Changeset 661 for applications
- Timestamp:
- 10/15/09 00:10:19 (15 years ago)
- Location:
- applications
- Files:
-
- 4 modified
Legend:
- Unmodified
- Added
- Removed
-
applications/bdmtoolbox/mex/mexBM.cpp
r575 r661 70 70 //mexCallMATLAB(0, NULL, 1, &data, "dump"); 71 71 } 72 //! return correctly typed posterior (covariant return) 72 73 const mexEpdf& posterior() const { 73 74 return est; -
applications/bdmtoolbox/tutorial/userguide/frg_estim.m
r640 r661 28 28 E.n = 20; % number of particles 29 29 E.prior.class = 'eDirich'; % prior on non-linear part 30 E.prior.beta = [ 11]; %30 E.prior.beta = [2 1]; % 31 31 E.options ='logbounds,logll'; 32 32 E.name = 'MPF'; -
applications/dual/experiment/itermc.m
r650 r661 3 3 c.sigma = 0.1; 4 4 c.ndat = 50; 5 6 5 yr = 1; 7 6 … … 14 13 C2.class='ce_ctrl'; 15 14 C2.yr = yr; 16 C2.b0 = -0.;15 C2.b0 = 0; 17 16 C2.P0 = 1; 18 19 c.controller = C1;20 M1=iterativemc(c);21 22 loss_exact = sum((M1.y-yr*ones(size(M1.y))).^2)23 loss_theory = c.ndat*c.sigma^224 25 c.controller = C2;26 M2=iterativemc(c);27 28 loss_ce = sum((M2.y-yr*ones(size(M2.y))).^2)29 17 30 18 % monte carlo study 31 19 n=100; 32 20 losses=zeros(10,1); 33 c.controller = C1;34 21 seeds=32000*rand(1,n); 35 22 for i=1:n 23 c.b = randn(); 36 24 c.seed = seeds(i); 25 c.controller = C1; 37 26 Mmc=iterativemc(c); 38 27 losses(i) = sum((Mmc.y-yr*ones(size(Mmc.y))).^2); 28 29 c.controller = C2; 30 Mmc=iterativemc(c); 31 losses2(i) = sum((Mmc.y-yr*ones(size(Mmc.y))).^2); 39 32 end 40 [min(losses) mean(losses) max(losses)] 41 33 [min(losses) median(losses) max(losses)] 34 [min(losses2) median(losses2) max(losses2)] 35 -
applications/pmsm/cfg/mpf_test.cfg
r654 r661 10 10 {class="MPFpmsm"; 11 11 params = "pmsm107@cfg/zcu.cfg"; 12 dQ=[0.17, 0.17, 0.000 04, 1e-9];12 dQ=[0.17, 0.17, 0.0004, 1e-5]; 13 13 dR=[0.06, 0.06]; 14 14 prior={class="euni";high=[4];low=[-4];};