Changeset 651 for library/doc/html/tut_arx.html
- Timestamp:
- 10/12/09 13:49:39 (15 years ago)
- Files:
-
- 1 modified
Legend:
- Unmodified
- Added
- Removed
-
library/doc/html/tut_arx.html
r641 r651 1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 2 <html xmlns="http://www.w3.org/1999/xhtml"> 3 <head> 4 <meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/> 1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> 2 <html><head><meta http-equiv="Content-Type" content="text/html;charset=UTF-8"> 5 3 <title>mixpp: Theory of ARX model estimation</title> 6 <link href="tabs.css" rel="stylesheet" type="text/css"/> 7 <link href="doxygen.css" rel="stylesheet" type="text/css"/> 8 </head> 9 <body> 10 <!-- Generated by Doxygen 1.6.1 --> 4 <link href="tabs.css" rel="stylesheet" type="text/css"> 5 <link href="doxygen.css" rel="stylesheet" type="text/css"> 6 </head><body> 7 <!-- Generated by Doxygen 1.5.9 --> 11 8 <script type="text/javascript"> 12 9 <!-- … … 63 60 </div> 64 61 <div class="contents"> 65 66 67 <h1><a class="anchor" id="tut_arx">Theory of ARX model estimation </a></h1><p></p> 68 <p>The <code>ARX</code> (AutoregRessive with eXogeneous input) model is defined as follows: </p> 69 <p class="formulaDsp"> 70 <img class="formulaDsp" alt="\[ y_t = \theta' \psi_t + \rho e_t \]" src="form_126.png"/> 71 </p> 72 <p> where <img class="formulaInl" alt="$y_t$" src="form_9.png"/> is the system output, <img class="formulaInl" alt="$[\theta,\rho]$" src="form_127.png"/> is vector of unknown parameters, <img class="formulaInl" alt="$\psi_t$" src="form_128.png"/> is an vector of data-dependent regressors, and noise <img class="formulaInl" alt="$e_t$" src="form_32.png"/> is assumed to be Normal distributed <img class="formulaInl" alt="$\mathcal{N}(0,1)$" src="form_129.png"/>.</p> 73 <p>Special cases include: </p> 74 <ul> 62 <h1><a class="anchor" name="tut_arx">Theory of ARX model estimation </a></h1><p> 63 The <code>ARX</code> (AutoregRessive with eXogeneous input) model is defined as follows: <p class="formulaDsp"> 64 <img class="formulaDsp" alt="\[ y_t = \theta' \psi_t + \rho e_t \]" src="form_126.png"> 65 <p> 66 where <img class="formulaInl" alt="$y_t$" src="form_9.png"> is the system output, <img class="formulaInl" alt="$[\theta,\rho]$" src="form_127.png"> is vector of unknown parameters, <img class="formulaInl" alt="$\psi_t$" src="form_128.png"> is an vector of data-dependent regressors, and noise <img class="formulaInl" alt="$e_t$" src="form_32.png"> is assumed to be Normal distributed <img class="formulaInl" alt="$\mathcal{N}(0,1)$" src="form_129.png">.<p> 67 Special cases include: <ul> 75 68 <li>estimation of unknown mean and variance of a Gaussian density from independent samples.</li> 76 69 </ul> 77 <h2><a class="anchor" id="off">70 <h2><a class="anchor" name="off"> 78 71 Off-line estimation:</a></h2> 79 <p>This particular model belongs to the exponential family, hence it has conjugate distribution (i.e. both prior and posterior) of the Gauss-inverse-Wishart form. See [ref]</p> 80 <p>Estimation of this family can be achieved by accumulation of sufficient statistics. The sufficient statistics Gauss-inverse-Wishart density is composed of: </p> 81 <dl> 72 This particular model belongs to the exponential family, hence it has conjugate distribution (i.e. both prior and posterior) of the Gauss-inverse-Wishart form. See [ref]<p> 73 Estimation of this family can be achieved by accumulation of sufficient statistics. The sufficient statistics Gauss-inverse-Wishart density is composed of: <dl> 82 74 <dt>Information matrix </dt> 83 75 <dd>which is a sum of outer products <p class="formulaDsp"> 84 <img class="formulaDsp" alt="\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \]" src="form_130.png" />85 < /p>76 <img class="formulaDsp" alt="\[ V_t = \sum_{i=0}^{n} \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} \]" src="form_130.png"> 77 <p> 86 78 </dd> 87 79 <dt>"Degree of freedom" </dt> 88 80 <dd>which is an accumulator of number of data records <p class="formulaDsp"> 89 <img class="formulaDsp" alt="\[ \nu_t = \sum_{i=0}^{n} 1 \]" src="form_131.png" />90 < /p>81 <img class="formulaDsp" alt="\[ \nu_t = \sum_{i=0}^{n} 1 \]" src="form_131.png"> 82 <p> 91 83 </dd> 92 84 </dl> 93 <h2><a class="anchor" id="on">85 <h2><a class="anchor" name="on"> 94 86 On-line estimation</a></h2> 95 <p>For online estimation with stationary parameters can be easily achieved by collecting the sufficient statistics described above recursively.</p> 96 <p>Extension to non-stationaly parameters, <img class="formulaInl" alt="$ \theta_t , r_t $" src="form_132.png"/> can be achieved by operation called forgetting. This is an approximation of Bayesian filtering see [Kulhavy]. The resulting algorithm is defined by manipulation of sufficient statistics: </p> 97 <dl> 87 For online estimation with stationary parameters can be easily achieved by collecting the sufficient statistics described above recursively.<p> 88 Extension to non-stationaly parameters, <img class="formulaInl" alt="$ \theta_t , r_t $" src="form_132.png"> can be achieved by operation called forgetting. This is an approximation of Bayesian filtering see [Kulhavy]. The resulting algorithm is defined by manipulation of sufficient statistics: <dl> 98 89 <dt>Information matrix </dt> 99 90 <dd>which is a sum of outer products <p class="formulaDsp"> 100 <img class="formulaDsp" alt="\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \]" src="form_133.png" />101 < /p>91 <img class="formulaDsp" alt="\[ V_t = \phi V_{t-1} + \left[\begin{array}{c}y_{t}\\ \psi_{t}\end{array}\right] \begin{array}{c} [y_{t}',\,\psi_{t}']\\ \\\end{array} +(1-\phi) V_0 \]" src="form_133.png"> 92 <p> 102 93 </dd> 103 94 <dt>"Degree of freedom" </dt> 104 95 <dd>which is an accumulator of number of data records <p class="formulaDsp"> 105 <img class="formulaDsp" alt="\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \]" src="form_134.png" />106 < /p>96 <img class="formulaDsp" alt="\[ \nu_t = \phi \nu_{t-1} + 1 + (1-\phi) \nu_0 \]" src="form_134.png"> 97 <p> 107 98 </dd> 108 99 </dl> 109 <p>where <img class="formulaInl" alt="$ \phi $" src="form_135.png"/> is the forgetting factor, typically <img class="formulaInl" alt="$ \phi \in [0,1]$" src="form_136.png"/> roughly corresponding to the effective length of the exponential window by relation:</p> 110 <p class="formulaDsp"> 111 <img class="formulaDsp" alt="\[ \mathrm{win_length} = \frac{1}{1-\phi}\]" src="form_137.png"/> 112 </p> 113 <p> Hence, <img class="formulaInl" alt="$ \phi=0.9 $" src="form_138.png"/> corresponds to estimation on exponential window of effective length 10 samples.</p> 114 <p>Statistics <img class="formulaInl" alt="$ V_0 , \nu_0 $" src="form_139.png"/> are called alternative statistics, their role is to stabilize estimation. It is easy to show that for zero data, the statistics <img class="formulaInl" alt="$ V_t , \nu_t $" src="form_140.png"/> converge to the alternative statistics.</p> 115 <h2><a class="anchor" id="str"> 100 where <img class="formulaInl" alt="$ \phi $" src="form_135.png"> is the forgetting factor, typically <img class="formulaInl" alt="$ \phi \in [0,1]$" src="form_136.png"> roughly corresponding to the effective length of the exponential window by relation:<p class="formulaDsp"> 101 <img class="formulaDsp" alt="\[ \mathrm{win_length} = \frac{1}{1-\phi}\]" src="form_137.png"> 102 <p> 103 Hence, <img class="formulaInl" alt="$ \phi=0.9 $" src="form_138.png"> corresponds to estimation on exponential window of effective length 10 samples.<p> 104 Statistics <img class="formulaInl" alt="$ V_0 , \nu_0 $" src="form_139.png"> are called alternative statistics, their role is to stabilize estimation. It is easy to show that for zero data, the statistics <img class="formulaInl" alt="$ V_t , \nu_t $" src="form_140.png"> converge to the alternative statistics.<h2><a class="anchor" name="str"> 116 105 Structure estimation</a></h2> 117 <p>For this model, structure estimation is a form of model selection procedure. Specifically, we compare hypotheses that the data were generated by the full model with hypotheses that some regressors in vector <img class="formulaInl" alt="$\psi$" src="form_41.png"/> are redundant. The number of possible hypotheses is then the number of all possible combinations of all regressors.</p> 118 <p>However, due to property known as nesting in exponential family, these hypotheses can be tested using only the posterior statistics. (This property does no hold for forgetting <img class="formulaInl" alt="$ \phi<1 $" src="form_141.png"/>). Hence, for low dimensional problems, this can be done by a tree search (method <a class="el" href="classbdm_1_1ARX.html#a16b02ae03316751664c22d59d90c1e34" title="Brute force structure estimation.">bdm::ARX::structure_est()</a>). Or more sophisticated algorithm [ref Ludvik]</p> 119 <h2><a class="anchor" id="soft"> 106 For this model, structure estimation is a form of model selection procedure. Specifically, we compare hypotheses that the data were generated by the full model with hypotheses that some regressors in vector <img class="formulaInl" alt="$\psi$" src="form_41.png"> are redundant. The number of possible hypotheses is then the number of all possible combinations of all regressors.<p> 107 However, due to property known as nesting in exponential family, these hypotheses can be tested using only the posterior statistics. (This property does no hold for forgetting <img class="formulaInl" alt="$ \phi<1 $" src="form_141.png">). Hence, for low dimensional problems, this can be done by a tree search (method <a class="el" href="classbdm_1_1ARX.html#16b02ae03316751664c22d59d90c1e34" title="Brute force structure estimation.">bdm::ARX::structure_est()</a>). Or more sophisticated algorithm [ref Ludvik]<h2><a class="anchor" name="soft"> 120 108 Software Image</a></h2> 121 <p>Estimation of the ARX model is implemented in class <a class="el" href="classbdm_1_1ARX.html" title="Linear Autoregressive model with Gaussian noise.">bdm::ARX</a>. </p> 122 <ul> 109 Estimation of the ARX model is implemented in class <a class="el" href="classbdm_1_1ARX.html" title="Linear Autoregressive model with Gaussian noise.">bdm::ARX</a>. <ul> 123 110 <li>models from exponential family share some properties, these are encoded in class <a class="el" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">bdm::BMEF</a> which is the parent of ARX </li> 124 111 <li>one of the parameters of <a class="el" href="classbdm_1_1BMEF.html" title="Estimator for Exponential family.">bdm::BMEF</a> is the forgetting factor which is stored in attribute <code>frg</code>, </li> … … 126 113 <li>references to statistics of the internal <code>egiw</code> class, i.e. attributes <code>V</code> and <code>nu</code> are established for convenience.</li> 127 114 </ul> 128 <h2><a class="anchor" id="try">115 <h2><a class="anchor" name="try"> 129 116 How to try</a></h2> 130 <p>The best way to experiment with this object is to run matlab script <code>arx_test.m</code> located in directory <code></code>./library/tutorial. See <a class="el" href="arx_ui.html">Running experiment <code>estimator</code> with ARX data fields this page is out of date, as the user info concept has been changed</a> for detailed description.</p>117 The best way to experiment with this object is to run matlab script <code>arx_test.m</code> located in directory <code></code>./library/tutorial. See <a class="el" href="arx_ui.html">Running experiment <code>estimator</code> with ARX data fields</a> for detailed description.<p> 131 118 <ul> 132 119 <li>In default setup, the parameters converge to the true values as expected. </li> … … 135 122 </ul> 136 123 </div> 137 <hr size="1" /><address style="text-align: right;"><small>Generated on Sun Sep 27 00:49:05 2009 for mixpp by 124 <hr size="1"><address style="text-align: right;"><small>Generated on Wed Oct 7 17:34:45 2009 for mixpp by 138 125 <a href="http://www.doxygen.org/index.html"> 139 <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1</small></address>126 <img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.5.9 </small></address> 140 127 </body> 141 128 </html>