Changeset 591 for library/doc/html/tut_arx.html
- Timestamp:
- 08/30/09 22:13:15 (15 years ago)
- Files:
-
- 1 modified
Legend:
- Unmodified
- Added
- Removed
-
library/doc/html/tut_arx.html
r590 r591 1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> 2 <html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8"> 1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 2 <html xmlns="http://www.w3.org/1999/xhtml"> 3 <head> 4 <meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/> 3 5 <title>mixpp: Theory of ARX model estimation</title> 4 <link href="tabs.css" rel="stylesheet" type="text/css"> 5 <link href="doxygen.css" rel="stylesheet" type="text/css"> 6 </head><body> 7 <!-- Generated by Doxygen 1.5.8 --> 6 <link href="tabs.css" rel="stylesheet" type="text/css"/> 7 <link href="doxygen.css" rel="stylesheet" type="text/css"/> 8 </head> 9 <body> 10 <!-- Generated by Doxygen 1.6.1 --> 8 11 <script type="text/javascript"> 9 12 <!-- … … 60 63 </div> 61 64 <div class="contents"> 62 <h1><a class="anchor" name="tut_arx">Theory of ARX model estimation </a></h1><p> 63 The <code>ARX</code> (AutoregRessive with eXogeneous input) model is defined as follows: <p class="formulaDsp"> 64 <img class="formulaDsp" alt="\[ y_t = \theta' \psi_t + \rho e_t \]" src="form_115.png"> 65 <p> 66 where <img class="formulaInl" alt="$y_t$" src="form_3.png"> is the system output, <img class="formulaInl" alt="$[\theta,\rho]$" src="form_116.png"> is vector of unknown parameters, <img class="formulaInl" alt="$\psi_t$" src="form_117.png"> is an vector of data-dependent regressors, and noise <img class="formulaInl" alt="$e_t$" src="form_24.png"> is assumed to be Normal distributed <img class="formulaInl" alt="$\mathcal{N}(0,1)$" src="form_118.png">.<p> 67 Special cases include: <ul> 65 66 67 <h1><a class="anchor" id="tut_arx">Theory of ARX model estimation </a></h1><p></p> 68 <p>The <code>ARX</code> (AutoregRessive with eXogeneous input) model is defined as follows: </p> 69 <p class="formulaDsp"> 70 <img class="formulaDsp" alt="\[ y_t = \theta' \psi_t + \rho e_t \]" src="form_115.png"/> 71 </p> 72 <p> where <img class="formulaInl" alt="$y_t$" src="form_3.png"/> is the system output, <img class="formulaInl" alt="$[\theta,\rho]$" src="form_116.png"/> is vector of unknown parameters, <img class="formulaInl" alt="$\psi_t$" src="form_117.png"/> is an vector of data-dependent regressors, and noise <img class="formulaInl" alt="$e_t$" src="form_24.png"/> is assumed to be Normal distributed <img class="formulaInl" alt="$\mathcal{N}(0,1)$" src="form_118.png"/>.</p> 73 <p>Special cases include: </p> 74 <ul> 68 75 <li>estimation of unknown mean and variance of a Gaussian density from independent samples.</li> 69 76 </ul> 70 <h2><a class="anchor" name="off">77 <h2><a class="anchor" id="off"> 71 78 Off-line estimation:</a></h2> 72 This particular model belongs to the exponential family, hence it has conjugate distribution (i.e. both prior and posterior) of the Gauss-inverse-Wishart form. See [ref]<p> 73 Estimation of this family can be achieved by accumulation of sufficient statistics. The sufficient statistics Gauss-inverse-Wishart density is composed of: <dl> 79 <p>This particular model belongs to the exponential family, hence it has conjugate distribution (i.e. both prior and posterior) of the Gauss-inverse-Wishart form. See [ref]</p> 80 <p>Estimation of this family can be achieved by accumulation of sufficient statistics. The sufficient statistics Gauss-inverse-Wishart density is composed of: </p> 81 <dl> 74 82 <dt>Information matrix </dt> 75 83 <dd>which is a sum of outer products <p class="formulaDsp"> 76 <img class="formulaDsp" alt="\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \]" src="form_119.png" >77 < p>84 <img class="formulaDsp" alt="\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \]" src="form_119.png"/> 85 </p> 78 86 </dd> 79 87 <dt>"Degree of freedom" </dt> 80 88 <dd>which is an accumulator of number of data records <p class="formulaDsp"> 81 <img class="formulaDsp" alt="\[ \nu_t = \sum_{i=0}^{n} 1 \]" src="form_120.png" >82 < p>89 <img class="formulaDsp" alt="\[ \nu_t = \sum_{i=0}^{n} 1 \]" src="form_120.png"/> 90 </p> 83 91 </dd> 84 92 </dl> 85 <h2><a class="anchor" name="on">93 <h2><a class="anchor" id="on"> 86 94 On-line estimation</a></h2> 87 For online estimation with stationary parameters can be easily achieved by collecting the sufficient statistics described above recursively.<p> 88 Extension to non-stationaly parameters, <img class="formulaInl" alt="$ \theta_t , r_t $" src="form_121.png"> can be achieved by operation called forgetting. This is an approximation of Bayesian filtering see [Kulhavy]. The resulting algorithm is defined by manipulation of sufficient statistics: <dl> 95 <p>For online estimation with stationary parameters can be easily achieved by collecting the sufficient statistics described above recursively.</p> 96 <p>Extension to non-stationaly parameters, <img class="formulaInl" alt="$ \theta_t , r_t $" src="form_121.png"/> can be achieved by operation called forgetting. This is an approximation of Bayesian filtering see [Kulhavy]. The resulting algorithm is defined by manipulation of sufficient statistics: </p> 97 <dl> 89 98 <dt>Information matrix </dt> 90 99 <dd>which is a sum of outer products <p class="formulaDsp"> 91 <img class="formulaDsp" alt="\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \]" src="form_122.png" >92 < p>100 <img class="formulaDsp" alt="\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \]" src="form_122.png"/> 101 </p> 93 102 </dd> 94 103 <dt>"Degree of freedom" </dt> 95 104 <dd>which is an accumulator of number of data records <p class="formulaDsp"> 96 <img class="formulaDsp" alt="\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \]" src="form_123.png" >97 < p>105 <img class="formulaDsp" alt="\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \]" src="form_123.png"/> 106 </p> 98 107 </dd> 99 108 </dl> 100 where <img class="formulaInl" alt="$ \phi $" src="form_124.png"> is the forgetting factor, typically <img class="formulaInl" alt="$ \phi \in [0,1]$" src="form_125.png"> roughly corresponding to the effective length of the exponential window by relation:<p class="formulaDsp"> 101 <img class="formulaDsp" alt="\[ \mathrm{win_length} = \frac{1}{1-\phi}\]" src="form_126.png"> 102 <p> 103 Hence, <img class="formulaInl" alt="$ \phi=0.9 $" src="form_127.png"> corresponds to estimation on exponential window of effective length 10 samples.<p> 104 Statistics <img class="formulaInl" alt="$ V_0 , \nu_0 $" src="form_128.png"> are called alternative statistics, their role is to stabilize estimation. It is easy to show that for zero data, the statistics <img class="formulaInl" alt="$ V_t , \nu_t $" src="form_129.png"> converge to the alternative statistics.<h2><a class="anchor" name="str"> 109 <p>where <img class="formulaInl" alt="$ \phi $" src="form_124.png"/> is the forgetting factor, typically <img class="formulaInl" alt="$ \phi \in [0,1]$" src="form_125.png"/> roughly corresponding to the effective length of the exponential window by relation:</p> 110 <p class="formulaDsp"> 111 <img class="formulaDsp" alt="\[ \mathrm{win_length} = \frac{1}{1-\phi}\]" src="form_126.png"/> 112 </p> 113 <p> Hence, <img class="formulaInl" alt="$ \phi=0.9 $" src="form_127.png"/> corresponds to estimation on exponential window of effective length 10 samples.</p> 114 <p>Statistics <img class="formulaInl" alt="$ V_0 , \nu_0 $" src="form_128.png"/> are called alternative statistics, their role is to stabilize estimation. It is easy to show that for zero data, the statistics <img class="formulaInl" alt="$ V_t , \nu_t $" src="form_129.png"/> converge to the alternative statistics.</p> 115 <h2><a class="anchor" id="str"> 105 116 Structure estimation</a></h2> 106 For this model, structure estimation is a form of model selection procedure. Specifically, we compare hypotheses that the data were generated by the full model with hypotheses that some regressors in vector <img class="formulaInl" alt="$\psi$" src="form_33.png"> are redundant. The number of possible hypotheses is then the number of all possible combinations of all regressors.<p> 107 However, due to property known as nesting in exponential family, these hypotheses can be tested using only the posterior statistics. (This property does no hold for forgetting <img class="formulaInl" alt="$ \phi<1 $" src="form_130.png">). Hence, for low dimensional problems, this can be done by a tree search (method <a class="el" href="classbdm_1_1ARX.html#16b02ae03316751664c22d59d90c1e34" title="Brute force structure estimation.">bdm::ARX::structure_est()</a>). Or more sophisticated algorithm [ref Ludvik]<h2><a class="anchor" name="soft"> 117 <p>For this model, structure estimation is a form of model selection procedure. Specifically, we compare hypotheses that the data were generated by the full model with hypotheses that some regressors in vector <img class="formulaInl" alt="$\psi$" src="form_33.png"/> are redundant. The number of possible hypotheses is then the number of all possible combinations of all regressors.</p> 118 <p>However, due to property known as nesting in exponential family, these hypotheses can be tested using only the posterior statistics. (This property does no hold for forgetting <img class="formulaInl" alt="$ \phi<1 $" src="form_130.png"/>). Hence, for low dimensional problems, this can be done by a tree search (method <a class="el" href="classbdm_1_1ARX.html#a16b02ae03316751664c22d59d90c1e34" title="Brute force structure estimation.">bdm::ARX::structure_est()</a>). Or more sophisticated algorithm [ref Ludvik]</p> 119 <h2><a class="anchor" id="soft"> 108 120 Software Image</a></h2> 109 Estimation of the ARX model is implemented in class <a class="el" href="classbdm_1_1ARX.html" title="Linear Autoregressive model with Gaussian noise.">bdm::ARX</a>. <ul> 121 <p>Estimation of the ARX model is implemented in class <a class="el" href="classbdm_1_1ARX.html" title="Linear Autoregressive model with Gaussian noise.">bdm::ARX</a>. </p> 122 <ul> 110 123 <li>models from exponential family share some properties, these are encoded in class <a class="el" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">bdm::BMEF</a> which is the parent of ARX </li> 111 124 <li>one of the parameters of <a class="el" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">bdm::BMEF</a> is the forgetting factor which is stored in attribute <code>frg</code>, </li> … … 113 126 <li>references to statistics of the internal <code>egiw</code> class, i.e. attributes <code>V</code> and <code>nu</code> are established for convenience.</li> 114 127 </ul> 115 <h2><a class="anchor" name="try">128 <h2><a class="anchor" id="try"> 116 129 How to try</a></h2> 117 The best way to experiment with this object is to run matlab script <code>arx_test.m</code> located in directory <code></code>./library/tutorial. See <a class="el" href="arx_ui.html">Running experiment <code>estimator</code> with ARX data fields</a> for detailed description.<p>130 <p>The best way to experiment with this object is to run matlab script <code>arx_test.m</code> located in directory <code></code>./library/tutorial. See <a class="el" href="arx_ui.html">Running experiment <code>estimator</code> with ARX data fields</a> for detailed description.</p> 118 131 <ul> 119 132 <li>In default setup, the parameters converge to the true values as expected. </li> … … 122 135 </ul> 123 136 </div> 124 <hr size="1" ><address style="text-align: right;"><small>Generated on Sat Aug 29 20:49:422009 for mixpp by 137 <hr size="1"/><address style="text-align: right;"><small>Generated on Sun Aug 30 22:10:50 2009 for mixpp by 125 138 <a href="http://www.doxygen.org/index.html"> 126 <img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.8</small></address>139 <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address> 127 140 </body> 128 141 </html>