3 | | \form#2:\[ f(\theta_t | d_1,\ldots,d_t) = \frac{f(y_t|\theta_t,\cdot) f(\theta_t|d_1,\ldots,d_{t-1})}{f(y_t|d_1,\ldots,d_{t-1})} \] |
4 | | \form#3:$y_t$ |
5 | | \form#4:$ c_t $ |
6 | | \form#5:\[ f(\theta_t | c_t, d_1,\ldots,d_t) \propto f(y_t,\theta_t|c_t,\cdot, d_1,\ldots,d_{t-1}) \] |
7 | | \form#6:$x=$ |
8 | | \form#7:$ x $ |
9 | | \form#8:$ f_x()$ |
10 | | \form#9:$ [x_1 , x_2 , \ldots \ $ |
11 | | \form#10:$ f_x(rv)$ |
12 | | \form#11:$x \sim epdf(rv|cond)$ |
13 | | \form#12:$ t $ |
14 | | \form#13:$ t+1 $ |
15 | | \form#14:$ f(d_{t+1} |d_{t}, \ldots d_{0}) $ |
16 | | \form#15:$t$ |
17 | | \form#16:$[y_{t} y_{t-1} ...]$ |
18 | | \form#17:$[y_t, u_t, y_{t-1 }, u_{t-1}, \ldots]$ |
19 | | \form#18:$ f(x_t|x_{t-1}) $ |
20 | | \form#19:$ f(d_t|x_t) $ |
21 | | \form#20:\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] |
22 | | \form#21:$[\theta r]$ |
23 | | \form#22:$\psi=\psi(y_{1:t},u_{1:t})$ |
24 | | \form#23:$u_t$ |
25 | | \form#24:$e_t$ |
26 | | \form#25:\[ e_t \sim \mathcal{N}(0,1). \] |
27 | | \form#26:$ y_t $ |
28 | | \form#27:$\theta,r$ |
29 | | \form#28:$ dt = [y_t psi_t] $ |
30 | | \form#29:\[ x_t = A x_{t-1} + B u_t + Q^{1/2} e_t \] |
31 | | \form#30:\[ y_t = C x_{t-1} + C u_t + Q^{1/2} w_t. \] |
32 | | \form#31:\[ \left[\begin{array}{cc} R^{0.5}\\ P_{t|t-1}^{0.5}C' & P_{t|t-1}^{0.5}CA'\\ & Q^{0.5}\end{array}\right]<\mathrm{orth.oper.}>=\left[\begin{array}{cc} R_{y}^{0.5} & KA'\\ & P_{t+1|t}^{0.5}\\ \\\end{array}\right]\] |
33 | | \form#32:\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \] |
34 | | \form#33:$\psi$ |
35 | | \form#34:$w=[w_1,\ldots,w_n]$ |
36 | | \form#35:$\theta_i$ |
37 | | \form#36:$\Theta$ |
38 | | \form#37:$\Theta = [\theta_1,\ldots,\theta_n,w]$ |
39 | | \form#38:$A=Ch' Ch$ |
40 | | \form#39:$Ch$ |
41 | | \form#40:$f(x) = a$ |
42 | | \form#41:$f(x) = Ax+B$ |
43 | | \form#42:$f(x,u)$ |
44 | | \form#43:$f(x,u) = Ax+Bu$ |
45 | | \form#44:$f(x0,u0)$ |
46 | | \form#45:$A=\frac{d}{dx}f(x,u)|_{x0,u0}$ |
47 | | \form#46:$u$ |
48 | | \form#47:$A=\frac{d}{du}f(x,u)|_{x0,u0}$ |
49 | | \form#48:\[M = L'DL\] |
50 | | \form#49:$L$ |
51 | | \form#50:$D$ |
52 | | \form#51:$V = V + w v v'$ |
53 | | \form#52:$C$ |
54 | | \form#53:$V = C*V*C'$ |
55 | | \form#54:$V = C'*V*C$ |
56 | | \form#55:$V$ |
57 | | \form#56:$x= v'*V*v$ |
58 | | \form#57:$x= v'*inv(V)*v$ |
59 | | \form#58:$U$ |
60 | | \form#59:$A'D0 A$ |
61 | | \form#60:$L'DL$ |
62 | | \form#61:$A'*diag(D)*A = self.L'*diag(self.D)*self.L$ |
63 | | \form#62:\[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] |
64 | | \form#63:$ f(rvc) = \int f(rv,rvc) d\ rv $ |
65 | | \form#64:\[ f(x) = \sum_{i=1}^{n} w_{i} f_i(x), \quad \sum_{i=1}^n w_i = 1. \] |
66 | | \form#65:$f_i(x)$ |
67 | | \form#66:$p$ |
68 | | \form#67:$p\times$ |
69 | | \form#68:$n$ |
70 | | \form#69:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \] |
71 | | \form#70:$\gamma=\sum_i \beta_i$ |
72 | | \form#71:\[ f(x|\alpha,\beta) = \prod f(x_i|\alpha_i,\beta_i) \] |
73 | | \form#72:$\beta$ |
74 | | \form#73:\[ x\sim iG(a,b) => 1/x\sim G(a,1/b) \] |
75 | | \form#74:$mu=A*rvc+mu_0$ |
76 | | \form#75:$\mu$ |
77 | | \form#76:$k$ |
78 | | \form#77:$\alpha=k$ |
79 | | \form#78:$\beta=k/\mu$ |
80 | | \form#79:$\mu/\sqrt(k)$ |
81 | | \form#80:$ \mu $ |
82 | | \form#81:$ k $ |
83 | | \form#82:$ \alpha=\mu/k^2+2 $ |
84 | | \form#83:$ \beta=\mu(\alpha-1)$ |
85 | | \form#84:$ \mu/\sqrt(k)$ |
86 | | \form#85:$l$ |
87 | | \form#86:\[ \mu = \mu_{t-1} ^{l} p^{1-l}\] |
88 | | \form#87:$ \log(x)\sim \mathcal{N}(\mu,\sigma^2) $ |
89 | | \form#88:\[ x \sim \frac{1}{x\sigma\sqrt{2\pi}}\exp{-\frac{1}{2\sigma^2}(\log(x)-\mu)} \] |
90 | | \form#89:$\mathcal{I}$ |
91 | | \form#90:$\theta$ |
92 | | \form#91:$\alpha$ |
93 | | \form#92:$ \Psi $ |
94 | | \form#93:$ \nu $ |
95 | | \form#94:$ \nu-p-1 $ |
96 | | \form#95:$w$ |
97 | | \form#96:$x^{(i)}, i=1..n$ |
98 | | \form#97:\[ f(x_i|y_i), i=1..n \] |
99 | | \form#98:$ \cup [x_i,y_i] $ |
100 | | \form#99:\[ f(z_i|y_i,x_i) f(x_i|y_i) f(y_i) i=1..n \] |
101 | | \form#100:$ z_i $ |
102 | | \form#101:$ y_i={}, z_i={}, \forall i $ |
103 | | \form#102:$ f(z_i|x_i,y_i) $ |
104 | | \form#103:$ f(D) $ |
105 | | \form#104:\[ f(a,b,c) = f(a|b,c) f(b) f(c) \] |
106 | | \form#105:$ f(a|b,c) $ |
107 | | \form#106:$ f(b) $ |
108 | | \form#107:$ f(c) $ |
109 | | \form#108:\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray} |
110 | | \form#109:$ x_t $ |
111 | | \form#110:$ A, B, C, D$ |
112 | | \form#111:$v_t, w_t$ |
113 | | \form#112:$Q, R$ |
114 | | \form#113:\begin{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \end{eqnarray} |
115 | | \form#114:$ g(), h() $ |
116 | | \form#115:\[ y_t = \theta' \psi_t + \rho e_t \] |
117 | | \form#116:$[\theta,\rho]$ |
118 | | \form#117:$\psi_t$ |
119 | | \form#118:$\mathcal{N}(0,1)$ |
120 | | \form#119:\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \] |
121 | | \form#120:\[ \nu_t = \sum_{i=0}^{n} 1 \] |
122 | | \form#121:$ \theta_t , r_t $ |
123 | | \form#122:\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \] |
124 | | \form#123:\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \] |
125 | | \form#124:$ \phi $ |
126 | | \form#125:$ \phi \in [0,1]$ |
127 | | \form#126:\[ \mathrm{win_length} = \frac{1}{1-\phi}\] |
128 | | \form#127:$ \phi=0.9 $ |
129 | | \form#128:$ V_0 , \nu_0 $ |
130 | | \form#129:$ V_t , \nu_t $ |
131 | | \form#130:$ \phi<1 $ |
132 | | \form#131:$ f(d_{t+1} |d_{t+h-1}, \ldots d_{t}) $ |
133 | | \form#132:$ f( x | y) $ |
134 | | \form#133:$ y $ |
135 | | \form#134:$ \mu=A*\mbox{rvc}+\mu_0 $ |
136 | | \form#135:$ \Lambda $ |
137 | | \form#136:$ R $ |
138 | | \form#137:$ R_e $ |
139 | | \form#138:\[ L(y,u) = (y-y_{req})'Q_y (y-y_{req}) + (u-u_{req})' Q_u (u-u_{req}) \] |
140 | | \form#139:\[ x_{t+1} = Ax_t + B u_t + R^{1/2} e_t, y_t=Cx_t+Du_t + R^{1/2}w_t, \] |
141 | | \form#140:\[ y_t = a y_{t-1} + b u_{t-1}\] |
142 | | \form#141:$ x_t = [y_{t-1}, u_{t-1}] $ |
| 3 | \form#2:$ f( x | y) $ |
| 4 | \form#3:$ x $ |
| 5 | \form#4:$ y $ |
| 6 | \form#5:$ u_t $ |
| 7 | \form#6:$ y_t $ |
| 8 | \form#7:$ d_t=[y_t,u_t, \ldots ]$ |
| 9 | \form#8:\[ f(\theta_t | d_1,\ldots,d_t) = \frac{f(y_t|\theta_t,\cdot) f(\theta_t|d_1,\ldots,d_{t-1})}{f(y_t|d_1,\ldots,d_{t-1})} \] |
| 10 | \form#9:$y_t$ |
| 11 | \form#10:$ c_t $ |
| 12 | \form#11:\[ f(\theta_t | c_t, d_1,\ldots,d_t) \propto f(y_t,\theta_t|c_t,\cdot, d_1,\ldots,d_{t-1}) \] |
| 13 | \form#12:$x=$ |
| 14 | \form#13:$ f_x()$ |
| 15 | \form#14:$ [x_1 , x_2 , \ldots \ $ |
| 16 | \form#15:$ f_x(rv)$ |
| 17 | \form#16:$x \sim epdf(rv|cond)$ |
| 18 | \form#17:$[Up_{t-1},Up_{t-2}, \ldots]$ |
| 19 | \form#18:$ t $ |
| 20 | \form#19:$ t+1 $ |
| 21 | \form#20:$ f(d_{t+1} |d_{t}, \ldots d_{0}) $ |
| 22 | \form#21:$ f(d_{t+1} |d_{t+h-1}, \ldots d_{t}) $ |
| 23 | \form#22:$t$ |
| 24 | \form#23:$[y_{t} y_{t-1} ...]$ |
| 25 | \form#24:$[y_t, u_t, y_{t-1 }, u_{t-1}, \ldots]$ |
| 26 | \form#25:$ f(x_t|x_{t-1}) $ |
| 27 | \form#26:$ f(d_t|x_t) $ |
| 28 | \form#27:\[ L(y,u) = (y-y_{req})'Q_y (y-y_{req}) + (u-u_{req})' Q_u (u-u_{req}) \] |
| 29 | \form#28:\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \] |
| 30 | \form#29:$[\theta r]$ |
| 31 | \form#30:$\psi=\psi(y_{1:t},u_{1:t})$ |
| 32 | \form#31:$u_t$ |
| 33 | \form#32:$e_t$ |
| 34 | \form#33:\[ e_t \sim \mathcal{N}(0,1). \] |
| 35 | \form#34:$\theta,r$ |
| 36 | \form#35:$ dt = [y_t psi_t] $ |
| 37 | \form#36:\[ x_t = A x_{t-1} + B u_t + Q^{1/2} e_t \] |
| 38 | \form#37:\[ y_t = C x_{t-1} + C u_t + Q^{1/2} w_t. \] |
| 39 | \form#38:\[ x_{t+1} = Ax_t + B u_t + R^{1/2} e_t, y_t=Cx_t+Du_t + R^{1/2}w_t, \] |
| 40 | \form#39:\[ \left[\begin{array}{cc} R^{0.5}\\ P_{t|t-1}^{0.5}C' & P_{t|t-1}^{0.5}CA'\\ & Q^{0.5}\end{array}\right]<\mathrm{orth.oper.}>=\left[\begin{array}{cc} R_{y}^{0.5} & KA'\\ & P_{t+1|t}^{0.5}\\ \\\end{array}\right]\] |
| 41 | \form#40:\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \] |
| 42 | \form#41:$\psi$ |
| 43 | \form#42:$w=[w_1,\ldots,w_n]$ |
| 44 | \form#43:$\theta_i$ |
| 45 | \form#44:$\Theta$ |
| 46 | \form#45:$\Theta = [\theta_1,\ldots,\theta_n,w]$ |
| 47 | \form#46:$A=Ch' Ch$ |
| 48 | \form#47:$Ch$ |
| 49 | \form#48:$f(x) = a$ |
| 50 | \form#49:$f(x) = Ax+B$ |
| 51 | \form#50:$f(x,u)$ |
| 52 | \form#51:$f(x,u) = Ax+Bu$ |
| 53 | \form#52:$f(x0,u0)$ |
| 54 | \form#53:$A=\frac{d}{dx}f(x,u)|_{x0,u0}$ |
| 55 | \form#54:$u$ |
| 56 | \form#55:$A=\frac{d}{du}f(x,u)|_{x0,u0}$ |
| 57 | \form#56:\[M = L'DL\] |
| 58 | \form#57:$L$ |
| 59 | \form#58:$D$ |
| 60 | \form#59:$V = V + w v v'$ |
| 61 | \form#60:$C$ |
| 62 | \form#61:$V = C*V*C'$ |
| 63 | \form#62:$V = C'*V*C$ |
| 64 | \form#63:$V$ |
| 65 | \form#64:$x= v'*V*v$ |
| 66 | \form#65:$x= v'*inv(V)*v$ |
| 67 | \form#66:$U$ |
| 68 | \form#67:$A'D0 A$ |
| 69 | \form#68:$L'DL$ |
| 70 | \form#69:$A'*diag(D)*A = self.L'*diag(self.D)*self.L$ |
| 71 | \form#70:\[ f(rv|rvc) = \frac{f(rv,rvc)}{f(rvc)} \] |
| 72 | \form#71:$ f(rvc) = \int f(rv,rvc) d\ rv $ |
| 73 | \form#72:\[ f(x) = \sum_{i=1}^{n} w_{i} f_i(x), \quad \sum_{i=1}^n w_i = 1. \] |
| 74 | \form#73:$f_i(x)$ |
| 75 | \form#74:$p$ |
| 76 | \form#75:$p\times$ |
| 77 | \form#76:$n$ |
| 78 | \form#77:\[ f(x|\beta) = \frac{\Gamma[\gamma]}{\prod_{i=1}^{n}\Gamma(\beta_i)} \prod_{i=1}^{n}x_i^{\beta_i-1} \] |
| 79 | \form#78:$\gamma=\sum_i \beta_i$ |
| 80 | \form#79:\[ f(x|\alpha,\beta) = \prod f(x_i|\alpha_i,\beta_i) \] |
| 81 | \form#80:$\beta$ |
| 82 | \form#81:\[ x\sim iG(a,b) => 1/x\sim G(a,1/b) \] |
| 83 | \form#82:$ \mu=A*\mbox{rvc}+\mu_0 $ |
| 84 | \form#83:$\mu$ |
| 85 | \form#84:$k$ |
| 86 | \form#85:$\alpha=k$ |
| 87 | \form#86:$\beta=k/\mu$ |
| 88 | \form#87:$\mu/\sqrt(k)$ |
| 89 | \form#88:$ \mu $ |
| 90 | \form#89:$ k $ |
| 91 | \form#90:$ \alpha=\mu/k^2+2 $ |
| 92 | \form#91:$ \beta=\mu(\alpha-1)$ |
| 93 | \form#92:$ \mu/\sqrt(k)$ |
| 94 | \form#93:$l$ |
| 95 | \form#94:\[ \mu = \mu_{t-1} ^{l} p^{1-l}\] |
| 96 | \form#95:$ \log(x)\sim \mathcal{N}(\mu,\sigma^2) $ |
| 97 | \form#96:\[ x \sim \frac{1}{x\sigma\sqrt{2\pi}}\exp{-\frac{1}{2\sigma^2}(\log(x)-\mu)} \] |
| 98 | \form#97:$\mathcal{I}$ |
| 99 | \form#98:$\theta$ |
| 100 | \form#99:$\alpha$ |
| 101 | \form#100:$ \Lambda $ |
| 102 | \form#101:$ R $ |
| 103 | \form#102:$ R_e $ |
| 104 | \form#103:$ \Psi $ |
| 105 | \form#104:$ \nu $ |
| 106 | \form#105:$ \nu-p-1 $ |
| 107 | \form#106:$w$ |
| 108 | \form#107:$x^{(i)}, i=1..n$ |
| 109 | \form#108:\[ f(x_i|y_i), i=1..n \] |
| 110 | \form#109:$ \cup [x_i,y_i] $ |
| 111 | \form#110:\[ f(z_i|y_i,x_i) f(x_i|y_i) f(y_i) i=1..n \] |
| 112 | \form#111:$ z_i $ |
| 113 | \form#112:$ y_i={}, z_i={}, \forall i $ |
| 114 | \form#113:$ f(z_i|x_i,y_i) $ |
| 115 | \form#114:$ f(D) $ |
| 116 | \form#115:\[ f(a,b,c) = f(a|b,c) f(b) f(c) \] |
| 117 | \form#116:$ f(a|b,c) $ |
| 118 | \form#117:$ f(b) $ |
| 119 | \form#118:$ f(c) $ |
| 120 | \form#119:\begin{eqnarray} x_t &= &A x_{t-1} + B u_{t} + v_t,\\ y_t &= &C x_{t} + D u_{t} + w_t, \end{eqnarray} |
| 121 | \form#120:$ x_t $ |
| 122 | \form#121:$ A, B, C, D$ |
| 123 | \form#122:$v_t, w_t$ |
| 124 | \form#123:$Q, R$ |
| 125 | \form#124:\begin{eqnarray} x_t &= &g( x_{t-1}, u_{t}) + v_t,\\ y_t &= &h( x_{t} , u_{t}) + w_t, \end{eqnarray} |
| 126 | \form#125:$ g(), h() $ |
| 127 | \form#126:\[ y_t = \theta' \psi_t + \rho e_t \] |
| 128 | \form#127:$[\theta,\rho]$ |
| 129 | \form#128:$\psi_t$ |
| 130 | \form#129:$\mathcal{N}(0,1)$ |
| 131 | \form#130:\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \] |
| 132 | \form#131:\[ \nu_t = \sum_{i=0}^{n} 1 \] |
| 133 | \form#132:$ \theta_t , r_t $ |
| 134 | \form#133:\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \] |
| 135 | \form#134:\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \] |
| 136 | \form#135:$ \phi $ |
| 137 | \form#136:$ \phi \in [0,1]$ |
| 138 | \form#137:\[ \mathrm{win_length} = \frac{1}{1-\phi}\] |
| 139 | \form#138:$ \phi=0.9 $ |
| 140 | \form#139:$ V_0 , \nu_0 $ |
| 141 | \form#140:$ V_t , \nu_t $ |
| 142 | \form#141:$ \phi<1 $ |