Show
Ignore:
Timestamp:
09/13/09 23:15:31 (15 years ago)
Author:
smidl
Message:

doc, sorted related pages

Files:
1 modified

Legend:

Unmodified
Added
Removed
  • library/doc/html/classbdm_1_1MixEF.html

    r614 r616  
    7474<p>Mixture of Exponential Family Densities.   
    7575<a href="#_details">More...</a></p> 
     76<hr/><a name="_details"></a><h2>Detailed Description</h2> 
     77<p>Mixture of Exponential Family Densities. </p> 
     78<p>An approximate estimation method for models with latent discrete variable, such as mixture models of the following kind: </p> 
     79<p class="formulaDsp"> 
     80<img class="formulaDsp" alt="\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \]" src="form_40.png"/> 
     81</p> 
     82<p> where <img class="formulaInl" alt="$\psi$" src="form_41.png"/> is a known function of past outputs, <img class="formulaInl" alt="$w=[w_1,\ldots,w_n]$" src="form_42.png"/> are component weights, and component parameters <img class="formulaInl" alt="$\theta_i$" src="form_43.png"/> are assumed to be mutually independent. <img class="formulaInl" alt="$\Theta$" src="form_44.png"/> is an aggregation af all component parameters and weights, i.e. <img class="formulaInl" alt="$\Theta = [\theta_1,\ldots,\theta_n,w]$" src="form_45.png"/>.</p> 
     83<p>The characteristic feature of this model is that if the exact values of the latent variable were known, estimation of the parameters can be handled by a single model. For example, for the case of mixture models, posterior density for each component parameters would be a BayesianModel from Exponential Family.</p> 
     84<p>This class uses EM-style type algorithms for estimation of its parameters. Under this simplification, the posterior density is a product of exponential family members, hence under EM-style approximate estimation this class itself belongs to the exponential family.</p> 
     85<p>TODO: Extend <a class="el" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> to use rvc. </p> 
    7686 
    7787<p><code>#include &lt;<a class="el" href="mixtures_8h_source.html">mixtures.h</a>&gt;</code></p> 
     
    225235<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Flags for logging - same size as LIDs, each entry correspond to the same in LIDs. <br/></td></tr> 
    226236</table> 
    227 <hr/><a name="_details"></a><h2>Detailed Description</h2> 
    228 <p>Mixture of Exponential Family Densities. </p> 
    229 <p>An approximate estimation method for models with latent discrete variable, such as mixture models of the following kind: </p> 
    230 <p class="formulaDsp"> 
    231 <img class="formulaDsp" alt="\[ f(y_t|\psi_t, \Theta) = \sum_{i=1}^{n} w_i f(y_t|\psi_t, \theta_i) \]" src="form_40.png"/> 
    232 </p> 
    233 <p> where <img class="formulaInl" alt="$\psi$" src="form_41.png"/> is a known function of past outputs, <img class="formulaInl" alt="$w=[w_1,\ldots,w_n]$" src="form_42.png"/> are component weights, and component parameters <img class="formulaInl" alt="$\theta_i$" src="form_43.png"/> are assumed to be mutually independent. <img class="formulaInl" alt="$\Theta$" src="form_44.png"/> is an aggregation af all component parameters and weights, i.e. <img class="formulaInl" alt="$\Theta = [\theta_1,\ldots,\theta_n,w]$" src="form_45.png"/>.</p> 
    234 <p>The characteristic feature of this model is that if the exact values of the latent variable were known, estimation of the parameters can be handled by a single model. For example, for the case of mixture models, posterior density for each component parameters would be a BayesianModel from Exponential Family.</p> 
    235 <p>This class uses EM-style type algorithms for estimation of its parameters. Under this simplification, the posterior density is a product of exponential family members, hence under EM-style approximate estimation this class itself belongs to the exponential family.</p> 
    236 <p>TODO: Extend <a class="el" href="classbdm_1_1BM.html" title="Bayesian Model of a system, i.e. all uncertainty is modeled by probabilities.">BM</a> to use rvc. </p> 
    237237<hr/><h2>Member Function Documentation</h2> 
    238238<a class="anchor" id="a62d2e4691bed41a1efa6b9c2e35e5c67"></a><!-- doxytag: member="bdm::MixEF::_copy_" ref="a62d2e4691bed41a1efa6b9c2e35e5c67" args="() const " --> 
     
    339339</ul> 
    340340</div> 
    341 <hr size="1"/><address style="text-align: right;"><small>Generated on Sun Sep 13 22:40:43 2009 for mixpp by&nbsp; 
     341<hr size="1"/><address style="text-align: right;"><small>Generated on Sun Sep 13 23:08:56 2009 for mixpp by&nbsp; 
    342342<a href="http://www.doxygen.org/index.html"> 
    343343<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>