820"></a><a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800">00820</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0 ) 
    597 <a name="l00821"></a>00821                         { 
    598 <a name="l00822"></a>00822                                 <a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">migamma::set_parameters</a> ( ref0.length(), k0 ); 
    599 <a name="l00823"></a>00823                                 <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>=pow ( ref0,1.0-l0 ); 
    600 <a name="l00824"></a>00824                                 <a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>=l0; 
    601 <a name="l00825"></a>00825                                 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); 
    602 <a name="l00826"></a>00826                         }; 
    603 <a name="l00827"></a>00827  
    604 <a name="l00828"></a><a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a">00828</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &amp;val ) 
    605 <a name="l00829"></a>00829                         { 
    606 <a name="l00830"></a>00830                                 vec mean=elem_mult ( <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>,pow ( val,<a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a> ) ); 
    607 <a name="l00831"></a>00831                                 <a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">migamma::condition</a> ( mean ); 
    608 <a name="l00832"></a>00832                         }; 
    609 <a name="l00833"></a>00833  
    610 <a name="l00854"></a>00854                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#9e7e0f7d2aa9ecca8ec1af8cbcb5ef1d">from_setting</a>( <span class="keyword">const</span> Setting &amp;<span class="keyword">set</span> ); 
    611 <a name="l00855"></a>00855  
    612 <a name="l00856"></a>00856                         <span class="comment">// TODO dodelat void to_setting( Setting &amp;set ) const;</span> 
    613 <a name="l00857"></a>00857         }; 
    614 <a name="l00858"></a>00858  
    615 <a name="l00859"></a>00859  
    616 <a name="l00860"></a>00860         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(migamma_ref); 
    617 <a name="l00861"></a>00861  
    618 <a name="l00871"></a><a class="code" href="classbdm_1_1elognorm.html">00871</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1elognorm.html">elognorm</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a>&lt;ldmat&gt; 
    619 <a name="l00872"></a>00872         { 
    620 <a name="l00873"></a>00873                 <span class="keyword">public</span>: 
    621 <a name="l00874"></a><a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba">00874</a>                         vec <a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> exp ( <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;ldmat&gt;::sample</a>() );}; 
    622 <a name="l00875"></a><a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea">00875</a>                         vec <a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec var=<a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">enorm&lt;ldmat&gt;::variance</a>();<span class="keywordflow">return</span> exp ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> - 0.5*var );}; 
    623 <a name="l00876"></a>00876  
    624 <a name="l00877"></a>00877         }; 
     573<a name="l00764"></a>00764                 <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> &amp;m) : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;<a class="code" href="classbdm_1_1eigamma.html" title="Inverse-Gamma posterior density.">eigamma</a>&gt;(), 
     574<a name="l00765"></a>00765                                 <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> (0), 
     575<a name="l00766"></a>00766                                 <a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a>()), 
     576<a name="l00767"></a>00767                                 <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a>()) { 
     577<a name="l00768"></a>00768                 } 
     578<a name="l00770"></a>00770  
     579<a name="l00772"></a><a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151">00772</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#8b10ab922e2a7bae2fb6bb3efc7b6151" title="Set value of k.">set_parameters</a> (<span class="keywordtype">int</span> len, <span class="keywordtype">double</span> k0) { 
     580<a name="l00773"></a>00773                         <a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a> = k0; 
     581<a name="l00774"></a>00774                         <a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1egamma.html#749f82293ff23a8319c1bf52489d2ed2">set_parameters</a> ( (1.0 / (<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>*<a class="code" href="classbdm_1_1migamma.html#dc56bc9da542e0103ec16b9be8e5e38c" title="Constant .">k</a>) + 2.0) *ones (len) <span class="comment">/*alpha*/</span>, ones (len) <span class="comment">/*beta*/</span>); 
     582<a name="l00775"></a>00775                         <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); 
     583<a name="l00776"></a>00776                 }; 
     584<a name="l00777"></a><a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c">00777</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma.html#7a34b1e2e3aa2250d7c0ed7df1665b8c">condition</a> (<span class="keyword">const</span> vec &amp;val) { 
     585<a name="l00778"></a>00778                         <a class="code" href="classbdm_1_1migamma.html#0d854c047001b5465cf1ba21f52904b5" title="cache of iepdf.beta">_beta</a> = elem_mult (val, (<a class="code" href="classbdm_1_1migamma.html#c9847093da59a9ba0ebb68d2c592f5dc" title="cache of iepdf.alpha">_alpha</a> - 1.0)); 
     586<a name="l00779"></a>00779                 }; 
     587<a name="l00780"></a>00780 }; 
     588<a name="l00781"></a>00781  
     589<a name="l00782"></a>00782  
     590<a name="l00794"></a><a class="code" href="classbdm_1_1mgamma__fix.html">00794</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mgamma__fix.html" title="Gamma random walk around a fixed point.">mgamma_fix</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> 
     591<a name="l00795"></a>00795 { 
     592<a name="l00796"></a>00796         <span class="keyword">protected</span>: 
     593<a name="l00798"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa">00798</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>; 
     594<a name="l00800"></a><a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2">00800</a>                 vec <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>; 
     595<a name="l00801"></a>00801         <span class="keyword">public</span>: 
     596<a name="l00803"></a><a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d">00803</a>                 <a class="code" href="classbdm_1_1mgamma__fix.html#9a31bc9b4b60188a18a2a6b588dc4b2d" title="Constructor.">mgamma_fix</a> () : <a class="code" href="classbdm_1_1mgamma.html" title="Gamma random walk.">mgamma</a> (), <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a> () {}; 
     597<a name="l00805"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2">00805</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">set_parameters</a> (<span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0) { 
     598<a name="l00806"></a>00806                         <a class="code" href="classbdm_1_1mgamma__fix.html#1bfd30e90db9dc1fbda4a9fbb0b716b2" title="Set value of k.">mgamma::set_parameters</a> (k0, ref0); 
     599<a name="l00807"></a>00807                         <a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a> = pow (ref0, 1.0 - l0);<a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a> = l0; 
     600<a name="l00808"></a>00808                         <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); 
     601<a name="l00809"></a>00809                 }; 
     602<a name="l00810"></a>00810  
     603<a name="l00811"></a><a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7">00811</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgamma__fix.html#1d539591deb7a38bb3403c2b396c8ff7">condition</a> (<span class="keyword">const</span> vec &amp;val) {vec mean = elem_mult (<a class="code" href="classbdm_1_1mgamma__fix.html#018c6f901a04e419455308a07eb3b0b2" title="reference vector">refl</a>, pow (val, <a class="code" href="classbdm_1_1mgamma__fix.html#1eb701506aabb2e6af007e487212d6fa" title="parameter l">l</a>)); <a class="code" href="classbdm_1_1mgamma.html#3d95f4dde9214ff6dba265e18af60312" title="cache of iepdf.beta">_beta</a> = <a class="code" href="classbdm_1_1mgamma.html#b20cf88cca1fe9b0b8f2a412608bfd09" title="Constant .">k</a> / mean;}; 
     604<a name="l00812"></a>00812 }; 
     605<a name="l00813"></a>00813  
     606<a name="l00814"></a>00814  
     607<a name="l00827"></a><a class="code" href="classbdm_1_1migamma__ref.html">00827</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1migamma__ref.html" title="Inverse-Gamma random walk around a fixed point.">migamma_ref</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> 
     608<a name="l00828"></a>00828 { 
     609<a name="l00829"></a>00829         <span class="keyword">protected</span>: 
     610<a name="l00831"></a><a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d">00831</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>; 
     611<a name="l00833"></a><a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6">00833</a>                 vec <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>; 
     612<a name="l00834"></a>00834         <span class="keyword">public</span>: 
     613<a name="l00836"></a><a class="code" href="classbdm_1_1migamma__ref.html#f45b15a10f084991ba6b48295f10421f">00836</a>                 <a class="code" href="classbdm_1_1migamma__ref.html#f45b15a10f084991ba6b48295f10421f" title="Constructor.">migamma_ref</a> () : <a class="code" href="classbdm_1_1migamma.html" title="Inverse-Gamma random walk.">migamma</a> (), <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a> () {}; 
     614<a name="l00838"></a><a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800">00838</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">set_parameters</a> (<span class="keywordtype">double</span> k0 , vec ref0, <span class="keywordtype">double</span> l0) { 
     615<a name="l00839"></a>00839                         <a class="code" href="classbdm_1_1migamma__ref.html#b0b4eb278ef5d0831ec4954ba7bd2800" title="Set value of k.">migamma::set_parameters</a> (ref0.length(), k0); 
     616<a name="l00840"></a>00840                         <a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a> = pow (ref0, 1.0 - l0); 
     617<a name="l00841"></a>00841                         <a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a> = l0; 
     618<a name="l00842"></a>00842                         <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = dimension(); 
     619<a name="l00843"></a>00843                 }; 
     620<a name="l00844"></a>00844  
     621<a name="l00845"></a><a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a">00845</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a">condition</a> (<span class="keyword">const</span> vec &amp;val) { 
     622<a name="l00846"></a>00846                         vec mean = elem_mult (<a class="code" href="classbdm_1_1migamma__ref.html#3692dc67caf4367e15564d37f45476f6" title="reference vector">refl</a>, pow (val, <a class="code" href="classbdm_1_1migamma__ref.html#cdc1345ba8375fbdb18a69322d2f841d" title="parameter l">l</a>)); 
     623<a name="l00847"></a>00847                         <a class="code" href="classbdm_1_1migamma__ref.html#ae86b2e4ff963d62e05d4e130514634a">migamma::condition</a> (mean); 
     624<a name="l00848"></a>00848                 }; 
     625<a name="l00849"></a>00849  
     626<a name="l00870"></a>00870                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1migamma__ref.html#9e7e0f7d2aa9ecca8ec1af8cbcb5ef1d">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>); 
     627<a name="l00871"></a>00871  
     628<a name="l00872"></a>00872                 <span class="comment">// TODO dodelat void to_setting( Setting &amp;set ) const;</span> 
     629<a name="l00873"></a>00873 }; 
     630<a name="l00874"></a>00874  
     631<a name="l00875"></a>00875  
     632<a name="l00876"></a>00876 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a> (migamma_ref); 
     633<a name="l00877"></a>00877 SHAREDPTR (migamma_ref); 
    625634<a name="l00878"></a>00878  
    626 <a name="l00890"></a><a class="code" href="classbdm_1_1mlognorm.html">00890</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1mlognorm.html" title="Log-Normal random walk.">mlognorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a> 
    627 <a name="l00891"></a>00891         { 
    628 <a name="l00892"></a>00892                 <span class="keyword">protected</span>: 
    629 <a name="l00893"></a>00893                         <a class="code" href="classbdm_1_1elognorm.html">elognorm</a> eno; 
    630 <a name="l00895"></a><a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a">00895</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>; 
    631 <a name="l00897"></a><a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2">00897</a>                         vec &amp;<a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>; 
    632 <a name="l00898"></a>00898                 <span class="keyword">public</span>: 
    633 <a name="l00900"></a><a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41">00900</a>                         <a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41" title="Constructor.">mlognorm</a> ( ) : eno (), <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a> ( eno._mu() ) {<a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&amp;eno;}; 
    634 <a name="l00902"></a><a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f">00902</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f" title="Set value of k.">set_parameters</a> ( <span class="keywordtype">int</span> size, <span class="keywordtype">double</span> k ) 
    635 <a name="l00903"></a>00903                         { 
    636 <a name="l00904"></a>00904                                 <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a> = 0.5*log ( k*k+1 ); 
    637 <a name="l00905"></a>00905                                 eno.<a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> ( zeros ( size ),2*<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>*eye ( size ) ); 
    638 <a name="l00906"></a>00906  
    639 <a name="l00907"></a>00907                                 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = size; 
    640 <a name="l00908"></a>00908                         }; 
    641 <a name="l00909"></a>00909  
    642 <a name="l00910"></a><a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e">00910</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e" title="Update ep so that it represents this mpdf conditioned on rvc = cond.">condition</a> ( <span class="keyword">const</span> vec &amp;val ) 
    643 <a name="l00911"></a>00911                         { 
    644 <a name="l00912"></a>00912                                 <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>=log ( val )-<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>;<span class="comment">//elem_mult ( refl,pow ( val,l ) );</span> 
    645 <a name="l00913"></a>00913                         }; 
    646 <a name="l00914"></a>00914  
    647 <a name="l00933"></a>00933                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#49e45ea13a869da607ef9be7a229128a">from_setting</a>( <span class="keyword">const</span> Setting &amp;<span class="keyword">set</span> ); 
    648 <a name="l00934"></a>00934  
    649 <a name="l00935"></a>00935                         <span class="comment">// TODO dodelat void to_setting( Setting &amp;set ) const;</span> 
    650 <a name="l00936"></a>00936  
    651 <a name="l00937"></a>00937         }; 
    652 <a name="l00938"></a>00938          
    653 <a name="l00939"></a>00939         <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a>(mlognorm); 
    654 <a name="l00940"></a>00940  
    655 <a name="l00944"></a><a class="code" href="classbdm_1_1eWishartCh.html">00944</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1eWishartCh.html">eWishartCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> 
    656 <a name="l00945"></a>00945         { 
    657 <a name="l00946"></a>00946                 <span class="keyword">protected</span>: 
    658 <a name="l00948"></a><a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490">00948</a>                         <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>; 
    659 <a name="l00950"></a><a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f">00950</a>                         <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; 
    660 <a name="l00952"></a><a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3">00952</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>; 
    661 <a name="l00953"></a>00953                 <span class="keyword">public</span>: 
    662 <a name="l00954"></a>00954                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &amp;Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0 ) {<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>=<a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> ( Y0 );<a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>=delta0; <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>=<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classsqmat.html#071e80ced9cc3b8cbb360fa7462eb646" title="Reimplementing common functions of mat: cols().">rows</a>(); <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>*<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; } 
    663 <a name="l00955"></a>00955                         mat sample_mat()<span class="keyword"> const</span> 
    664 <a name="l00956"></a>00956 <span class="keyword">                        </span>{ 
    665 <a name="l00957"></a>00957                                 mat X=zeros ( <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>,<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a> ); 
    666 <a name="l00958"></a>00958  
    667 <a name="l00959"></a>00959                                 <span class="comment">//sample diagonal</span> 
    668 <a name="l00960"></a>00960                                 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i&lt;<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>;i++ ) 
    669 <a name="l00961"></a>00961                                 { 
    670 <a name="l00962"></a>00962                                         GamRNG.setup ( 0.5* ( <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>-i ) , 0.5 ); <span class="comment">// no +1 !! index if from 0</span> 
    671 <a name="l00963"></a>00963 <span class="preprocessor">#pragma omp critical</span> 
    672 <a name="l00964"></a>00964 <span class="preprocessor"></span>                                        X ( i,i ) =sqrt ( GamRNG() ); 
    673 <a name="l00965"></a>00965                                 } 
    674 <a name="l00966"></a>00966                                 <span class="comment">//do the rest</span> 
    675 <a name="l00967"></a>00967                                 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i&lt;p;i++ ) 
    676 <a name="l00968"></a>00968                                 { 
    677 <a name="l00969"></a>00969                                         <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> j=i+1;j&lt;p;j++ ) 
    678 <a name="l00970"></a>00970                                         { 
    679 <a name="l00971"></a>00971 <span class="preprocessor">#pragma omp critical</span> 
    680 <a name="l00972"></a>00972 <span class="preprocessor"></span>                                                X ( i,j ) =NorRNG.sample(); 
    681 <a name="l00973"></a>00973                                         } 
    682 <a name="l00974"></a>00974                                 } 
    683 <a name="l00975"></a>00975                                 <span class="keywordflow">return</span> X*<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>();<span class="comment">// return upper triangular part of the decomposition</span> 
    684 <a name="l00976"></a>00976                         } 
    685 <a name="l00977"></a><a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a">00977</a>                         vec <a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a" title="Returns a sample,  from density .">sample</a> ()<span class="keyword"> const</span> 
    686 <a name="l00978"></a>00978 <span class="keyword">                        </span>{ 
    687 <a name="l00979"></a>00979                                 <span class="keywordflow">return</span> vec ( sample_mat()._data(),p*p ); 
    688 <a name="l00980"></a>00980                         } 
    689 <a name="l00982"></a><a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981">00982</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981" title="fast access function y0 will be copied into Y.Ch.">setY</a> ( <span class="keyword">const</span> mat &amp;Ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,Ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() );} 
    690 <a name="l00984"></a><a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a">00984</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a" title="fast access function y0 will be copied into Y.Ch.">_setY</a> ( <span class="keyword">const</span> vec &amp;ch0 ) {copy_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classchmat.html#9c50d31c999d85d8e9d8cf2b69b6ac8c" title="Access function.">_Ch</a>()._data() ); } 
    691 <a name="l00986"></a><a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e">00986</a>                         <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>&amp; <a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e" title="access function">getY</a>()<span class="keyword">const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>;} 
    692 <a name="l00987"></a>00987         }; 
    693 <a name="l00988"></a>00988  
    694 <a name="l00989"></a>00989         <span class="keyword">class </span>eiWishartCh: <span class="keyword">public</span> epdf 
    695 <a name="l00990"></a>00990         { 
    696 <a name="l00991"></a>00991                 <span class="keyword">protected</span>: 
    697 <a name="l00992"></a>00992                         eWishartCh W; 
    698 <a name="l00993"></a>00993                         <span class="keywordtype">int</span> p; 
    699 <a name="l00994"></a>00994                         <span class="keywordtype">double</span> delta; 
    700 <a name="l00995"></a>00995                 <span class="keyword">public</span>: 
    701 <a name="l00996"></a>00996                         <span class="keywordtype">void</span> set_parameters ( <span class="keyword">const</span> mat &amp;Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0) { 
    702 <a name="l00997"></a>00997                                 delta = delta0; 
    703 <a name="l00998"></a>00998                                 W.set_parameters ( inv ( Y0 ),delta0 );  
    704 <a name="l00999"></a>00999                                 dim = W.dimension(); p=Y0.rows(); 
    705 <a name="l01000"></a>01000                         } 
    706 <a name="l01001"></a>01001                         vec sample()<span class="keyword"> const </span>{mat iCh; iCh=inv ( W.sample_mat() ); <span class="keywordflow">return</span> vec ( iCh._data(),<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> );} 
    707 <a name="l01002"></a>01002                         <span class="keywordtype">void</span> _setY ( <span class="keyword">const</span> vec &amp;y0 ) 
    708 <a name="l01003"></a>01003                         { 
    709 <a name="l01004"></a>01004                                 mat Ch ( p,p ); 
    710 <a name="l01005"></a>01005                                 mat iCh ( p,p ); 
    711 <a name="l01006"></a>01006                                 copy_vector ( dim, y0._data(), Ch._data() ); 
    712 <a name="l01007"></a>01007                                  
    713 <a name="l01008"></a>01008                                 iCh=inv ( Ch ); 
    714 <a name="l01009"></a>01009                                 W.setY ( iCh ); 
    715 <a name="l01010"></a>01010                         } 
    716 <a name="l01011"></a>01011                         <span class="keyword">virtual</span> <span class="keywordtype">double</span> evallog ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const </span>{ 
    717 <a name="l01012"></a>01012                                 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> X(p); 
    718 <a name="l01013"></a>01013                                 <span class="keyword">const</span> <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>&amp; Y=W.getY(); 
    719 <a name="l01014"></a>01014                                   
    720 <a name="l01015"></a>01015                                 copy_vector(p*p,val._data(),X._Ch()._data()); 
    721 <a name="l01016"></a>01016                                 <a class="code" href="classchmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> iX(p);X.inv(iX); 
    722 <a name="l01017"></a>01017                                 <span class="comment">// compute  </span> 
    723 <a name="l01018"></a>01018 <span class="comment">//                              \frac{ |\Psi|^{m/2}|X|^{-(m+p+1)/2}e^{-tr(\Psi X^{-1})/2} }{ 2^{mp/2}\Gamma_p(m/2)},</span> 
    724 <a name="l01019"></a>01019                                 mat M=Y.<a class="code" href="classchmat.html#045addd685f8d978efda232d7dcb070e" title="Conversion to full matrix.">to_mat</a>()*iX.to_mat(); 
    725 <a name="l01020"></a>01020                                  
    726 <a name="l01021"></a>01021                                 <span class="keywordtype">double</span> log1 = 0.5*p*(2*Y.<a class="code" href="classchmat.html#b504ca818203b13e667cb3c503980382" title="Logarithm of a determinant.">logdet</a>())-0.5*(delta+p+1)*(2*X.logdet())-0.5*trace(M);  
    727 <a name="l01022"></a>01022                                 <span class="comment">//Fixme! Multivariate gamma omitted!! it is ok for sampling, but not otherwise!!</span> 
    728 <a name="l01023"></a>01023                                  
    729 <a name="l01024"></a>01024 <span class="comment">/*                              if (0) {</span> 
    730 <a name="l01025"></a>01025 <span class="comment">                                        mat XX=X.to_mat();</span> 
    731 <a name="l01026"></a>01026 <span class="comment">                                        mat YY=Y.to_mat();</span> 
    732 <a name="l01027"></a>01027 <span class="comment">                                        </span> 
    733 <a name="l01028"></a>01028 <span class="comment">                                        double log2 = 0.5*p*log(det(YY))-0.5*(delta+p+1)*log(det(XX))-0.5*trace(YY*inv(XX)); </span> 
    734 <a name="l01029"></a>01029 <span class="comment">                                        cout &lt;&lt; log1 &lt;&lt; "," &lt;&lt; log2 &lt;&lt; endl;</span> 
    735 <a name="l01030"></a>01030 <span class="comment">                                }*/</span> 
    736 <a name="l01031"></a>01031                                 <span class="keywordflow">return</span> log1;                             
    737 <a name="l01032"></a>01032                         }; 
    738 <a name="l01033"></a>01033                          
    739 <a name="l01034"></a>01034         }; 
    740 <a name="l01035"></a>01035  
    741 <a name="l01036"></a>01036         <span class="keyword">class </span>rwiWishartCh : <span class="keyword">public</span> mpdf 
    742 <a name="l01037"></a>01037         { 
    743 <a name="l01038"></a>01038                 <span class="keyword">protected</span>: 
    744 <a name="l01039"></a>01039                         eiWishartCh eiW; 
    745 <a name="l01041"></a>01041                         <span class="keywordtype">double</span> sqd; 
    746 <a name="l01042"></a>01042                         <span class="comment">//reference point for diagonal</span> 
    747 <a name="l01043"></a>01043                         vec refl; 
    748 <a name="l01044"></a>01044                         <span class="keywordtype">double</span> l; 
    749 <a name="l01045"></a>01045                         <span class="keywordtype">int</span> p; 
    750 <a name="l01046"></a>01046                 <span class="keyword">public</span>: 
    751 <a name="l01047"></a>01047                         <span class="keywordtype">void</span> set_parameters ( <span class="keywordtype">int</span> p0, <span class="keywordtype">double</span> k, vec ref0, <span class="keywordtype">double</span> l0  ) 
    752 <a name="l01048"></a>01048                         { 
    753 <a name="l01049"></a>01049                                 p=p0; 
    754 <a name="l01050"></a>01050                                 <span class="keywordtype">double</span> delta = 2/(k*k)+p+3; 
    755 <a name="l01051"></a>01051                                 sqd=sqrt ( delta-p-1 ); 
    756 <a name="l01052"></a>01052                                 l=l0; 
    757 <a name="l01053"></a>01053                                 refl=pow(ref0,1-l); 
    758 <a name="l01054"></a>01054                                  
    759 <a name="l01055"></a>01055                                 eiW.set_parameters ( eye ( p ),delta ); 
    760 <a name="l01056"></a>01056                                 <a class="code" href="classbdm_1_1mpdf.html#5eea43c56d38e4441bfb30270db949c0" title="pointer to internal epdf">ep</a>=&amp;eiW; 
    761 <a name="l01057"></a>01057                                 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=eiW.dimension(); 
    762 <a name="l01058"></a>01058                         } 
    763 <a name="l01059"></a>01059                         <span class="keywordtype">void</span> condition ( <span class="keyword">const</span> vec &amp;c ) { 
    764 <a name="l01060"></a>01060                                 vec z=c; 
    765 <a name="l01061"></a>01061                                 <span class="keywordtype">int</span> ri=0; 
    766 <a name="l01062"></a>01062                                 <span class="keywordflow">for</span>(<span class="keywordtype">int</span> i=0;i&lt;p*p;i+=(p+1)){<span class="comment">//trace diagonal element</span> 
    767 <a name="l01063"></a>01063                                         z(i) = pow(z(i),l)*refl(ri); 
    768 <a name="l01064"></a>01064                                         ri++; 
    769 <a name="l01065"></a>01065                                 } 
    770 <a name="l01066"></a>01066  
    771 <a name="l01067"></a>01067                                 eiW._setY ( sqd*z ); 
    772 <a name="l01068"></a>01068                         } 
    773 <a name="l01069"></a>01069         }; 
    774 <a name="l01070"></a>01070  
    775 <a name="l01072"></a>01072         <span class="keyword">enum</span> RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; 
    776 <a name="l01078"></a><a class="code" href="classbdm_1_1eEmp.html">01078</a>         <span class="keyword">class </span><a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> 
    777 <a name="l01079"></a>01079         { 
    778 <a name="l01080"></a>01080                 <span class="keyword">protected</span> : 
    779 <a name="l01082"></a><a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031">01082</a>                         <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>; 
    780 <a name="l01084"></a><a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d">01084</a>                         vec <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>; 
    781 <a name="l01086"></a><a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3">01086</a>                         Array&lt;vec&gt; <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>; 
    782 <a name="l01087"></a>01087                 <span class="keyword">public</span>: 
    783 <a name="l01090"></a>01090                         <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> ( ) :<a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( ),<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( ) {}; 
    784 <a name="l01092"></a><a class="code" href="classbdm_1_1eEmp.html#a3daf6363455af099921715e1233c076">01092</a>                         <a class="code" href="classbdm_1_1eEmp.html#a3daf6363455af099921715e1233c076" title="copy constructor">eEmp</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> &amp;e ) : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> ( e ), <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ), <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( e.<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ) {}; 
    785 <a name="l01094"></a>01094  
    786 <a name="l01096"></a>01096                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#7cfd383180b486fe4526bdf0179350c0" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> vec &amp;w0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); 
    787 <a name="l01098"></a><a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7">01098</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 , <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> ) {<a class="code" href="classbdm_1_1eEmp.html#cef74aa5f87d10d440b9b1e8bc78c1e7" title="Set samples and weights.">set_statistics</a> ( ones ( n ) /n,pdf0 );}; 
    788 <a name="l01100"></a>01100                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b62d802b8ef39f7c4dcbeb366c90951a" title="Set sample.">set_samples</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0 ); 
    789 <a name="l01102"></a><a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1">01102</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1" title="Set sample.">set_parameters</a> ( <span class="keywordtype">int</span> n0, <span class="keywordtype">bool</span> copy=<span class="keyword">true</span> ) {<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>=n0; <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>.set_size ( n0,copy );<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>.set_size ( n0,copy );}; 
    790 <a name="l01104"></a><a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef">01104</a>                         vec&amp; <a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>()  {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; 
    791 <a name="l01106"></a><a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714">01106</a>                         <span class="keyword">const</span> vec&amp; <a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714" title="Potentially dangerous, use with care.">_w</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; 
    792 <a name="l01108"></a><a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2">01108</a>                         Array&lt;vec&gt;&amp; <a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; 
    793 <a name="l01110"></a><a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2">01110</a>                         <span class="keyword">const</span> Array&lt;vec&gt;&amp; <a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2" title="access function">_samples</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; 
    794 <a name="l01112"></a>01112                         ivec <a class="code" href="classbdm_1_1eEmp.html#f06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> ( RESAMPLING_METHOD method=SYSTEMATIC ); 
    795 <a name="l01114"></a><a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270">01114</a>                         vec <a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0;} 
    796 <a name="l01116"></a><a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09">01116</a>                         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09" title="inherited operation : NOT implemneted">evallog</a> ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const </span>{it_error ( <span class="stringliteral">"Not implemented"</span> );<span class="keywordflow">return</span> 0.0;} 
    797 <a name="l01117"></a><a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9">01117</a>                         vec <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>()<span class="keyword"> const</span> 
    798 <a name="l01118"></a>01118 <span class="keyword">                        </span>{ 
    799 <a name="l01119"></a>01119                                 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); 
    800 <a name="l01120"></a>01120                                 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i&lt;<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} 
    801 <a name="l01121"></a>01121                                 <span class="keywordflow">return</span> pom; 
    802 <a name="l01122"></a>01122                         } 
    803 <a name="l01123"></a><a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87">01123</a>                         vec <a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const</span> 
    804 <a name="l01124"></a>01124 <span class="keyword">                        </span>{ 
    805 <a name="l01125"></a>01125                                 vec pom=zeros ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); 
    806 <a name="l01126"></a>01126                                 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i&lt;<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) {pom+=pow ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ),2 ) *<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> ( i );} 
    807 <a name="l01127"></a>01127                                 <span class="keywordflow">return</span> pom-pow ( <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>(),2 ); 
    808 <a name="l01128"></a>01128                         } 
    809 <a name="l01130"></a><a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f">01130</a>                         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f" title="For this class, qbounds are minimum and maximum value of the population!">qbounds</a> ( vec &amp;lb, vec &amp;ub, <span class="keywordtype">double</span> perc=0.95 )<span class="keyword"> const</span> 
    810 <a name="l01131"></a>01131 <span class="keyword">                        </span>{ 
    811 <a name="l01132"></a>01132                                 <span class="comment">// lb in inf so than it will be pushed below;</span> 
    812 <a name="l01133"></a>01133                                 lb.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); 
    813 <a name="l01134"></a>01134                                 ub.set_size ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); 
    814 <a name="l01135"></a>01135                                 lb = std::numeric_limits&lt;double&gt;::infinity(); 
    815 <a name="l01136"></a>01136                                 ub = -std::numeric_limits&lt;double&gt;::infinity(); 
    816 <a name="l01137"></a>01137                                 <span class="keywordtype">int</span> j; 
    817 <a name="l01138"></a>01138                                 <span class="keywordflow">for</span> ( <span class="keywordtype">int</span> i=0;i&lt;<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++ ) 
    818 <a name="l01139"></a>01139                                 { 
    819 <a name="l01140"></a>01140                                         <span class="keywordflow">for</span> ( j=0;j&lt;<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>; j++ ) 
    820 <a name="l01141"></a>01141                                         { 
    821 <a name="l01142"></a>01142                                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) &lt;lb ( j ) ) {lb ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} 
    822 <a name="l01143"></a>01143                                                 <span class="keywordflow">if</span> ( <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j ) &gt;ub ( j ) ) {ub ( j ) =<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> ( i ) ( j );} 
    823 <a name="l01144"></a>01144                                         } 
    824 <a name="l01145"></a>01145                                 } 
    825 <a name="l01146"></a>01146                         } 
    826 <a name="l01147"></a>01147         }; 
    827 <a name="l01148"></a>01148  
    828 <a name="l01149"></a>01149  
    829 <a name="l01151"></a>01151  
    830 <a name="l01152"></a>01152         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    831 <a name="l01153"></a>01153         <span class="keywordtype">void</span> enorm&lt;sq_T&gt;::set_parameters ( <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;R0 ) 
    832 <a name="l01154"></a>01154         { 
    833 <a name="l01155"></a>01155 <span class="comment">//Fixme test dimensions of mu0 and R0;</span> 
    834 <a name="l01156"></a>01156                 mu = mu0; 
    835 <a name="l01157"></a>01157                 R = R0; 
    836 <a name="l01158"></a>01158                 <a class="code" href="classbdm_1_1root.html#1c314bd6d6dacb8ba78ea5eb88fd9516" title="This method TODO.">validate</a>(); 
    837 <a name="l01159"></a>01159         }; 
    838 <a name="l01160"></a>01160  
    839 <a name="l01161"></a>01161         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    840 <a name="l01162"></a><a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">01162</a>         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">enorm&lt;sq_T&gt;::from_setting</a>(<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>){ 
    841 <a name="l01163"></a>01163                 <a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">epdf::from_setting</a>(<span class="keyword">set</span>); <span class="comment">//reads rv</span> 
    842 <a name="l01164"></a>01164                  
    843 <a name="l01165"></a>01165                 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>,<span class="keyword">set</span>,<span class="stringliteral">"mu"</span>); 
    844 <a name="l01166"></a>01166                 mat Rtmp;<span class="comment">// necessary for conversion</span> 
    845 <a name="l01167"></a>01167                 <a class="code" href="classbdm_1_1UI.html#652bfd23f5052e4f1cb317057d74a3e2" title="The existing instance of type T is initialized with values stored in the Setting...">UI::get</a>(Rtmp,<span class="keyword">set</span>,<span class="stringliteral">"R"</span>); 
    846 <a name="l01168"></a>01168                 <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>=Rtmp; <span class="comment">// conversion</span> 
    847 <a name="l01169"></a>01169                 <a class="code" href="classbdm_1_1enorm.html#38eb17ecb75d94a50b6782fcf735cfea" title="This method TODO.">validate</a>(); 
    848 <a name="l01170"></a>01170         } 
     635<a name="l00888"></a><a class="code" href="classbdm_1_1elognorm.html">00888</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1elognorm.html">elognorm</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm</a>&lt;ldmat&gt; 
     636<a name="l00889"></a>00889 { 
     637<a name="l00890"></a>00890         <span class="keyword">public</span>: 
     638<a name="l00891"></a><a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba">00891</a>                 vec <a class="code" href="classbdm_1_1elognorm.html#8b948e2bce1253765a2542199913aaba" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> exp (<a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;ldmat&gt;::sample</a>());}; 
     639<a name="l00892"></a><a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea">00892</a>                 vec <a class="code" href="classbdm_1_1elognorm.html#adb41e4f4d6600dec6f8c1dbc5ed9eea" title="return expected value">mean</a>()<span class="keyword"> const </span>{vec var = <a class="code" href="classbdm_1_1enorm.html#729c75ef0fa8abae03d58ad1f81e6773" title="return expected variance (not covariance!)">enorm&lt;ldmat&gt;::variance</a>();<span class="keywordflow">return</span> exp (<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> - 0.5*var);}; 
     640<a name="l00893"></a>00893  
     641<a name="l00894"></a>00894 }; 
     642<a name="l00895"></a>00895  
     643<a name="l00907"></a><a class="code" href="classbdm_1_1mlognorm.html">00907</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1mlognorm.html" title="Log-Normal random walk.">mlognorm</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;elognorm&gt; 
     644<a name="l00908"></a>00908 { 
     645<a name="l00909"></a>00909         <span class="keyword">protected</span>: 
     646<a name="l00911"></a><a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a">00911</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>; 
     647<a name="l00912"></a>00912  
     648<a name="l00914"></a><a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2">00914</a>                 vec &amp;<a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a>; 
     649<a name="l00915"></a>00915         <span class="keyword">public</span>: 
     650<a name="l00917"></a><a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41">00917</a>                 <a class="code" href="classbdm_1_1mlognorm.html#a5d6eb2688d02e0348b96c4fbd7bde41" title="Constructor.">mlognorm</a>() : <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;<a class="code" href="classbdm_1_1elognorm.html">elognorm</a>&gt;(), 
     651<a name="l00918"></a>00918                                 <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a> (0), 
     652<a name="l00919"></a>00919                                 <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a> (<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>._mu()) { 
     653<a name="l00920"></a>00920                 } 
     654<a name="l00921"></a>00921  
     655<a name="l00923"></a><a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f">00923</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#604cab0e8a76f9041dc3c606043bb39f" title="Set value of k.">set_parameters</a> (<span class="keywordtype">int</span> size, <span class="keywordtype">double</span> k) { 
     656<a name="l00924"></a>00924                         <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a> = 0.5 * log (k * k + 1); 
     657<a name="l00925"></a>00925                         <a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> (zeros (size), 2*<a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>*eye (size)); 
     658<a name="l00926"></a>00926  
     659<a name="l00927"></a>00927                         <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = size; 
     660<a name="l00928"></a>00928                 }; 
     661<a name="l00929"></a>00929  
     662<a name="l00930"></a><a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e">00930</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#9106d8fd8bdf2b6be675ffd8f3ca584e">condition</a> (<span class="keyword">const</span> vec &amp;val) { 
     663<a name="l00931"></a>00931                         <a class="code" href="classbdm_1_1mlognorm.html#7d0063f77d899ef22e8c5edd642176d2" title="access">mu</a> = log (val) - <a class="code" href="classbdm_1_1mlognorm.html#a51128a2e503b8b2ce698244b9e0db1a" title="parameter 1/2*sigma^2">sig2</a>;<span class="comment">//elem_mult ( refl,pow ( val,l ) );</span> 
     664<a name="l00932"></a>00932                 }; 
     665<a name="l00933"></a>00933  
     666<a name="l00952"></a>00952                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlognorm.html#49e45ea13a869da607ef9be7a229128a">from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>); 
     667<a name="l00953"></a>00953  
     668<a name="l00954"></a>00954                 <span class="comment">// TODO dodelat void to_setting( Setting &amp;set ) const;</span> 
     669<a name="l00955"></a>00955  
     670<a name="l00956"></a>00956 }; 
     671<a name="l00957"></a>00957  
     672<a name="l00958"></a>00958 <a class="code" href="user__info_8h.html#4f9de2f17e844047726487b99def99c6" title="Macro for registration of class into map of user-infos, registered class is scriptable...">UIREGISTER</a> (mlognorm); 
     673<a name="l00959"></a>00959 SHAREDPTR (mlognorm); 
     674<a name="l00960"></a>00960  
     675<a name="l00964"></a><a class="code" href="classbdm_1_1eWishartCh.html">00964</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eWishartCh.html">eWishartCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> 
     676<a name="l00965"></a>00965 { 
     677<a name="l00966"></a>00966         <span class="keyword">protected</span>: 
     678<a name="l00968"></a><a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490">00968</a>                 <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>; 
     679<a name="l00970"></a><a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f">00970</a>                 <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; 
     680<a name="l00972"></a><a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3">00972</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a>; 
     681<a name="l00973"></a>00973         <span class="keyword">public</span>: 
     682<a name="l00975"></a><a class="code" href="classbdm_1_1eWishartCh.html#183d961532ee97b7dc5ec81701aa59a0">00975</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#183d961532ee97b7dc5ec81701aa59a0" title="Set internal structures.">set_parameters</a> (<span class="keyword">const</span> mat &amp;Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0) {<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a> = <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> (Y0);<a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a> = delta0; <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a> = <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classbdm_1_1sqmat.html#73e639221343dcce76c3305524d67590" title="Reimplementing common functions of mat: rows().">rows</a>(); <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a> * <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>; } 
     683<a name="l00977"></a><a class="code" href="classbdm_1_1eWishartCh.html#cc664035d70d2622bf264a29270f8339">00977</a>                 mat <a class="code" href="classbdm_1_1eWishartCh.html#cc664035d70d2622bf264a29270f8339" title="Sample matrix argument.">sample_mat</a>()<span class="keyword"> const </span>{ 
     684<a name="l00978"></a>00978                         mat X = zeros (<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>, <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>); 
     685<a name="l00979"></a>00979  
     686<a name="l00980"></a>00980                         <span class="comment">//sample diagonal</span> 
     687<a name="l00981"></a>00981                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>;i++) { 
     688<a name="l00982"></a>00982                                 GamRNG.setup (0.5* (<a class="code" href="classbdm_1_1eWishartCh.html#1879a14d7d2bb05062523b189baa11c3" title="degrees of freedom ">delta</a> - i) , 0.5);   <span class="comment">// no +1 !! index if from 0</span> 
     689<a name="l00983"></a>00983 <span class="preprocessor">#pragma omp critical</span> 
     690<a name="l00984"></a>00984 <span class="preprocessor"></span>                                X (i, i) = sqrt (GamRNG()); 
     691<a name="l00985"></a>00985                         } 
     692<a name="l00986"></a>00986                         <span class="comment">//do the rest</span> 
     693<a name="l00987"></a>00987                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; p;i++) { 
     694<a name="l00988"></a>00988                                 <span class="keywordflow">for</span> (<span class="keywordtype">int</span> j = i + 1;j &lt; p;j++) { 
     695<a name="l00989"></a>00989 <span class="preprocessor">#pragma omp critical</span> 
     696<a name="l00990"></a>00990 <span class="preprocessor"></span>                                        X (i, j) = NorRNG.sample(); 
     697<a name="l00991"></a>00991                                 } 
     698<a name="l00992"></a>00992                         } 
     699<a name="l00993"></a>00993                         <span class="keywordflow">return</span> X*<a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classbdm_1_1chmat.html#17daa8c5c5914bd3194cb3053c5793a5" title="Access function.">_Ch</a>();<span class="comment">// return upper triangular part of the decomposition</span> 
     700<a name="l00994"></a>00994                 } 
     701<a name="l00995"></a><a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a">00995</a>                 vec <a class="code" href="classbdm_1_1eWishartCh.html#8f2154b8b5be8f4c5788f261b6d57b9a" title="Returns a sample,  from density .">sample</a> ()<span class="keyword"> const </span>{ 
     702<a name="l00996"></a>00996                         <span class="keywordflow">return</span> vec (<a class="code" href="classbdm_1_1eWishartCh.html#cc664035d70d2622bf264a29270f8339" title="Sample matrix argument.">sample_mat</a>()._data(), <a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>*<a class="code" href="classbdm_1_1eWishartCh.html#b745c73faef785009484180582050a1f" title="dimension of matrix ">p</a>); 
     703<a name="l00997"></a>00997                 } 
     704<a name="l00999"></a><a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981">00999</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981" title="fast access function y0 will be copied into Y.Ch.">setY</a> (<span class="keyword">const</span> mat &amp;Ch0) {copy_vector (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, Ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classbdm_1_1chmat.html#17daa8c5c5914bd3194cb3053c5793a5" title="Access function.">_Ch</a>()._data());} 
     705<a name="l01001"></a><a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a">01001</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eWishartCh.html#7eac414ec10b85aa5536b0092c57bc4a" title="fast access function y0 will be copied into Y.Ch.">_setY</a> (<span class="keyword">const</span> vec &amp;ch0) {copy_vector (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, ch0._data(), <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>.<a class="code" href="classbdm_1_1chmat.html#17daa8c5c5914bd3194cb3053c5793a5" title="Access function.">_Ch</a>()._data()); } 
     706<a name="l01003"></a><a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e">01003</a>                 <span class="keyword">const</span> <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>&amp; <a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e" title="access function">getY</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eWishartCh.html#1b42f9284a32f23b0b253a628cda7490" title="Upper-Triagle of Choleski decomposition of .">Y</a>;} 
     707<a name="l01004"></a>01004 }; 
     708<a name="l01005"></a>01005  
     709<a name="l01007"></a>01007  
     710<a name="l01009"></a><a class="code" href="classbdm_1_1eiWishartCh.html">01009</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eiWishartCh.html" title="Inverse Wishart on Choleski decomposition.">eiWishartCh</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> 
     711<a name="l01010"></a>01010 { 
     712<a name="l01011"></a>01011         <span class="keyword">protected</span>: 
     713<a name="l01013"></a><a class="code" href="classbdm_1_1eiWishartCh.html#c6b684b52dc62b8d46e67d5992f98b9a">01013</a>                 <a class="code" href="classbdm_1_1eWishartCh.html">eWishartCh</a> <a class="code" href="classbdm_1_1eiWishartCh.html#c6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>; 
     714<a name="l01015"></a><a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd">01015</a>                 <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>; 
     715<a name="l01017"></a><a class="code" href="classbdm_1_1eiWishartCh.html#ca3035f7bd5e4597cc1843cf07af8464">01017</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eiWishartCh.html#ca3035f7bd5e4597cc1843cf07af8464" title="parameter delta">delta</a>; 
     716<a name="l01018"></a>01018         <span class="keyword">public</span>: 
     717<a name="l01020"></a><a class="code" href="classbdm_1_1eiWishartCh.html#f463caed9d22d9949f3ee67614e7dcd3">01020</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eiWishartCh.html#f463caed9d22d9949f3ee67614e7dcd3" title="constructor function">set_parameters</a> (<span class="keyword">const</span> mat &amp;Y0, <span class="keyword">const</span> <span class="keywordtype">double</span> delta0) { 
     718<a name="l01021"></a>01021                         <a class="code" href="classbdm_1_1eiWishartCh.html#ca3035f7bd5e4597cc1843cf07af8464" title="parameter delta">delta</a> = delta0; 
     719<a name="l01022"></a>01022                         <a class="code" href="classbdm_1_1eiWishartCh.html#c6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>.<a class="code" href="classbdm_1_1eWishartCh.html#183d961532ee97b7dc5ec81701aa59a0" title="Set internal structures.">set_parameters</a> (inv (Y0), delta0); 
     720<a name="l01023"></a>01023                         <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> = <a class="code" href="classbdm_1_1eiWishartCh.html#c6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>.<a class="code" href="classbdm_1_1epdf.html#7083a65f7b7a0d0d13b2c516bd2ec29c" title="Size of the random variable.">dimension</a>(); <a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a> = Y0.rows(); 
     721<a name="l01024"></a>01024                 } 
     722<a name="l01025"></a><a class="code" href="classbdm_1_1eiWishartCh.html#2f668192cc9c2e3a5b7e608164685a3e">01025</a>                 vec <a class="code" href="classbdm_1_1eiWishartCh.html#2f668192cc9c2e3a5b7e608164685a3e" title="Returns a sample,  from density .">sample</a>()<span class="keyword"> const </span>{mat iCh; iCh = inv (<a class="code" href="classbdm_1_1eiWishartCh.html#c6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>.<a class="code" href="classbdm_1_1eWishartCh.html#cc664035d70d2622bf264a29270f8339" title="Sample matrix argument.">sample_mat</a>()); <span class="keywordflow">return</span> vec (iCh._data(), <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>);} 
     723<a name="l01027"></a><a class="code" href="classbdm_1_1eiWishartCh.html#d9947933dfc94546cbd6a81f95ec5af5">01027</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eiWishartCh.html#d9947933dfc94546cbd6a81f95ec5af5" title="access function">_setY</a> (<span class="keyword">const</span> vec &amp;y0) { 
     724<a name="l01028"></a>01028                         mat Ch (<a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>, <a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>); 
     725<a name="l01029"></a>01029                         mat iCh (<a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>, <a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>); 
     726<a name="l01030"></a>01030                         copy_vector (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, y0._data(), Ch._data()); 
     727<a name="l01031"></a>01031  
     728<a name="l01032"></a>01032                         iCh = inv (Ch); 
     729<a name="l01033"></a>01033                         <a class="code" href="classbdm_1_1eiWishartCh.html#c6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>.<a class="code" href="classbdm_1_1eWishartCh.html#4eee757c0535c2a88bb20f0767c64981" title="fast access function y0 will be copied into Y.Ch.">setY</a> (iCh); 
     730<a name="l01034"></a>01034                 } 
     731<a name="l01035"></a><a class="code" href="classbdm_1_1eiWishartCh.html#a6ddbd815b8b666dd542e97f009f89bb">01035</a>                 <span class="keyword">virtual</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eiWishartCh.html#a6ddbd815b8b666dd542e97f009f89bb">evallog</a> (<span class="keyword">const</span> vec &amp;val)<span class="keyword"> const </span>{ 
     732<a name="l01036"></a>01036                         <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> X (<a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>); 
     733<a name="l01037"></a>01037                         <span class="keyword">const</span> <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a>&amp; Y = <a class="code" href="classbdm_1_1eiWishartCh.html#c6b684b52dc62b8d46e67d5992f98b9a" title="Internal instance of Wishart density.">W</a>.<a class="code" href="classbdm_1_1eWishartCh.html#1708cacb5d8cb1b96395d35f5327cb7e" title="access function">getY</a>(); 
     734<a name="l01038"></a>01038  
     735<a name="l01039"></a>01039                         copy_vector (<a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>*<a class="code" href="classbdm_1_1eiWishartCh.html#c11f1c41183f743b97fbb73a4e9ba6cd" title="size of Ch">p</a>, val._data(), X.<a class="code" href="classbdm_1_1chmat.html#17daa8c5c5914bd3194cb3053c5793a5" title="Access function.">_Ch</a>()._data()); 
     736<a name="l01040"></a>01040                         <a class="code" href="classbdm_1_1chmat.html" title="Symmetric matrix stored in square root decomposition using upper cholesky.">chmat</a> iX (p);X.<a class="code" href="classbdm_1_1chmat.html#cbf3389db96dff41fb2e9532d59b13c0" title="Inversion in the same form, i.e. cholesky.">inv</a> (iX); 
     737<a name="l01041"></a>01041                         <span class="comment">// compute</span> 
     738<a name="l01042"></a>01042 <span class="comment">//                              \frac{ |\Psi|^{m/2}|X|^{-(m+p+1)/2}e^{-tr(\Psi X^{-1})/2} }{ 2^{mp/2}\Gamma_p(m/2)},</span> 
     739<a name="l01043"></a>01043                         mat M = Y.<a class="code" href="classbdm_1_1chmat.html#4b4c5d4dbb8a3d585b68d936cb6df31b" title="Conversion to full matrix.">to_mat</a>() * iX.to_mat(); 
     740<a name="l01044"></a>01044  
     741<a name="l01045"></a>01045                         <span class="keywordtype">double</span> log1 = 0.5 * p * (2 * Y.<a class="code" href="classbdm_1_1chmat.html#949ccd174ed19f9cfe36366cbd5c56a4" title="Logarithm of a determinant.">logdet</a>()) - 0.5 * (<a class="code" href="classbdm_1_1eiWishartCh.html#ca3035f7bd5e4597cc1843cf07af8464" title="parameter delta">delta</a> + p + 1) * (2 * X.<a class="code" href="classbdm_1_1chmat.html#949ccd174ed19f9cfe36366cbd5c56a4" title="Logarithm of a determinant.">logdet</a>()) - 0.5 * trace (M); 
     742<a name="l01046"></a>01046                         <span class="comment">//Fixme! Multivariate gamma omitted!! it is ok for sampling, but not otherwise!!</span> 
     743<a name="l01047"></a>01047  
     744<a name="l01048"></a>01048                         <span class="comment">/*                              if (0) {</span> 
     745<a name="l01049"></a>01049 <span class="comment">                                                                mat XX=X.to_mat();</span> 
     746<a name="l01050"></a>01050 <span class="comment">                                                                mat YY=Y.to_mat();</span> 
     747<a name="l01051"></a>01051 <span class="comment"></span> 
     748<a name="l01052"></a>01052 <span class="comment">                                                                double log2 = 0.5*p*log(det(YY))-0.5*(delta+p+1)*log(det(XX))-0.5*trace(YY*inv(XX));</span> 
     749<a name="l01053"></a>01053 <span class="comment">                                                                cout &lt;&lt; log1 &lt;&lt; "," &lt;&lt; log2 &lt;&lt; endl;</span> 
     750<a name="l01054"></a>01054 <span class="comment">                                                        }*/</span> 
     751<a name="l01055"></a>01055                         <span class="keywordflow">return</span> log1; 
     752<a name="l01056"></a>01056                 }; 
     753<a name="l01057"></a>01057  
     754<a name="l01058"></a>01058 }; 
     755<a name="l01059"></a>01059  
     756<a name="l01061"></a><a class="code" href="classbdm_1_1rwiWishartCh.html">01061</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1rwiWishartCh.html" title="Random Walk on inverse Wishart.">rwiWishartCh</a> : <span class="keyword">public</span> <a class="code" href="classbdm_1_1mpdf__internal.html" title="Mpdf with internal epdf that is modified by function condition.">mpdf_internal</a>&lt;eiWishartCh&gt; 
     757<a name="l01062"></a>01062 { 
     758<a name="l01063"></a>01063         <span class="keyword">protected</span>: 
     759<a name="l01065"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#2004675b37f712abe3913057bae97cfb">01065</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1rwiWishartCh.html#2004675b37f712abe3913057bae97cfb" title="square root of  - needed for computation of  from conditions">sqd</a>; 
     760<a name="l01067"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#239b26c71ebcc118ba6925dfb6efc50a">01067</a>                 vec <a class="code" href="classbdm_1_1rwiWishartCh.html#239b26c71ebcc118ba6925dfb6efc50a" title="reference point for diagonal">refl</a>; 
     761<a name="l01069"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#758cd05efa67c60b4bf4f7554b9ba861">01069</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1rwiWishartCh.html#758cd05efa67c60b4bf4f7554b9ba861" title="power of the reference">l</a>; 
     762<a name="l01071"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663">01071</a>                 <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a>; 
     763<a name="l01072"></a>01072  
     764<a name="l01073"></a>01073         <span class="keyword">public</span>: 
     765<a name="l01074"></a>01074                 <a class="code" href="classbdm_1_1rwiWishartCh.html" title="Random Walk on inverse Wishart.">rwiWishartCh</a>() : <a class="code" href="classbdm_1_1rwiWishartCh.html#2004675b37f712abe3913057bae97cfb" title="square root of  - needed for computation of  from conditions">sqd</a> (0), <a class="code" href="classbdm_1_1rwiWishartCh.html#758cd05efa67c60b4bf4f7554b9ba861" title="power of the reference">l</a> (0), <a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a> (0) {} 
     766<a name="l01076"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#28549ee3ce1ff8509360171ea3cf717c">01076</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1rwiWishartCh.html#28549ee3ce1ff8509360171ea3cf717c" title="constructor function">set_parameters</a> (<span class="keywordtype">int</span> p0, <span class="keywordtype">double</span> k, vec ref0, <span class="keywordtype">double</span> l0) { 
     767<a name="l01077"></a>01077                         <a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a> = p0; 
     768<a name="l01078"></a>01078                         <span class="keywordtype">double</span> delta = 2 / (k * k) + <a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a> + 3; 
     769<a name="l01079"></a>01079                         <a class="code" href="classbdm_1_1rwiWishartCh.html#2004675b37f712abe3913057bae97cfb" title="square root of  - needed for computation of  from conditions">sqd</a> = sqrt (delta - <a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a> - 1); 
     770<a name="l01080"></a>01080                         <a class="code" href="classbdm_1_1rwiWishartCh.html#758cd05efa67c60b4bf4f7554b9ba861" title="power of the reference">l</a> = l0; 
     771<a name="l01081"></a>01081                         <a class="code" href="classbdm_1_1rwiWishartCh.html#239b26c71ebcc118ba6925dfb6efc50a" title="reference point for diagonal">refl</a> = pow (ref0, 1 - <a class="code" href="classbdm_1_1rwiWishartCh.html#758cd05efa67c60b4bf4f7554b9ba861" title="power of the reference">l</a>); 
     772<a name="l01082"></a>01082  
     773<a name="l01083"></a>01083                         <a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1eiWishartCh.html#f463caed9d22d9949f3ee67614e7dcd3" title="constructor function">set_parameters</a> (eye (<a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a>), delta); 
     774<a name="l01084"></a>01084                         <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a> = <a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1epdf.html#7083a65f7b7a0d0d13b2c516bd2ec29c" title="Size of the random variable.">dimension</a>(); 
     775<a name="l01085"></a>01085                 } 
     776<a name="l01086"></a><a class="code" href="classbdm_1_1rwiWishartCh.html#ac087ba6c885d3faeda9171229f9b4e6">01086</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1rwiWishartCh.html#ac087ba6c885d3faeda9171229f9b4e6">condition</a> (<span class="keyword">const</span> vec &amp;c) { 
     777<a name="l01087"></a>01087                         vec z = c; 
     778<a name="l01088"></a>01088                         <span class="keywordtype">int</span> ri = 0; 
     779<a name="l01089"></a>01089                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; <a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a>*<a class="code" href="classbdm_1_1rwiWishartCh.html#7ba06d431995c347d2fce30a59c20663" title="dimension">p</a>;i += (p + 1)) {<span class="comment">//trace diagonal element</span> 
     780<a name="l01090"></a>01090                                 z (i) = pow (z (i), <a class="code" href="classbdm_1_1rwiWishartCh.html#758cd05efa67c60b4bf4f7554b9ba861" title="power of the reference">l</a>) * <a class="code" href="classbdm_1_1rwiWishartCh.html#239b26c71ebcc118ba6925dfb6efc50a" title="reference point for diagonal">refl</a> (ri); 
     781<a name="l01091"></a>01091                                 ri++; 
     782<a name="l01092"></a>01092                         } 
     783<a name="l01093"></a>01093  
     784<a name="l01094"></a>01094                         <a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.<a class="code" href="classbdm_1_1eiWishartCh.html#d9947933dfc94546cbd6a81f95ec5af5" title="access function">_setY</a> (<a class="code" href="classbdm_1_1rwiWishartCh.html#2004675b37f712abe3913057bae97cfb" title="square root of  - needed for computation of  from conditions">sqd</a>*z); 
     785<a name="l01095"></a>01095                 } 
     786<a name="l01096"></a>01096 }; 
     787<a name="l01097"></a>01097  
     788<a name="l01099"></a>01099 <span class="keyword">enum</span> RESAMPLING_METHOD { MULTINOMIAL = 0, STRATIFIED = 1, SYSTEMATIC = 3 }; 
     789<a name="l01105"></a><a class="code" href="classbdm_1_1eEmp.html">01105</a> <span class="keyword">class </span><a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a>: <span class="keyword">public</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> 
     790<a name="l01106"></a>01106 { 
     791<a name="l01107"></a>01107         <span class="keyword">protected</span> : 
     792<a name="l01109"></a><a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031">01109</a>                 <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>; 
     793<a name="l01111"></a><a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d">01111</a>                 vec <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>; 
     794<a name="l01113"></a><a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3">01113</a>                 Array&lt;vec&gt; <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>; 
     795<a name="l01114"></a>01114         <span class="keyword">public</span>: 
     796<a name="l01117"></a>01117                 <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> () : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> (), <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> (), <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> () {}; 
     797<a name="l01119"></a><a class="code" href="classbdm_1_1eEmp.html#a3daf6363455af099921715e1233c076">01119</a>                 <a class="code" href="classbdm_1_1eEmp.html#a3daf6363455af099921715e1233c076" title="copy constructor">eEmp</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1eEmp.html" title="Weighted empirical density.">eEmp</a> &amp;e) : <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> (e), <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> (e.<a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>), <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (e.<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>) {}; 
     798<a name="l01121"></a>01121  
     799<a name="l01123"></a>01123                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#e7f8f98310c1de51bd5c8a1c87528f72" title="Set samples and weights.">set_statistics</a> (<span class="keyword">const</span> vec &amp;w0, <span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> &amp;pdf0); 
     800<a name="l01125"></a><a class="code" href="classbdm_1_1eEmp.html#4f7e6ba7183972e3c7ae399613861b95">01125</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#4f7e6ba7183972e3c7ae399613861b95" title="Set samples and weights.">set_statistics</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a> &amp;pdf0 , <span class="keywordtype">int</span> <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>) {<a class="code" href="classbdm_1_1eEmp.html#4f7e6ba7183972e3c7ae399613861b95" title="Set samples and weights.">set_statistics</a> (ones (n) / n, pdf0);}; 
     801<a name="l01127"></a>01127                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b62d802b8ef39f7c4dcbeb366c90951a" title="Set sample.">set_samples</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>* pdf0); 
     802<a name="l01129"></a><a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1">01129</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#c74c281d652356c19b6b079e42ca7ef1" title="Set sample.">set_parameters</a> (<span class="keywordtype">int</span> n0, <span class="keywordtype">bool</span> copy = <span class="keyword">true</span>) {<a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a> = n0; <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>.set_size (n0, copy);<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>.set_size (n0, copy);}; 
     803<a name="l01131"></a><a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef">01131</a>                 vec&amp; <a class="code" href="classbdm_1_1eEmp.html#d7f83cc0415cd44ae7cc8b4bdad93aef" title="Potentially dangerous, use with care.">_w</a>()  {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; 
     804<a name="l01133"></a><a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714">01133</a>                 <span class="keyword">const</span> vec&amp; <a class="code" href="classbdm_1_1eEmp.html#b7d7106f486e3fad38590914a693d714" title="Potentially dangerous, use with care.">_w</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a>;}; 
     805<a name="l01135"></a><a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2">01135</a>                 Array&lt;vec&gt;&amp; <a class="code" href="classbdm_1_1eEmp.html#c24966b0aaeb767bc8a6b4fd60931be2" title="access function">_samples</a>() {<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; 
     806<a name="l01137"></a><a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2">01137</a>                 <span class="keyword">const</span> Array&lt;vec&gt;&amp; <a class="code" href="classbdm_1_1eEmp.html#b59af0efdb009d98ea8ebfa965e74ae2" title="access function">_samples</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a>;}; 
     807<a name="l01139"></a>01139                 ivec <a class="code" href="classbdm_1_1eEmp.html#f06ce255de5dbb2313f52ee51f82ba3d" title="Function performs resampling, i.e. removal of low-weight samples and duplication...">resample</a> (RESAMPLING_METHOD method = SYSTEMATIC); 
     808<a name="l01141"></a><a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270">01141</a>                 vec <a class="code" href="classbdm_1_1eEmp.html#97f1e07b5ae6eebc91c7365f0f88d270" title="inherited operation : NOT implemneted">sample</a>()<span class="keyword"> const </span>{it_error (<span class="stringliteral">"Not implemented"</span>);<span class="keywordflow">return</span> 0;} 
     809<a name="l01143"></a><a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09">01143</a>                 <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1eEmp.html#01654c014d3aa068f8d4ecba4be86d09" title="inherited operation : NOT implemneted">evallog</a> (<span class="keyword">const</span> vec &amp;val)<span class="keyword"> const </span>{it_error (<span class="stringliteral">"Not implemented"</span>);<span class="keywordflow">return</span> 0.0;} 
     810<a name="l01144"></a><a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9">01144</a>                 vec <a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>()<span class="keyword"> const </span>{ 
     811<a name="l01145"></a>01145                         vec pom = zeros (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>); 
     812<a name="l01146"></a>01146                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++) {pom += <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i) * <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> (i);} 
     813<a name="l01147"></a>01147                         <span class="keywordflow">return</span> pom; 
     814<a name="l01148"></a>01148                 } 
     815<a name="l01149"></a><a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87">01149</a>                 vec <a class="code" href="classbdm_1_1eEmp.html#05e9ebf467ede737cb6a3621d7fd3c87" title="return expected variance (not covariance!)">variance</a>()<span class="keyword"> const </span>{ 
     816<a name="l01150"></a>01150                         vec pom = zeros (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>); 
     817<a name="l01151"></a>01151                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++) {pom += pow (<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i), 2) * <a class="code" href="classbdm_1_1eEmp.html#9d39241aab7c4bbeb07c6d516421c67d" title="Sample weights .">w</a> (i);} 
     818<a name="l01152"></a>01152                         <span class="keywordflow">return</span> pom -pow (<a class="code" href="classbdm_1_1eEmp.html#bbfcb4f868c7381298c281a256d8c4b9" title="return expected value">mean</a>(), 2); 
     819<a name="l01153"></a>01153                 } 
     820<a name="l01155"></a><a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f">01155</a>                 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1eEmp.html#b1c9df656144edf79ba2d885613f661f" title="For this class, qbounds are minimum and maximum value of the population!">qbounds</a> (vec &amp;lb, vec &amp;ub, <span class="keywordtype">double</span> perc = 0.95)<span class="keyword"> const </span>{ 
     821<a name="l01156"></a>01156                         <span class="comment">// lb in inf so than it will be pushed below;</span> 
     822<a name="l01157"></a>01157                         lb.set_size (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>); 
     823<a name="l01158"></a>01158                         ub.set_size (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>); 
     824<a name="l01159"></a>01159                         lb = std::numeric_limits&lt;double&gt;::infinity(); 
     825<a name="l01160"></a>01160                         ub = -std::numeric_limits&lt;double&gt;::infinity(); 
     826<a name="l01161"></a>01161                         <span class="keywordtype">int</span> j; 
     827<a name="l01162"></a>01162                         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0;i &lt; <a class="code" href="classbdm_1_1eEmp.html#9798006271ca77629855113f1283a031" title="Number of particles.">n</a>;i++) { 
     828<a name="l01163"></a>01163                                 <span class="keywordflow">for</span> (j = 0;j &lt; <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>; j++) { 
     829<a name="l01164"></a>01164                                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i) (j) &lt; lb (j)) {lb (j) = <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i) (j);} 
     830<a name="l01165"></a>01165                                         <span class="keywordflow">if</span> (<a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i) (j) &gt; ub (j)) {ub (j) = <a class="code" href="classbdm_1_1eEmp.html#73d819553a0f268b055a087d2d4486f3" title="Samples .">samples</a> (i) (j);} 
     831<a name="l01166"></a>01166                                 } 
     832<a name="l01167"></a>01167                         } 
     833<a name="l01168"></a>01168                 } 
     834<a name="l01169"></a>01169 }; 
     835<a name="l01170"></a>01170  
    849836<a name="l01171"></a>01171  
    850 <a name="l01172"></a>01172         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    851 <a name="l01173"></a><a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2">01173</a>         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">enorm&lt;sq_T&gt;::dupdate</a> ( mat &amp;v, <span class="keywordtype">double</span> nu ) 
    852 <a name="l01174"></a>01174         { 
    853 <a name="l01175"></a>01175                 <span class="comment">//</span> 
    854 <a name="l01176"></a>01176         }; 
    855 <a name="l01177"></a>01177  
    856 <a name="l01178"></a>01178 <span class="comment">// template&lt;class sq_T&gt;</span> 
    857 <a name="l01179"></a>01179 <span class="comment">// void enorm&lt;sq_T&gt;::tupdate ( double phi, mat &amp;vbar, double nubar ) {</span> 
    858 <a name="l01180"></a>01180 <span class="comment">//      //</span> 
    859 <a name="l01181"></a>01181 <span class="comment">// };</span> 
     837<a name="l01173"></a>01173  
     838<a name="l01174"></a>01174 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     839<a name="l01175"></a>01175 <span class="keywordtype">void</span> enorm&lt;sq_T&gt;::set_parameters (<span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;R0) 
     840<a name="l01176"></a>01176 { 
     841<a name="l01177"></a>01177 <span class="comment">//Fixme test dimensions of mu0 and R0;</span> 
     842<a name="l01178"></a>01178         mu = mu0; 
     843<a name="l01179"></a>01179         R = R0; 
     844<a name="l01180"></a>01180         <a class="code" href="classbdm_1_1root.html#1c314bd6d6dacb8ba78ea5eb88fd9516" title="This method TODO.">validate</a>(); 
     845<a name="l01181"></a>01181 }; 
    860846<a name="l01182"></a>01182  
    861 <a name="l01183"></a>01183         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    862 <a name="l01184"></a><a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766">01184</a>         vec <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample,  from density .">enorm&lt;sq_T&gt;::sample</a>()<span class="keyword"> const</span> 
    863 <a name="l01185"></a>01185 <span class="keyword">        </span>{ 
    864 <a name="l01186"></a>01186                 vec x ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); 
    865 <a name="l01187"></a>01187 <span class="preprocessor">#pragma omp critical</span> 
    866 <a name="l01188"></a>01188 <span class="preprocessor"></span>                NorRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,x ); 
    867 <a name="l01189"></a>01189                 vec smp = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); 
    868 <a name="l01190"></a>01190  
    869 <a name="l01191"></a>01191                 smp += <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; 
    870 <a name="l01192"></a>01192                 <span class="keywordflow">return</span> smp; 
    871 <a name="l01193"></a>01193         }; 
     847<a name="l01183"></a>01183 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     848<a name="l01184"></a><a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">01184</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">enorm&lt;sq_T&gt;::from_setting</a> (<span class="keyword">const</span> Setting &amp;<span class="keyword">set</span>) 
     849<a name="l01185"></a>01185 { 
     850<a name="l01186"></a>01186         <a class="code" href="classbdm_1_1enorm.html#61bd470764020bea6e1ed35000f259e6">epdf::from_setting</a> (<span class="keyword">set</span>); <span class="comment">//reads rv</span> 
     851<a name="l01187"></a>01187  
     852<a name="l01188"></a>01188         <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>, <span class="keyword">set</span>, <span class="stringliteral">"mu"</span>, UI::compulsory); 
     853<a name="l01189"></a>01189         mat Rtmp;<span class="comment">// necessary for conversion</span> 
     854<a name="l01190"></a>01190         <a class="code" href="classbdm_1_1UI.html#cd1667e6fec99ec64dabcb3ca2ff922d">UI::get</a> (Rtmp, <span class="keyword">set</span>, <span class="stringliteral">"R"</span>, UI::compulsory); 
     855<a name="l01191"></a>01191         <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a> = Rtmp; <span class="comment">// conversion</span> 
     856<a name="l01192"></a>01192         <a class="code" href="classbdm_1_1enorm.html#38eb17ecb75d94a50b6782fcf735cfea" title="This method TODO.">validate</a>(); 
     857<a name="l01193"></a>01193 } 
    872858<a name="l01194"></a>01194  
    873 <a name="l01195"></a>01195         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    874 <a name="l01196"></a>01196         mat <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample,  from density .">enorm&lt;sq_T&gt;::sample</a> ( <span class="keywordtype">int</span> N )<span class="keyword"> const</span> 
    875 <a name="l01197"></a>01197 <span class="keyword">        </span>{ 
    876 <a name="l01198"></a>01198                 mat X ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,N ); 
    877 <a name="l01199"></a>01199                 vec x ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a> ); 
    878 <a name="l01200"></a>01200                 vec pom; 
    879 <a name="l01201"></a>01201                 <span class="keywordtype">int</span> i; 
    880 <a name="l01202"></a>01202  
    881 <a name="l01203"></a>01203                 <span class="keywordflow">for</span> ( i=0;i&lt;N;i++ ) 
    882 <a name="l01204"></a>01204                 { 
    883 <a name="l01205"></a>01205 <span class="preprocessor">#pragma omp critical</span> 
    884 <a name="l01206"></a>01206 <span class="preprocessor"></span>                        NorRNG.sample_vector ( <a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>,x ); 
    885 <a name="l01207"></a>01207                         pom = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult ( x ); 
    886 <a name="l01208"></a>01208                         pom +=<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; 
    887 <a name="l01209"></a>01209                         X.set_col ( i, pom ); 
    888 <a name="l01210"></a>01210                 } 
    889 <a name="l01211"></a>01211  
    890 <a name="l01212"></a>01212                 <span class="keywordflow">return</span> X; 
    891 <a name="l01213"></a>01213         }; 
    892 <a name="l01214"></a>01214  
    893 <a name="l01215"></a>01215 <span class="comment">// template&lt;class sq_T&gt;</span> 
    894 <a name="l01216"></a>01216 <span class="comment">// double enorm&lt;sq_T&gt;::eval ( const vec &amp;val ) const {</span> 
    895 <a name="l01217"></a>01217 <span class="comment">//      double pdfl,e;</span> 
    896 <a name="l01218"></a>01218 <span class="comment">//      pdfl = evallog ( val );</span> 
    897 <a name="l01219"></a>01219 <span class="comment">//      e = exp ( pdfl );</span> 
    898 <a name="l01220"></a>01220 <span class="comment">//      return e;</span> 
    899 <a name="l01221"></a>01221 <span class="comment">// };</span> 
    900 <a name="l01222"></a>01222  
    901 <a name="l01223"></a>01223         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    902 <a name="l01224"></a><a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3">01224</a>         <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">enorm&lt;sq_T&gt;::evallog_nn</a> ( <span class="keyword">const</span> vec &amp;val )<span class="keyword"> const</span> 
    903 <a name="l01225"></a>01225 <span class="keyword">        </span>{ 
    904 <a name="l01226"></a>01226                 <span class="comment">// 1.83787706640935 = log(2pi)</span> 
    905 <a name="l01227"></a>01227                 <span class="keywordtype">double</span> tmp=-0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.invqform ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>-val ) );<span class="comment">// - lognc();</span> 
    906 <a name="l01228"></a>01228                 <span class="keywordflow">return</span>  tmp; 
    907 <a name="l01229"></a>01229         }; 
    908 <a name="l01230"></a>01230  
    909 <a name="l01231"></a>01231         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    910 <a name="l01232"></a><a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32">01232</a>         <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">enorm&lt;sq_T&gt;::lognc</a> ()<span class="keyword"> const</span> 
    911 <a name="l01233"></a>01233 <span class="keyword">        </span>{ 
    912 <a name="l01234"></a>01234                 <span class="comment">// 1.83787706640935 = log(2pi)</span> 
    913 <a name="l01235"></a>01235                 <span class="keywordtype">double</span> tmp=0.5* ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 +<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.logdet() ); 
    914 <a name="l01236"></a>01236                 <span class="keywordflow">return</span> tmp; 
    915 <a name="l01237"></a>01237         }; 
    916 <a name="l01238"></a>01238  
    917 <a name="l01239"></a>01239         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    918 <a name="l01240"></a><a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f">01240</a>         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#5d18dec3167584338a4775c1d165d96f" title="Set A and R.">mlnorm&lt;sq_T&gt;::set_parameters</a> ( <span class="keyword">const</span> mat &amp;A0, <span class="keyword">const</span> vec &amp;mu0, <span class="keyword">const</span> sq_T &amp;R0 ) 
    919 <a name="l01241"></a>01241         { 
    920 <a name="l01242"></a>01242                 it_assert_debug ( A0.rows() ==mu0.length(),<span class="stringliteral">""</span> ); 
    921 <a name="l01243"></a>01243                 it_assert_debug ( A0.rows() ==R0.rows(),<span class="stringliteral">""</span> ); 
    922 <a name="l01244"></a>01244  
    923 <a name="l01245"></a>01245                 <a class="code" href="classbdm_1_1epdf.html" title="Probability density function with numerical statistics, e.g. posterior density.">epdf</a>.set_parameters ( zeros ( A0.rows() ),R0 ); 
    924 <a name="l01246"></a>01246                 A = A0; 
    925 <a name="l01247"></a>01247                 mu_const = mu0; 
    926 <a name="l01248"></a>01248                 <a class="code" href="classbdm_1_1mpdf.html#7c1900976ff13dbc09c9729b3bbff9e6" title="dimension of the condition">dimc</a>=A0.cols(); 
    927 <a name="l01249"></a>01249         } 
     859<a name="l01195"></a>01195 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     860<a name="l01196"></a><a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2">01196</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#d2e0d3a1e30ab3ab04df2d0c43ae74a2" title="dupdate in exponential form (not really handy)">enorm&lt;sq_T&gt;::dupdate</a> (mat &amp;v, <span class="keywordtype">double</span> nu) 
     861<a name="l01197"></a>01197 { 
     862<a name="l01198"></a>01198         <span class="comment">//</span> 
     863<a name="l01199"></a>01199 }; 
     864<a name="l01200"></a>01200  
     865<a name="l01201"></a>01201 <span class="comment">// template&lt;class sq_T&gt;</span> 
     866<a name="l01202"></a>01202 <span class="comment">// void enorm&lt;sq_T&gt;::tupdate ( double phi, mat &amp;vbar, double nubar ) {</span> 
     867<a name="l01203"></a>01203 <span class="comment">//      //</span> 
     868<a name="l01204"></a>01204 <span class="comment">// };</span> 
     869<a name="l01205"></a>01205  
     870<a name="l01206"></a>01206 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     871<a name="l01207"></a><a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766">01207</a> vec <a class="code" href="classbdm_1_1enorm.html#e1a48f52351ec3a349bd443b713b1766" title="Returns a sample,  from density .">enorm&lt;sq_T&gt;::sample</a>()<span class="keyword"> const</span> 
     872<a name="l01208"></a>01208 <span class="keyword"></span>{ 
     873<a name="l01209"></a>01209         vec x (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>); 
     874<a name="l01210"></a>01210 <span class="preprocessor">#pragma omp critical</span> 
     875<a name="l01211"></a>01211 <span class="preprocessor"></span>        NorRNG.sample_vector (<a class="code" href="classbdm_1_1epdf.html#16adac20ec7fe07e1ea0b27d917788ce" title="dimension of the random variable">dim</a>, x); 
     876<a name="l01212"></a>01212         vec smp = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.sqrt_mult (x); 
     877<a name="l01213"></a>01213  
     878<a name="l01214"></a>01214         smp += <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a>; 
     879<a name="l01215"></a>01215         <span class="keywordflow">return</span> smp; 
     880<a name="l01216"></a>01216 }; 
     881<a name="l01217"></a>01217  
     882<a name="l01218"></a>01218 <span class="comment">// template&lt;class sq_T&gt;</span> 
     883<a name="l01219"></a>01219 <span class="comment">// double enorm&lt;sq_T&gt;::eval ( const vec &amp;val ) const {</span> 
     884<a name="l01220"></a>01220 <span class="comment">//      double pdfl,e;</span> 
     885<a name="l01221"></a>01221 <span class="comment">//      pdfl = evallog ( val );</span> 
     886<a name="l01222"></a>01222 <span class="comment">//      e = exp ( pdfl );</span> 
     887<a name="l01223"></a>01223 <span class="comment">//      return e;</span> 
     888<a name="l01224"></a>01224 <span class="comment">// };</span> 
     889<a name="l01225"></a>01225  
     890<a name="l01226"></a>01226 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     891<a name="l01227"></a><a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3">01227</a> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#e13aeed5b543b2179bacdc4fa2ae47a3" title="Evaluate normalized log-probability.">enorm&lt;sq_T&gt;::evallog_nn</a> (<span class="keyword">const</span> vec &amp;val)<span class="keyword"> const</span> 
     892<a name="l01228"></a>01228 <span class="keyword"></span>{ 
     893<a name="l01229"></a>01229         <span class="comment">// 1.83787706640935 = log(2pi)</span> 
     894<a name="l01230"></a>01230         <span class="keywordtype">double</span> tmp = -0.5 * (<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.invqform (<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> - val));<span class="comment">// - lognc();</span> 
     895<a name="l01231"></a>01231         <span class="keywordflow">return</span>  tmp; 
     896<a name="l01232"></a>01232 }; 
     897<a name="l01233"></a>01233  
     898<a name="l01234"></a>01234 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     899<a name="l01235"></a><a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32">01235</a> <span class="keyword">inline</span> <span class="keywordtype">double</span> <a class="code" href="classbdm_1_1enorm.html#25785343aff102cc5df1cab08ba16d32" title="logarithm of the normalizing constant, ">enorm&lt;sq_T&gt;::lognc</a> ()<span class="keyword"> const</span> 
     900<a name="l01236"></a>01236 <span class="keyword"></span>{ 
     901<a name="l01237"></a>01237         <span class="comment">// 1.83787706640935 = log(2pi)</span> 
     902<a name="l01238"></a>01238         <span class="keywordtype">double</span> tmp = 0.5 * (<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.cols() * 1.83787706640935 + <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.logdet()); 
     903<a name="l01239"></a>01239         <span class="keywordflow">return</span> tmp; 
     904<a name="l01240"></a>01240 }; 
     905<a name="l01241"></a>01241  
     906<a name="l01242"></a>01242  
     907<a name="l01243"></a>01243 <span class="comment">// template&lt;class sq_T&gt;</span> 
     908<a name="l01244"></a>01244 <span class="comment">// vec mlnorm&lt;sq_T&gt;::samplecond (const  vec &amp;cond, double &amp;lik ) {</span> 
     909<a name="l01245"></a>01245 <span class="comment">//      this-&gt;condition ( cond );</span> 
     910<a name="l01246"></a>01246 <span class="comment">//      vec smp = epdf.sample();</span> 
     911<a name="l01247"></a>01247 <span class="comment">//      lik = epdf.eval ( smp );</span> 
     912<a name="l01248"></a>01248 <span class="comment">//      return smp;</span> 
     913<a name="l01249"></a>01249 <span class="comment">// }</span> 
    928914<a name="l01250"></a>01250  
    929915<a name="l01251"></a>01251 <span class="comment">// template&lt;class sq_T&gt;</span> 
    930 <a name="l01252"></a>01252 <span class="comment">// vec mlnorm&lt;sq_T&gt;::samplecond (const  vec &amp;cond, double &amp;lik ) {</span> 
    931 <a name="l01253"></a>01253 <span class="comment">//      this-&gt;condition ( cond );</span> 
    932 <a name="l01254"></a>01254 <span class="comment">//      vec smp = epdf.sample();</span> 
    933 <a name="l01255"></a>01255 <span class="comment">//      lik = epdf.eval ( smp );</span> 
    934 <a name="l01256"></a>01256 <span class="comment">//      return smp;</span> 
    935 <a name="l01257"></a>01257 <span class="comment">// }</span> 
    936 <a name="l01258"></a>01258  
    937 <a name="l01259"></a>01259 <span class="comment">// template&lt;class sq_T&gt;</span> 
    938 <a name="l01260"></a>01260 <span class="comment">// mat mlnorm&lt;sq_T&gt;::samplecond (const vec &amp;cond, vec &amp;lik, int n ) {</span> 
    939 <a name="l01261"></a>01261 <span class="comment">//      int i;</span> 
    940 <a name="l01262"></a>01262 <span class="comment">//      int dim = rv.count();</span> 
    941 <a name="l01263"></a>01263 <span class="comment">//      mat Smp ( dim,n );</span> 
    942 <a name="l01264"></a>01264 <span class="comment">//      vec smp ( dim );</span> 
    943 <a name="l01265"></a>01265 <span class="comment">//      this-&gt;condition ( cond );</span> 
    944 <a name="l01266"></a>01266 <span class="comment">//</span> 
    945 <a name="l01267"></a>01267 <span class="comment">//      for ( i=0; i&lt;n; i++ ) {</span> 
    946 <a name="l01268"></a>01268 <span class="comment">//              smp = epdf.sample();</span> 
    947 <a name="l01269"></a>01269 <span class="comment">//              lik ( i ) = epdf.eval ( smp );</span> 
    948 <a name="l01270"></a>01270 <span class="comment">//              Smp.set_col ( i ,smp );</span> 
    949 <a name="l01271"></a>01271 <span class="comment">//      }</span> 
    950 <a name="l01272"></a>01272 <span class="comment">//</span> 
    951 <a name="l01273"></a>01273 <span class="comment">//      return Smp;</span> 
    952 <a name="l01274"></a>01274 <span class="comment">// }</span> 
    953 <a name="l01275"></a>01275  
    954 <a name="l01276"></a>01276         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    955 <a name="l01277"></a><a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">01277</a>         <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mlnorm.html#0dafc0196e7e07fd06dc6716e0e18bc2">mlnorm&lt;sq_T&gt;::condition</a> ( <span class="keyword">const</span> vec &amp;cond ) 
    956 <a name="l01278"></a>01278         { 
    957 <a name="l01279"></a>01279                 _mu = A*cond + mu_const; 
    958 <a name="l01280"></a>01280 <span class="comment">//R is already assigned;</span> 
    959 <a name="l01281"></a>01281         } 
    960 <a name="l01282"></a>01282  
    961 <a name="l01283"></a>01283         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    962 <a name="l01284"></a><a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80">01284</a>         <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a>* <a class="code" href="classbdm_1_1enorm.html#c2996bdaffad38fbe0fc776db54c9d80" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">enorm&lt;sq_T&gt;::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn )<span class="keyword"> const</span> 
    963 <a name="l01285"></a>01285 <span class="keyword">        </span>{ 
    964 <a name="l01286"></a>01286                 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(), <span class="stringliteral">"rv description is not assigned"</span> ); 
    965 <a name="l01287"></a>01287                 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); 
    966 <a name="l01288"></a>01288  
    967 <a name="l01289"></a>01289                 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,irvn ); <span class="comment">//select rows and columns of R</span> 
    968 <a name="l01290"></a>01290  
    969 <a name="l01291"></a>01291                 <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a>* tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a>; 
    970 <a name="l01292"></a>01292                 tmp-&gt;<a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a> ( rvn ); 
    971 <a name="l01293"></a>01293                 tmp-&gt;<a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> ( <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ), Rn ); 
    972 <a name="l01294"></a>01294                 <span class="keywordflow">return</span> tmp; 
    973 <a name="l01295"></a>01295         } 
    974 <a name="l01296"></a>01296  
    975 <a name="l01297"></a>01297         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    976 <a name="l01298"></a><a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26">01298</a>         <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling some dependencies.">mpdf</a>* <a class="code" href="classbdm_1_1enorm.html#baea4d49c657342b58297d68cda16d26" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">enorm&lt;sq_T&gt;::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn )<span class="keyword"> const</span> 
    977 <a name="l01299"></a>01299 <span class="keyword">        </span>{ 
    978 <a name="l01300"></a>01300  
    979 <a name="l01301"></a>01301                 it_assert_debug ( <a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(),<span class="stringliteral">"rvs are not assigned"</span> ); 
    980 <a name="l01302"></a>01302  
    981 <a name="l01303"></a>01303                 <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvc = <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#aec44dabdf0a6d90fbae95e1356eda39" title="Subtract another variable from the current one.">subt</a> ( rvn ); 
    982 <a name="l01304"></a>01304                 it_assert_debug ( ( rvc.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() +rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ==<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() ),<span class="stringliteral">"wrong rvn"</span> ); 
    983 <a name="l01305"></a>01305                 <span class="comment">//Permutation vector of the new R</span> 
    984 <a name="l01306"></a>01306                 ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); 
    985 <a name="l01307"></a>01307                 ivec irvc = rvc.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> ( <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a> ); 
    986 <a name="l01308"></a>01308                 ivec perm=concat ( irvn , irvc ); 
    987 <a name="l01309"></a>01309                 sq_T Rn ( <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>,perm ); 
    988 <a name="l01310"></a>01310  
    989 <a name="l01311"></a>01311                 <span class="comment">//fixme - could this be done in general for all sq_T?</span> 
    990 <a name="l01312"></a>01312                 mat S=Rn.to_mat(); 
    991 <a name="l01313"></a>01313                 <span class="comment">//fixme</span> 
    992 <a name="l01314"></a>01314                 <span class="keywordtype">int</span> n=rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>()-1; 
    993 <a name="l01315"></a>01315                 <span class="keywordtype">int</span> end=<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows()-1; 
    994 <a name="l01316"></a>01316                 mat S11 = S.get ( 0,n, 0, n ); 
    995 <a name="l01317"></a>01317                 mat S12 = S.get ( 0, n , rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); 
    996 <a name="l01318"></a>01318                 mat S22 = S.get ( rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end, rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end ); 
    997 <a name="l01319"></a>01319  
    998 <a name="l01320"></a>01320                 vec mu1 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvn ); 
    999 <a name="l01321"></a>01321                 vec mu2 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> ( irvc ); 
    1000 <a name="l01322"></a>01322                 mat A=S12*inv ( S22 ); 
    1001 <a name="l01323"></a>01323                 sq_T R_n ( S11 - A *S12.T() ); 
    1002 <a name="l01324"></a>01324  
    1003 <a name="l01325"></a>01325                 <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm&lt;sq_T&gt;</a>* tmp=<span class="keyword">new</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm&lt;sq_T&gt;</a> ( ); 
    1004 <a name="l01326"></a>01326                 tmp-&gt;set_rv ( rvn ); tmp-&gt;set_rvc ( rvc ); 
    1005 <a name="l01327"></a>01327                 tmp-&gt;set_parameters ( A,mu1-A*mu2,R_n ); 
    1006 <a name="l01328"></a>01328                 <span class="keywordflow">return</span> tmp; 
    1007 <a name="l01329"></a>01329         } 
    1008 <a name="l01330"></a>01330  
    1009 <a name="l01332"></a>01332  
    1010 <a name="l01333"></a>01333         <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
    1011 <a name="l01334"></a>01334         std::ostream &amp;operator&lt;&lt; ( std::ostream &amp;os,  mlnorm&lt;sq_T&gt; &amp;ml ) 
    1012 <a name="l01335"></a>01335         { 
    1013 <a name="l01336"></a>01336                 os &lt;&lt; <span class="stringliteral">"A:"</span>&lt;&lt; ml.A&lt;&lt;endl; 
    1014 <a name="l01337"></a>01337                 os &lt;&lt; <span class="stringliteral">"mu:"</span>&lt;&lt; ml.mu_const&lt;&lt;endl; 
    1015 <a name="l01338"></a>01338                 os &lt;&lt; <span class="stringliteral">"R:"</span> &lt;&lt; ml.epdf._R().to_mat() &lt;&lt;endl; 
    1016 <a name="l01339"></a>01339                 <span class="keywordflow">return</span> os; 
    1017 <a name="l01340"></a>01340         }; 
     916<a name="l01252"></a>01252 <span class="comment">// mat mlnorm&lt;sq_T&gt;::samplecond (const vec &amp;cond, vec &amp;lik, int n ) {</span> 
     917<a name="l01253"></a>01253 <span class="comment">//      int i;</span> 
     918<a name="l01254"></a>01254 <span class="comment">//      int dim = rv.count();</span> 
     919<a name="l01255"></a>01255 <span class="comment">//      mat Smp ( dim,n );</span> 
     920<a name="l01256"></a>01256 <span class="comment">//      vec smp ( dim );</span> 
     921<a name="l01257"></a>01257 <span class="comment">//      this-&gt;condition ( cond );</span> 
     922<a name="l01258"></a>01258 <span class="comment">//</span> 
     923<a name="l01259"></a>01259 <span class="comment">//      for ( i=0; i&lt;n; i++ ) {</span> 
     924<a name="l01260"></a>01260 <span class="comment">//              smp = epdf.sample();</span> 
     925<a name="l01261"></a>01261 <span class="comment">//              lik ( i ) = epdf.eval ( smp );</span> 
     926<a name="l01262"></a>01262 <span class="comment">//              Smp.set_col ( i ,smp );</span> 
     927<a name="l01263"></a>01263 <span class="comment">//      }</span> 
     928<a name="l01264"></a>01264 <span class="comment">//</span> 
     929<a name="l01265"></a>01265 <span class="comment">//      return Smp;</span> 
     930<a name="l01266"></a>01266 <span class="comment">// }</span> 
     931<a name="l01267"></a>01267  
     932<a name="l01268"></a>01268  
     933<a name="l01269"></a>01269 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     934<a name="l01270"></a><a class="code" href="classbdm_1_1enorm.html#dcb739443669ba0a8faf634196284c08">01270</a> <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;epdf&gt;</a> <a class="code" href="classbdm_1_1enorm.html#dcb739443669ba0a8faf634196284c08" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">enorm&lt;sq_T&gt;::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn )<span class="keyword"> const</span> 
     935<a name="l01271"></a>01271 <span class="keyword"></span>{ 
     936<a name="l01272"></a>01272         <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a> *tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a> (); 
     937<a name="l01273"></a>01273         <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;epdf&gt;</a> narrow(tmp); 
     938<a name="l01274"></a>01274         <a class="code" href="classbdm_1_1enorm.html#dcb739443669ba0a8faf634196284c08" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">marginal</a> ( rvn, *tmp ); 
     939<a name="l01275"></a>01275         <span class="keywordflow">return</span> narrow; 
     940<a name="l01276"></a>01276 } 
     941<a name="l01277"></a>01277  
     942<a name="l01278"></a>01278 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     943<a name="l01279"></a>01279 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#dcb739443669ba0a8faf634196284c08" title="Return marginal density on the given RV, the remainig rvs are intergrated out.">enorm&lt;sq_T&gt;::marginal</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn, <a class="code" href="classbdm_1_1enorm.html" title="Gaussian density with positive definite (decomposed) covariance matrix.">enorm&lt;sq_T&gt;</a> &amp;target )<span class="keyword"> const</span> 
     944<a name="l01280"></a>01280 <span class="keyword"></span>{ 
     945<a name="l01281"></a>01281         it_assert_debug (<a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(), <span class="stringliteral">"rv description is not assigned"</span>); 
     946<a name="l01282"></a>01282         ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> (<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>); 
     947<a name="l01283"></a>01283  
     948<a name="l01284"></a>01284         sq_T Rn (<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>, irvn);  <span class="comment">// select rows and columns of R</span> 
     949<a name="l01285"></a>01285  
     950<a name="l01286"></a>01286         target.<a class="code" href="classbdm_1_1epdf.html#f423e28448dbb69ef4905295ec8de8ff" title="Name its rv.">set_rv</a> ( rvn ); 
     951<a name="l01287"></a>01287         target.<a class="code" href="classbdm_1_1enorm.html#b8322f2c11560871dd922c660f4771bb">set_parameters</a> (<a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> (irvn), Rn); 
     952<a name="l01288"></a>01288 } 
     953<a name="l01289"></a>01289  
     954<a name="l01290"></a>01290 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     955<a name="l01291"></a><a class="code" href="classbdm_1_1enorm.html#40201ca12c6900f7aeb493bb7c582e20">01291</a> <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;mpdf&gt;</a> <a class="code" href="classbdm_1_1enorm.html#40201ca12c6900f7aeb493bb7c582e20" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">enorm&lt;sq_T&gt;::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn )<span class="keyword"> const</span> 
     956<a name="l01292"></a>01292 <span class="keyword"></span>{ 
     957<a name="l01293"></a>01293         <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm&lt;sq_T&gt;</a> *tmp = <span class="keyword">new</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm&lt;sq_T&gt;</a> (); 
     958<a name="l01294"></a>01294         <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;mpdf&gt;</a> narrow(tmp); 
     959<a name="l01295"></a>01295         <a class="code" href="classbdm_1_1enorm.html#40201ca12c6900f7aeb493bb7c582e20" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">condition</a> ( rvn, *tmp ); 
     960<a name="l01296"></a>01296         <span class="keywordflow">return</span> narrow; 
     961<a name="l01297"></a>01297 } 
     962<a name="l01298"></a>01298  
     963<a name="l01299"></a>01299 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     964<a name="l01300"></a>01300 <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1enorm.html#40201ca12c6900f7aeb493bb7c582e20" title="Return conditional density on the given RV, the remaining rvs will be in conditioning...">enorm&lt;sq_T&gt;::condition</a> ( <span class="keyword">const</span> <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> &amp;rvn, <a class="code" href="classbdm_1_1mpdf.html" title="Conditional probability density, e.g. modeling , where  is random variable, rv, and...">mpdf</a> &amp;target )<span class="keyword"> const</span> 
     965<a name="l01301"></a>01301 <span class="keyword"></span>{ 
     966<a name="l01302"></a>01302         <span class="keyword">typedef</span> <a class="code" href="classbdm_1_1mlnorm.html" title="Normal distributed linear function with linear function of mean value;.">mlnorm&lt;sq_T&gt;</a> TMlnorm; 
     967<a name="l01303"></a>01303  
     968<a name="l01304"></a>01304         it_assert_debug (<a class="code" href="classbdm_1_1epdf.html#c4b863ff84c7a4882fb3ad18556027f9" title="True if rv is assigned.">isnamed</a>(), <span class="stringliteral">"rvs are not assigned"</span>); 
     969<a name="l01305"></a>01305         TMlnorm &amp;uptarget = <span class="keyword">dynamic_cast&lt;</span>TMlnorm &amp;<span class="keyword">&gt;</span>(target); 
     970<a name="l01306"></a>01306  
     971<a name="l01307"></a>01307         <a class="code" href="classbdm_1_1RV.html" title="Class representing variables, most often random variables.">RV</a> rvc = <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#aec44dabdf0a6d90fbae95e1356eda39" title="Subtract another variable from the current one.">subt</a> (rvn); 
     972<a name="l01308"></a>01308         it_assert_debug ( (rvc.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() + rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() == <a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>()), <span class="stringliteral">"wrong rvn"</span>); 
     973<a name="l01309"></a>01309         <span class="comment">//Permutation vector of the new R</span> 
     974<a name="l01310"></a>01310         ivec irvn = rvn.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> (<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>); 
     975<a name="l01311"></a>01311         ivec irvc = rvc.<a class="code" href="classbdm_1_1RV.html#cbebdb5e0d30101a6eb63550ef701c55">dataind</a> (<a class="code" href="classbdm_1_1epdf.html#62c5b8ff71d9ebe6cd58d3c342eb1dc8" title="Description of the random variable.">rv</a>); 
     976<a name="l01312"></a>01312         ivec perm = concat (irvn , irvc); 
     977<a name="l01313"></a>01313         sq_T Rn (<a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>, perm); 
     978<a name="l01314"></a>01314  
     979<a name="l01315"></a>01315         <span class="comment">//fixme - could this be done in general for all sq_T?</span> 
     980<a name="l01316"></a>01316         mat S = Rn.to_mat(); 
     981<a name="l01317"></a>01317         <span class="comment">//fixme</span> 
     982<a name="l01318"></a>01318         <span class="keywordtype">int</span> n = rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>() - 1; 
     983<a name="l01319"></a>01319         <span class="keywordtype">int</span> end = <a class="code" href="classbdm_1_1enorm.html#2d92dde696b2a7a5b10ddef5d22ba2c2" title="Covariance matrix in decomposed form.">R</a>.rows() - 1; 
     984<a name="l01320"></a>01320         mat S11 = S.get (0, n, 0, n); 
     985<a name="l01321"></a>01321         mat S12 = S.get (0, n , rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end); 
     986<a name="l01322"></a>01322         mat S22 = S.get (rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end, rvn.<a class="code" href="classbdm_1_1RV.html#de30156104f61d86c94f758861418089">_dsize</a>(), end); 
     987<a name="l01323"></a>01323  
     988<a name="l01324"></a>01324         vec mu1 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> (irvn); 
     989<a name="l01325"></a>01325         vec mu2 = <a class="code" href="classbdm_1_1enorm.html#c702a194720853570d08b65482f842c7" title="mean value">mu</a> (irvc); 
     990<a name="l01326"></a>01326         mat A = S12 * inv (S22); 
     991<a name="l01327"></a>01327         sq_T R_n (S11 - A *S12.T()); 
     992<a name="l01328"></a>01328  
     993<a name="l01329"></a>01329         uptarget.set_rv (rvn); 
     994<a name="l01330"></a>01330         uptarget.set_rvc (rvc); 
     995<a name="l01331"></a>01331         uptarget.set_parameters (A, mu1 - A*mu2, R_n); 
     996<a name="l01332"></a>01332 } 
     997<a name="l01333"></a>01333  
     998<a name="l01336"></a>01336 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     999<a name="l01337"></a><a class="code" href="classbdm_1_1mgnorm.html#b736332d20e418bf50d45836e129f339">01337</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#b736332d20e418bf50d45836e129f339" title="set mean function">mgnorm&lt;sq_T &gt;::set_parameters</a> (<span class="keyword">const</span> <a class="code" href="classbdm_1_1shared__ptr.html">shared_ptr&lt;fnc&gt;</a> &amp;g0, <span class="keyword">const</span> sq_T &amp;R0) { 
     1000<a name="l01338"></a>01338         g = g0; 
     1001<a name="l01339"></a>01339         this-&gt;<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>.set_parameters (zeros (g-&gt;dimension()), R0); 
     1002<a name="l01340"></a>01340 } 
    10181003<a name="l01341"></a>01341  
    1019 <a name="l01342"></a>01342 } 
    1020 <a name="l01343"></a>01343 <span class="preprocessor">#endif //EF_H</span> 
     1004<a name="l01342"></a>01342 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     1005<a name="l01343"></a><a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d">01343</a> <span class="keywordtype">void</span> <a class="code" href="classbdm_1_1mgnorm.html#b31d63472cf6a1030cd8dbd8094c1f6d">mgnorm&lt;sq_T &gt;::condition</a> (<span class="keyword">const</span> vec &amp;cond) {this-&gt;<a class="code" href="classbdm_1_1mpdf__internal.html#47bab632af15120c88aad647ae129468" title="Internal epdf used for sampling.">iepdf</a>._mu() = g-&gt;eval (cond);}; 
     1006<a name="l01344"></a>01344  
     1007<a name="l01346"></a>01346 <span class="keyword">template</span>&lt;<span class="keyword">class</span> sq_T&gt; 
     1008<a name="l01347"></a>01347 std::ostream &amp;operator&lt;&lt; (std::ostream &amp;os,  mlnorm&lt;sq_T&gt; &amp;ml) 
     1009<a name="l01348"></a>01348 { 
     1010<a name="l01349"></a>01349         os &lt;&lt; <span class="stringliteral">"A:"</span> &lt;&lt; ml.A &lt;&lt; endl; 
     1011<a name="l01350"></a>01350         os &lt;&lt; <span class="stringliteral">"mu:"</span> &lt;&lt; ml.mu_const &lt;&lt; endl; 
     1012<a name="l01351"></a>01351         os &lt;&lt; <span class="stringliteral">"R:"</span> &lt;&lt; ml._R() &lt;&lt; endl; 
     1013<a name="l01352"></a>01352         <span class="keywordflow">return</span> os; 
     1014<a name="l01353"></a>01353 }; 
     1015<a name="l01354"></a>01354  
     1016<a name="l01355"></a>01355 } 
     1017<a name="l01356"></a>01356 <span class="preprocessor">#endif //EF_H</span> 
    10211018</pre></div></div> 
    1022 <hr size="1"><address style="text-align: right;"><small>Generated on Wed Jul 1 13:05:55 2009 for mixpp by&nbsp; 
     1019<hr size="1"><address style="text-align: right;"><small>Generated on Sun Aug 16 17:58:18 2009 for mixpp by&nbsp; 
    10231020<a href="http://www.doxygen.org/index.html"> 
    10241021<img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.8 </small></address>