67 | | int len = length(in.d); |
68 | | int p1 = in.posit1 - 1; |
69 | | |
70 | | double i1 = -0.5*in.nu *log(in.d(p1)) -0.5*sum(log(in.d.right(len - p1 -1))); |
71 | | double i0 = -0.5*in.nu0*log(in.d0(p1)) -0.5*sum(log(in.d0.right(len - p1 -1))); |
72 | | return i1-i0; |
73 | | //DEBUGGing print: |
74 | | //fprintf('SELOGLIK1: str=%s loglik=%g\n', strPrintstr(in), l);*/ |
75 | | |
76 | | } |
77 | | |
78 | | |
79 | | void sedydr(mat &r,mat &f,double &Dr,double &Df,int R/*,int jl,int jh ,mat &rout, mat &fout, double &Drout, double &Dfoutint &kr*/){ |
80 | | /*SEDYDR dyadic reduction, performs transformation of sum of 2 dyads |
81 | | % |
82 | | % [rout, fout, Drout, Dfout, kr] = sedydr(r,f,Dr,Df,R,jl,jh); |
83 | | % [rout, fout, Drout, Dfout] = sedydr(r,f,Dr,Df,R); |
84 | | % |
85 | | % Description: dyadic reduction, performs transformation of sum of |
86 | | % 2 dyads r*Dr*r'+ f*Df*f' so that the element of r pointed by R is zeroed |
87 | | % |
88 | | % r : column vector of reduced dyad |
89 | | % f : column vector of reducing dyad |
90 | | % Dr : scalar with weight of reduced dyad |
91 | | % Df : scalar with weight of reducing dyad |
92 | | % R : scalar number giving 1 based index to the element of r, |
93 | | % which is to be reduced to |
94 | | % zero; the corresponding element of f is assumed to be 1. |
95 | | % jl : lower index of the range within which the dyads are |
96 | | % modified (can be omitted, then everything is updated) |
97 | | % jh : upper index of the range within which the dyads are |
98 | | % modified (can be omitted then everything is updated) |
99 | | % rout,fout,Drout,dfout : resulting two dyads |
100 | | % kr : coefficient used in the transformation of r |
101 | | % rnew = r + kr*f |
102 | | % |
103 | | % Description: dyadic reduction, performs transformation of sum of |
104 | | % 2 dyads r*Dr*r'+ f*Df*f' so that the element of r indexed by R is zeroed |
105 | | % Remark1: Constant mzero means machine zero and should be modified |
106 | | % according to the precision of particular machine |
107 | | % Remark2: jl and jh are, in fact, obsolete. It takes longer time to |
108 | | % compute them compared to plain version. The reason is that we |
109 | | % are doing vector operations in m-file. Other reason is that |
110 | | % we need to copy whole vector anyway. It can save half of time for |
111 | | % c-file, if you use it correctly. (please do tests) |
112 | | % |
113 | | % Note: naming: |
114 | | % se = structure estimation |
115 | | % dydr = dyadic reduction |
116 | | % |
117 | | % Original Fortran design: V. Peterka 17-7-89 |
118 | | % Modified for c-language: probably R. Kulhavy |
119 | | % Modified for m-language: L. Tesar 2/2003 |
120 | | % Updated: Feb 2003 |
121 | | % Project: post-ProDaCTool |
122 | | % Reference: none*/ |
123 | | |
124 | | /*if nargin<6; |
125 | | update_whole=1; |
126 | | else |
127 | | update_whole=0; |
128 | | end;*/ |
129 | | |
130 | | double mzero = 1e-32; |
131 | | |
132 | | if (Dr<mzero){ |
133 | | Dr=0; |
134 | | } |
135 | | |
136 | | double r0 = r(R,0); |
137 | | double kD = Df; |
138 | | double kr = r0 * Dr; |
139 | | |
140 | | |
141 | | Df = kD + r0 * kr; |
142 | | |
143 | | if (Df > mzero){ |
144 | | kD = kD / Df; |
145 | | kr = kr / Df; |
146 | | }else{ |
147 | | kD = 1; |
148 | | kr = 0; |
149 | | } |
150 | | |
151 | | Dr = Dr * kD; |
152 | | |
| 21 | int len = length ( in.d ); |
| 22 | int p1 = in.posit1 - 1; |
| 23 | |
| 24 | double i1 = -0.5 * in.nu * log ( in.d ( p1 ) ) - 0.5 * sum ( log ( in.d.right ( len - p1 - 1 ) ) ); |
| 25 | double i0 = -0.5 * in.nu0 * log ( in.d0 ( p1 ) ) - 0.5 * sum ( log ( in.d0.right ( len - p1 - 1 ) ) ); |
| 26 | return i1 - i0; |
| 27 | //DEBUGGing print: |
| 28 | //fprintf('SELOGLIK1: str=%s loglik=%g\n', strPrintstr(in), l);*/ |
| 29 | } |
| 30 | |
| 31 | |
| 32 | void sedydr ( mat &r, mat &f, double &Dr, double &Df, int R/*,int jl,int jh ,mat &rout, mat &fout, double &Drout, double &Dfoutint &kr*/ ) { |
| 33 | /*SEDYDR dyadic reduction, performs transformation of sum of 2 dyads |
| 34 | % |
| 35 | % [rout, fout, Drout, Dfout, kr] = sedydr(r,f,Dr,Df,R,jl,jh); |
| 36 | % [rout, fout, Drout, Dfout] = sedydr(r,f,Dr,Df,R); |
| 37 | % |
| 38 | % Description: dyadic reduction, performs transformation of sum of |
| 39 | % 2 dyads r*Dr*r'+ f*Df*f' so that the element of r pointed by R is zeroed |
| 40 | % |
| 41 | % r : column vector of reduced dyad |
| 42 | % f : column vector of reducing dyad |
| 43 | % Dr : scalar with weight of reduced dyad |
| 44 | % Df : scalar with weight of reducing dyad |
| 45 | % R : scalar number giving 1 based index to the element of r, |
| 46 | % which is to be reduced to |
| 47 | % zero; the corresponding element of f is assumed to be 1. |
| 48 | % jl : lower index of the range within which the dyads are |
| 49 | % modified (can be omitted, then everything is updated) |
| 50 | % jh : upper index of the range within which the dyads are |
| 51 | % modified (can be omitted then everything is updated) |
| 52 | % rout,fout,Drout,dfout : resulting two dyads |
| 53 | % kr : coefficient used in the transformation of r |
| 54 | % rnew = r + kr*f |
| 55 | % |
| 56 | % Description: dyadic reduction, performs transformation of sum of |
| 57 | % 2 dyads r*Dr*r'+ f*Df*f' so that the element of r indexed by R is zeroed |
| 58 | % Remark1: Constant mzero means machine zero and should be modified |
| 59 | % according to the precision of particular machine |
| 60 | % Remark2: jl and jh are, in fact, obsolete. It takes longer time to |
| 61 | % compute them compared to plain version. The reason is that we |
| 62 | % are doing vector operations in m-file. Other reason is that |
| 63 | % we need to copy whole vector anyway. It can save half of time for |
| 64 | % c-file, if you use it correctly. (please do tests) |
| 65 | % |
| 66 | % Note: naming: |
| 67 | % se = structure estimation |
| 68 | % dydr = dyadic reduction |
| 69 | % |
| 70 | % Original Fortran design: V. Peterka 17-7-89 |
| 71 | % Modified for c-language: probably R. Kulhavy |
| 72 | % Modified for m-language: L. Tesar 2/2003 |
| 73 | % Updated: Feb 2003 |
| 74 | % Project: post-ProDaCTool |
| 75 | % Reference: none*/ |
| 76 | |
| 77 | /*if nargin<6; |
| 78 | update_whole=1; |
| 79 | else |
| 80 | update_whole=0; |
| 81 | end;*/ |
| 82 | |
| 83 | double mzero = 1e-32; |
| 84 | |
| 85 | if ( Dr < mzero ) { |
| 86 | Dr = 0; |
| 87 | } |
| 88 | |
| 89 | double r0 = r ( R, 0 ); |
| 90 | double kD = Df; |
| 91 | double kr = r0 * Dr; |
| 92 | |
| 93 | |
| 94 | Df = kD + r0 * kr; |
| 95 | |
| 96 | if ( Df > mzero ) { |
| 97 | kD = kD / Df; |
| 98 | kr = kr / Df; |
| 99 | } else { |
| 100 | kD = 1; |
| 101 | kr = 0; |
| 102 | } |
| 103 | |
| 104 | Dr = Dr * kD; |
| 105 | |
160 | | /*else; |
161 | | rout = r; |
162 | | fout = f; |
163 | | rout(jl:jh) = r(jl:jh) - r0 * f(jl:jh); |
164 | | rout(R) = 0; |
165 | | fout(jl:jh) = f(jl:jh) + kr * rout(jl:jh); |
166 | | end;*/ |
167 | | } |
168 | | |
169 | | |
170 | | |
171 | | /*mat*/ void seswapudl(mat &L, vec &d , int i/*, vec &dout*/){ |
172 | | /*%SESWAPUDL swaps information matrix in decomposition V=L^T diag(d) L |
173 | | % |
174 | | % [Lout, dout] = seswapudl(L,d,i); |
175 | | % |
176 | | % L : lower triangular matrix with 1's on diagonal of the decomposistion |
177 | | % d : diagonal vector of diagonal matrix of the decomposition |
178 | | % i : index of line to be swapped with the next one |
179 | | % Lout : output lower triangular matrix |
180 | | % dout : output diagional vector of diagonal matrix D |
181 | | % |
182 | | % Description: |
183 | | % Lout' * diag(dout) * Lout = P(i,i+1) * L' * diag(d) * L * P(i,i+1); |
184 | | % |
185 | | % Where permutation matrix P(i,j) permutates columns if applied from the |
186 | | % right and line if applied from the left. |
187 | | % |
188 | | % Note: naming: |
189 | | % se = structure estimation |
190 | | % lite = light, simple |
191 | | % udl = U*D*L, or more precisely, L'*D*L, also called as ld |
192 | | % |
193 | | % Design : L. Tesar |
194 | | % Updated : Feb 2003 |
195 | | % Project : post-ProDaCTool |
196 | | % Reference: sedydr*/ |
197 | | |
198 | | int j = i+1; |
199 | | |
200 | | double pomd = d(i); |
201 | | d(i) = d(j); |
202 | | d(j) = pomd; |
203 | | |
204 | | /*vec pomL = L.get_row(i); |
205 | | L.set_row(i, L.get_row(j)); |
206 | | L.set_row(j,pomL);*/ |
207 | | |
208 | | L.swap_rows(i,j); |
209 | | L.swap_cols(i,j); |
210 | | |
211 | | /*pomL = L.get_col(i); |
212 | | L.set_col(i, L.get_col(j)); |
213 | | L.set_col(j,pomL);*/ |
214 | | |
| 113 | /*else; |
| 114 | rout = r; |
| 115 | fout = f; |
| 116 | rout(jl:jh) = r(jl:jh) - r0 * f(jl:jh); |
| 117 | rout(R) = 0; |
| 118 | fout(jl:jh) = f(jl:jh) + kr * rout(jl:jh); |
| 119 | end;*/ |
| 120 | } |
| 121 | |
| 122 | |
| 123 | |
| 124 | /*mat*/ void seswapudl ( mat &L, vec &d , int i/*, vec &dout*/ ) { |
| 125 | /*%SESWAPUDL swaps information matrix in decomposition V=L^T diag(d) L |
| 126 | % |
| 127 | % [Lout, dout] = seswapudl(L,d,i); |
| 128 | % |
| 129 | % L : lower triangular matrix with 1's on diagonal of the decomposistion |
| 130 | % d : diagonal vector of diagonal matrix of the decomposition |
| 131 | % i : index of line to be swapped with the next one |
| 132 | % Lout : output lower triangular matrix |
| 133 | % dout : output diagional vector of diagonal matrix D |
| 134 | % |
| 135 | % Description: |
| 136 | % Lout' * diag(dout) * Lout = P(i,i+1) * L' * diag(d) * L * P(i,i+1); |
| 137 | % |
| 138 | % Where permutation matrix P(i,j) permutates columns if applied from the |
| 139 | % right and line if applied from the left. |
| 140 | % |
| 141 | % Note: naming: |
| 142 | % se = structure estimation |
| 143 | % lite = light, simple |
| 144 | % udl = U*D*L, or more precisely, L'*D*L, also called as ld |
| 145 | % |
| 146 | % Design : L. Tesar |
| 147 | % Updated : Feb 2003 |
| 148 | % Project : post-ProDaCTool |
| 149 | % Reference: sedydr*/ |
| 150 | |
| 151 | int j = i + 1; |
| 152 | |
| 153 | double pomd = d ( i ); |
| 154 | d ( i ) = d ( j ); |
| 155 | d ( j ) = pomd; |
| 156 | |
| 157 | L.swap_rows ( i, j ); |
| 158 | L.swap_cols ( i, j ); |
| 159 | |
| 160 | |
270 | | int n_strL = length(in.strL); |
271 | | str_aux out = in; |
272 | | for (int i = 0; i < removed_elements.length();i++){ |
273 | | |
274 | | int f = removed_elements(i); |
275 | | int posit1 = (find(out.strL==1))(0); |
276 | | int positf = (find(out.strL==f))(0); |
277 | | int pom_strL; |
278 | | for (int g = positf-1; g >posit1 -1; g--) { |
279 | | //% BEGIN: We are swapping g and g+1 NOW!!!! |
280 | | seswapudl(out.L, out.d, g); |
281 | | seswapudl(out.L0, out.d0, g); |
282 | | |
283 | | pom_strL = out.strL(g); |
284 | | out.strL(g)= out.strL(g+1); |
285 | | out.strL(g+1) = pom_strL; |
286 | | |
287 | | //% END |
288 | | } |
289 | | } |
290 | | out.posit1 = (find(out.strL==1))(0)+1; |
291 | | out.strRgr = out.strL.right(n_strL - out.posit1); |
292 | | out.strMis = out.strL.left(out.posit1-1); |
293 | | str_bitres(out.bitstr,removed_elements,out.nbits); |
294 | | out.loglik = seloglik1(out); |
295 | | |
296 | | return out; |
297 | | } |
298 | | |
299 | | |
300 | | ivec setdiff(ivec a, ivec b){ |
301 | | ivec pos; |
302 | | |
303 | | for (int i = 0; i < b.length(); i++){ |
304 | | pos = find(a==b(i)); |
305 | | for (int j = 0; j < pos.length(); j++){ |
306 | | a.del(pos(j)-j); |
307 | | } |
308 | | } |
309 | | return a; |
310 | | } |
311 | | |
312 | | |
313 | | |
314 | | /* |
315 | | |
316 | | Array<str_aux> add_new(Array<str_aux> global_best,str_aux newone,int nbest){ |
| 199 | |
| 200 | int n_strL = length ( in.strL ); |
| 201 | str_aux out = in; |
| 202 | |
| 203 | for ( int i = 0; i < removed_elements.length(); i++ ) { |
| 204 | |
| 205 | int f = removed_elements ( i ); |
| 206 | int posit1 = ( find ( out.strL == 1 ) ) ( 0 ); |
| 207 | int positf = ( find ( out.strL == f ) ) ( 0 ); |
| 208 | for ( int g = positf - 1; g > posit1 - 1; g-- ) { |
| 209 | //% BEGIN: We are swapping g and g+1 NOW!!!! |
| 210 | seswapudl ( out.L, out.d, g ); |
| 211 | seswapudl ( out.L0, out.d0, g ); |
| 212 | |
| 213 | int pom_strL = out.strL ( g ); |
| 214 | out.strL ( g ) = out.strL ( g + 1 ); |
| 215 | out.strL ( g + 1 ) = pom_strL; |
| 216 | //% END |
| 217 | } |
| 218 | |
| 219 | |
| 220 | } |
| 221 | out.posit1 = ( find ( out.strL == 1 ) ) ( 0 ) + 1; |
| 222 | out.strRgr = out.strL.right ( n_strL - out.posit1 ); |
| 223 | out.strMis = out.strL.left ( out.posit1 - 1 ); |
| 224 | str_bitres ( out.bitstr, removed_elements, out.nbits ); |
| 225 | out.loglik = seloglik1 ( out ); |
| 226 | |
| 227 | return out; |
| 228 | } |
| 229 | |
| 230 | |
| 231 | ivec setdiff ( ivec a, ivec b ) { |
| 232 | ivec pos; |
| 233 | |
| 234 | for ( int i = 0; i < b.length(); i++ ) { |
| 235 | pos = find ( a == b ( i ) ); |
| 236 | for ( int j = 0; j < pos.length(); j++ ) { |
| 237 | a.del ( pos ( j ) - j ); |
| 238 | } |
| 239 | } |
| 240 | return a; |
| 241 | } |
| 242 | |
| 243 | |
| 244 | |
| 245 | |
| 246 | void add_new ( Array<str_aux> &global_best, str_aux newone, int nbest ) { |
319 | | |
320 | | Array<str_aux> global_best_out; |
321 | | if (global_best.length() >= nbest){ |
322 | | //logliks = [global_best.loglik]; |
323 | | |
324 | | vec logliks(1); |
325 | | logliks(0) = global_best(0).loglik; |
326 | | for (int j = 1; j < global_best.length(); j++) |
327 | | logliks = concat(logliks, global_best(j).loglik); |
328 | | |
329 | | int i, addit; |
330 | | double loglik = min(logliks, i); |
331 | | global_best_out = global_best; |
332 | | if (loglik < newone.loglik){ |
333 | | // if ~any(logliks == new.loglik); |
334 | | addit=1; |
335 | | |
336 | | |
337 | | |
338 | | if (newone.bitstr.length() == 1) { |
339 | | for (int j = 0; j < global_best.length(); j++){ |
340 | | for(int i = 0; i < global_best(j).bitstr.length(); i++){ |
341 | | |
342 | | if (newone.bitstr(0) == global_best(j).bitstr(i)){ |
343 | | addit = 0; |
344 | | break; |
345 | | } |
346 | | } |
347 | | } |
348 | | } |
349 | | if (addit){ |
350 | | global_best_out(i) = newone; |
351 | | // DEBUGging print: |
352 | | // fprintf('ADDED structure, add_new: %s, loglik=%g\n', strPrintstr(new), new.loglik); |
353 | | } |
354 | | } |
355 | | } |
356 | | else |
357 | | global_best_out = concat(global_best, newone); |
358 | | |
359 | | return global_best_out; |
360 | | |
361 | | } |
362 | | |
363 | | */ |
364 | | |
365 | | void add_new(Array<str_aux> &global_best,str_aux newone,int nbest){ |
366 | | // Eventually add to global best, but do not go over nbest values |
367 | | // Also avoids repeating things, which makes this function awfully slow |
368 | | |
369 | | int addit, i = 0; |
370 | | if (global_best.length() >= nbest){ |
371 | | //logliks = [global_best.loglik]; |
372 | | |
373 | | |
374 | | for (int j = 1; j < global_best.length(); j++){ |
375 | | if (global_best(j).loglik < global_best(i).loglik) { |
376 | | i = j; |
377 | | } |
378 | | } |
379 | | |
380 | | if (global_best(i).loglik < newone.loglik){ |
381 | | // if ~any(logliks == new.loglik); |
382 | | addit=1; |
383 | | |
384 | | |
385 | | //???????????????????????????????????????????? |
386 | | if (newone.bitstr.length() == 1) { |
387 | | for (int j = 0; j < global_best.length(); j++){ |
388 | | for(int i = 0; i < global_best(j).bitstr.length(); i++){ |
389 | | |
390 | | if (newone.bitstr(0) == global_best(j).bitstr(i)){ |
391 | | addit = 0; |
392 | | break; |
393 | | } |
394 | | } |
395 | | } |
396 | | } |
397 | | |
398 | | |
399 | | //????????????????????????????????????????????????? |
400 | | |
401 | | if (addit){ |
402 | | global_best(i) = newone; |
403 | | // DEBUGging print: |
404 | | // fprintf('ADDED structure, add_new: %s, loglik=%g\n', strPrintstr(new), new.loglik); |
405 | | } |
406 | | } |
407 | | } |
408 | | else |
409 | | global_best = concat(global_best, newone); |
410 | | |
411 | | } |
412 | | |
413 | | |
414 | | |
415 | | |
416 | | |
417 | | |
418 | | str_aux sestrinsert(str_aux in,ivec inserted_elements){ |
| 249 | |
| 250 | int addit, i = 0; |
| 251 | if ( global_best.length() >= nbest ) { |
| 252 | //logliks = [global_best.loglik]; |
| 253 | |
| 254 | for ( int j = 1; j < global_best.length(); j++ ) { |
| 255 | if ( global_best ( j ).loglik < global_best ( i ).loglik ) { |
| 256 | i = j; |
| 257 | } |
| 258 | } |
| 259 | if ( global_best ( i ).loglik < newone.loglik ) { |
| 260 | // if ~any(logliks == new.loglik); |
| 261 | addit = 1; |
| 262 | |
| 263 | |
| 264 | for (int j = 0; j < global_best.length(); j++){ |
| 265 | if (newone.bitstr == global_best(j).bitstr){ |
| 266 | addit = 0; |
| 267 | break; |
| 268 | } |
| 269 | } |
| 270 | if ( addit ) { |
| 271 | global_best ( i ) = newone; |
| 272 | // DEBUGging print: |
| 273 | // fprintf('ADDED structure, add_new: %s, loglik=%g\n', strPrintstr(new), new.loglik); |
| 274 | } |
| 275 | } |
| 276 | } else |
| 277 | global_best = concat ( global_best, newone ); |
| 278 | |
| 279 | } |
| 280 | |
| 281 | |
| 282 | |
| 283 | |
| 284 | |
| 285 | |
| 286 | str_aux sestrinsert ( str_aux in, ivec inserted_elements ) { |
420 | | int n_strL = in.strL.length(); |
421 | | str_aux out = in; |
422 | | for (int j = 0;j < inserted_elements.length(); j++){ |
423 | | int f = inserted_elements(j); |
424 | | int posit1 = (find(out.strL==1))(0); |
425 | | int positf = (find(out.strL==f))(0); |
426 | | for (int g = positf; g <= posit1-1; g++ ){ |
427 | | |
428 | | // BEGIN: We are swapping g and g+1 NOW!!!! |
429 | | seswapudl(out.L, out.d, g); |
430 | | seswapudl(out.L0, out.d0, g); |
431 | | |
432 | | |
433 | | int pom_strL = out.strL(g); |
434 | | out.strL(g)= out.strL(g+1); |
435 | | out.strL(g+1) = pom_strL; |
436 | | |
437 | | // END |
438 | | } |
439 | | } |
440 | | |
441 | | out.posit1 = (find(out.strL==1))(0)+1; |
442 | | out.strRgr = out.strL.right(n_strL - out.posit1); |
443 | | out.strMis = out.strL.left(out.posit1-1); |
444 | | str_bitset(out.bitstr,inserted_elements,out.nbits); |
445 | | |
446 | | out.loglik = seloglik1(out); |
447 | | |
448 | | |
449 | | |
450 | | return out; |
451 | | |
452 | | } |
453 | | |
454 | | double seloglik2(str_aux in){ |
| 288 | int n_strL = in.strL.length(); |
| 289 | str_aux out = in; |
| 290 | for ( int j = 0; j < inserted_elements.length(); j++ ) { |
| 291 | int f = inserted_elements ( j ); |
| 292 | int posit1 = ( find ( out.strL == 1 ) ) ( 0 ); |
| 293 | int positf = ( find ( out.strL == f ) ) ( 0 ); |
| 294 | for ( int g = positf; g <= posit1 - 1; g++ ) { |
| 295 | |
| 296 | // BEGIN: We are swapping g and g+1 NOW!!!! |
| 297 | seswapudl ( out.L, out.d, g ); |
| 298 | seswapudl ( out.L0, out.d0, g ); |
| 299 | |
| 300 | int pom_strL = out.strL ( g ); |
| 301 | out.strL ( g ) = out.strL ( g + 1 ); |
| 302 | out.strL ( g + 1 ) = pom_strL; |
| 303 | |
| 304 | // END |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | out.posit1 = ( find ( out.strL == 1 ) ) ( 0 ) + 1; |
| 309 | out.strRgr = out.strL.right ( n_strL - out.posit1 ); |
| 310 | out.strMis = out.strL.left ( out.posit1 - 1 ); |
| 311 | str_bitset ( out.bitstr, inserted_elements, out.nbits ); |
| 312 | out.loglik = seloglik1 ( out ); |
| 313 | |
| 314 | return out; |
| 315 | } |
| 316 | |
| 317 | double seloglik2 ( str_aux in ) { |
471 | | const mat &L = Ld._L(); |
472 | | const vec &d = Ld._D(); |
473 | | |
474 | | const mat &L0 = Ld0._L(); |
475 | | const vec &d0 = Ld0._D(); |
476 | | |
477 | | int n_data = d.length(); |
478 | | |
479 | | ivec belief_out = find(belief==4)+2; // we are avoiding to put this into regressor |
480 | | ivec belief_in = find(belief==1)+2; // we are instantly keeping this in regressor |
481 | | |
482 | | |
483 | | str_aux full; |
484 | | |
485 | | full.d0 = d0; |
486 | | full.nu0 = nu0; |
487 | | full.L0 = L0; |
488 | | full.L = L; |
489 | | full.d = d; |
490 | | |
491 | | |
492 | | |
493 | | /*full.d0 = "0.012360650875200 0.975779169502626 1.209840558439000"; |
494 | | |
495 | | full.L0 = "1.0000 0 0;" |
496 | | "0.999427690134298 1.0000 0;" |
497 | | "0.546994424043659 0.534335486953833 1.0000"; |
498 | | |
499 | | |
500 | | full.L = "1.0000 0 0;" |
501 | | "0.364376353850780 1.0000 0;" |
502 | | "1.222141096674815 1.286534510946323 1.0000"; |
503 | | |
504 | | full.d = "0.001610356837691 3.497566869589465 3.236640487818002"; |
505 | | */ |
506 | | |
507 | | fstream F; |
508 | | |
509 | | |
510 | | |
511 | | |
512 | | F.open("soubor3.txt", ios::in); |
513 | | F << setiosflags(ios::scientific); |
514 | | F << setprecision(16); |
515 | | F.flags(0x1); |
516 | | |
517 | | |
518 | | for (int i = 0; i < n_data ; i++){ |
519 | | F >> full.d0(i); |
520 | | } |
521 | | |
522 | | |
523 | | |
524 | | for (int i =0; i < n_data; i++){ |
525 | | for (int j = 0 ; j < n_data ; j++){ |
526 | | F >> full.L0(j,i); |
527 | | } |
528 | | } |
529 | | |
530 | | for (int i = 0; i < n_data ; i++){ |
531 | | F >> full.d(i); |
532 | | } |
533 | | |
534 | | |
535 | | for (int i =0; i < n_data; i++){ |
536 | | for (int j = 0 ; j < n_data ; j++){ |
537 | | F >> full.L(j,i); |
538 | | } |
539 | | } |
540 | | |
541 | | |
542 | | full.nu0 = nu0; |
543 | | full.nu = nu; |
544 | | full.strL = linspace(1,n_data); |
545 | | full.strRgr = linspace(2,n_data); |
546 | | full.strMis = ivec(0); |
547 | | full.posit1 = 1; |
548 | | full.bitstr.set_size(n_data-1); |
549 | | full.bitstr.clear(); |
550 | | str_bitset(full.bitstr,full.strRgr,full.nbits); |
551 | | //full.nbits = std::numeric_lim its<double>::digits-1; // number of bits available in double |
552 | | /*bvec in(n_data-1); |
553 | | in.clear(); |
554 | | full.bitstr = str_bitset(in,full.strRgr,full.nbits);*/ |
555 | | |
556 | | |
557 | | |
558 | | |
559 | | full.loglik = seloglik1(full); // % loglikelihood |
560 | | |
561 | | |
562 | | |
| 334 | const mat &L = Ld._L(); |
| 335 | const vec &d = Ld._D(); |
| 336 | |
| 337 | const mat &L0 = Ld0._L(); |
| 338 | const vec &d0 = Ld0._D(); |
| 339 | |
| 340 | int n_data = d.length(); |
| 341 | |
| 342 | ivec belief_out = find ( belief == 4 ) + 2; // we are avoiding to put this into regressor |
| 343 | ivec belief_in = find ( belief == 1 ) + 2; // we are instantly keeping this in regressor |
| 344 | |
| 345 | str_aux full; |
| 346 | |
| 347 | full.d0 = d0; |
| 348 | full.nu0 = nu0; |
| 349 | full.L0 = L0; |
| 350 | full.L = L; |
| 351 | full.d = d; |
| 352 | full.nu0 = nu0; |
| 353 | full.nu = nu; |
| 354 | full.strL = linspace ( 1, n_data ); |
| 355 | full.strRgr = linspace ( 2, n_data ); |
| 356 | full.strMis = ivec ( 0 ); |
| 357 | full.posit1 = 1; |
| 358 | full.bitstr.set_size ( n_data - 1 ); |
| 359 | full.bitstr.clear(); |
| 360 | str_bitset ( full.bitstr, full.strRgr, full.nbits ); |
| 361 | full.loglik = seloglik1 ( full ); // % loglikelihood |
605 | | str_aux best; |
606 | | for (int n_start = -1; n_start <= max_nrep; n_start++){ |
607 | | str_aux last,best; |
608 | | |
609 | | to = n_start+2; |
610 | | |
611 | | if (n_start == -1){ |
612 | | //% start from the full structure |
613 | | last = full; |
614 | | } |
615 | | else {if (n_start == 0) |
616 | | //% start from the empty structure |
617 | | last = empty; |
618 | | |
619 | | else{ |
620 | | //% start from random structure |
621 | | |
622 | | ivec last_str = find(to_bvec<int>(::concat<int>(0,floor_i(2*randu(n_data-1)))));// this creates random vector consisting of indexes, and sorted |
623 | | last = sestrremove(full,setdiff(all_str,::concat<int>(::concat<int>(1 ,last_str), empty.strRgr))); |
624 | | |
625 | | } |
626 | | } |
627 | | //% DEBUGging print: |
628 | | //%fprintf('STRUCTURE generated in loop %2i was %s\n', n_start, strPrintstr(last)); |
629 | | |
630 | | //% The loop is repeated until likelihood stops growing (break condition |
631 | | //% used at the end; |
632 | | |
633 | | |
634 | | while (1){ |
635 | | //% This structure is going to hold the best elements |
636 | | best = last; |
637 | | //% Nesting by removing elements (enpoorment) |
638 | | ivec removed_items = setdiff(last.strRgr,belief_in); |
639 | | |
640 | | ivec removed_item; |
641 | | str_aux newone; |
642 | | |
643 | | for (int i = 0; i < removed_items.length(); i++){ |
644 | | removed_item = vec_1(removed_items(i)); |
645 | | newone = sestrremove(last,removed_item);//????????????????????????????? |
646 | | if (nbest>1){ |
647 | | add_new(global_best,newone,nbest); |
648 | | } |
649 | | if (newone.loglik>best.loglik){ |
650 | | best = newone; |
651 | | } |
652 | | } |
653 | | //% Nesting by adding elements (enrichment) |
654 | | ivec added_items = setdiff(last.strMis,belief_out); |
655 | | ivec added_item; |
656 | | |
657 | | for (int j = 0; j < added_items.length(); j++){ |
658 | | added_item = vec_1(added_items(j)); |
659 | | newone = sestrinsert(last,added_item); |
660 | | if (nbest>1){ |
661 | | add_new(global_best,newone,nbest); |
662 | | } |
663 | | if (newone.loglik>best.loglik){ |
664 | | best = newone; |
665 | | } |
666 | | } |
667 | | |
668 | | |
669 | | |
670 | | |
671 | | |
672 | | //% Break condition if likelihood does not change. |
673 | | if (best.loglik <= last.loglik) |
674 | | break; |
675 | | else |
676 | | //% Making best structure last structure. |
677 | | last = best; |
678 | | |
679 | | |
680 | | } |
681 | | |
682 | | |
683 | | |
684 | | |
685 | | |
686 | | // % DEBUGging print: |
687 | | //%fprintf('STRUCTURE found (local maxima) in loop %2i was %s randun_seed=%11lu randun_counter=%4lu\n', n_start, strPrintstr(best), randn('seed'), RANDUN_COUNTER); |
688 | | |
689 | | //% Collecting of the best structure in case we don't need the second parameter |
690 | | if (nbest<=1){ |
691 | | if (best.loglik > global_best(0).loglik){ |
692 | | global_best = best; |
693 | | } |
694 | | } |
695 | | |
696 | | //% uniqueness of the structure found |
697 | | int append = 1; |
698 | | |
699 | | |
700 | | for(int j = 0; j < local_max.rows() ; j++){ |
701 | | if (best.bitstr == local_max.get_row(j)){ |
702 | | append = 0; |
703 | | break; |
704 | | } |
705 | | } |
706 | | |
707 | | |
708 | | if (append){ |
709 | | local_max.append_row(best.bitstr); |
710 | | muto = muto + 1; |
711 | | } |
712 | | |
713 | | //% stopping rule: |
714 | | double maxmuto = (to-order_k-1)/lambda-to+1; |
715 | | if (to>2){ |
716 | | if (maxmuto>=muto){ |
717 | | //% fprintf('*'); |
718 | | break; |
719 | | } |
720 | | } |
721 | | |
722 | | // do statistics if necessary: |
723 | | //if (nargout>=3){ |
724 | | mutos(to-1) = muto; |
725 | | maxmutos(to-1) = maxmuto; |
726 | | //} |
727 | | } |
728 | | |
| 399 | str_aux best; |
| 400 | for ( int n_start = -1; n_start <= max_nrep; n_start++ ) { |
| 401 | str_aux last, best; |
| 402 | |
| 403 | to = n_start + 2; |
| 404 | |
| 405 | if ( n_start == -1 ) { |
| 406 | //% start from the full structure |
| 407 | last = full; |
| 408 | } else { |
| 409 | if ( n_start == 0 ) |
| 410 | //% start from the empty structure |
| 411 | last = empty; |
| 412 | |
| 413 | else { |
| 414 | //% start from random structure |
| 415 | |
| 416 | |
| 417 | |
| 418 | ivec last_str = find ( to_bvec( concat( 0, floor_i ( 2 * randun ( n_data - 1 )) ) ) ) + 1;// this creates random vector consisting of indexes, and sorted |
| 419 | last = sestrremove ( full, setdiff ( all_str, concat( concat( 1 , last_str ), empty.strRgr ) ) ); |
| 420 | |
| 421 | } |
| 422 | } |
| 423 | //% DEBUGging print: |
| 424 | //%fprintf('STRUCTURE generated in loop %2i was %s\n', n_start, strPrintstr(last)); |
| 425 | |
| 426 | //% The loop is repeated until likelihood stops growing (break condition |
| 427 | //% used at the end; |
| 428 | |
| 429 | |
| 430 | while ( 1 ) { |
| 431 | //% This structure is going to hold the best elements |
| 432 | best = last; |
| 433 | //% Nesting by removing elements (enpoorment) |
| 434 | ivec removed_items = setdiff ( last.strRgr, belief_in ); |
| 435 | |
| 436 | ivec removed_item; |
| 437 | str_aux newone; |
| 438 | |
| 439 | for ( int i = 0; i < removed_items.length(); i++ ) { |
| 440 | removed_item = vec_1 ( removed_items ( i ) ); |
| 441 | newone = sestrremove ( last, removed_item ); |
| 442 | if ( nbest > 1 ) { |
| 443 | add_new ( global_best, newone, nbest ); |
| 444 | } |
| 445 | if ( newone.loglik > best.loglik ) { |
| 446 | best = newone; |
| 447 | } |
| 448 | } |
| 449 | //% Nesting by adding elements (enrichment) |
| 450 | ivec added_items = setdiff( last.strMis, belief_out ); |
| 451 | ivec added_item; |
| 452 | |
| 453 | for ( int j = 0; j < added_items.length(); j++ ) { |
| 454 | added_item = vec_1 ( added_items ( j ) ); |
| 455 | newone = sestrinsert ( last, added_item ); |
| 456 | if ( nbest > 1 ) { |
| 457 | add_new ( global_best, newone, nbest ); |
| 458 | } |
| 459 | if ( newone.loglik > best.loglik ) { |
| 460 | best = newone; |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | |
| 465 | //% Break condition if likelihood does not change. |
| 466 | if ( best.loglik <= last.loglik ) |
| 467 | break; |
| 468 | else |
| 469 | //% Making best structure last structure. |
| 470 | last = best; |
| 471 | } |
| 472 | |
| 473 | |
| 474 | // % DEBUGging print: |
| 475 | //%fprintf('STRUCTURE found (local maxima) in loop %2i was %s randun_seed=%11lu randun_counter=%4lu\n', n_start, strPrintstr(best), randn('seed'), RANDUN_COUNTER); |
| 476 | |
| 477 | //% Collecting of the best structure in case we don't need the second parameter |
| 478 | if ( nbest <= 1 ) { |
| 479 | if ( best.loglik > global_best ( 0 ).loglik ) { |
| 480 | global_best = best; |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | //% uniqueness of the structure found |
| 485 | int append = 1; |
| 486 | |
| 487 | for ( int j = 0; j < local_max.rows() ; j++ ) { |
| 488 | if ( best.bitstr == local_max.get_row ( j ) ) { |
| 489 | append = 0; |
| 490 | break; |
| 491 | } |
| 492 | } |
| 493 | |
| 494 | |
| 495 | if ( append ) { |
| 496 | local_max.append_row ( best.bitstr ); |
| 497 | muto = muto + 1; |
| 498 | } |
| 499 | |
| 500 | //% stopping rule: |
| 501 | double maxmuto = ( to - order_k - 1 ) / lambda - to + 1; |
| 502 | if ( to > 2 ) { |
| 503 | if ( maxmuto >= muto ) { |
| 504 | //% fprintf('*'); |
| 505 | break; |
| 506 | } |
| 507 | } |
| 508 | |
| 509 | // do statistics if necessary: |
| 510 | //if (nargout>=3){ |
| 511 | mutos ( to - 1 ) = muto; |
| 512 | maxmutos ( to - 1 ) = maxmuto; |
| 513 | //} |
| 514 | } |
| 515 | |
781 | | return best.strRgr; |
782 | | |
783 | | } |
784 | | |
785 | | #ifdef LADIM |
786 | | //% randun seed stuff: |
787 | | //%randn('seed',SEED); |
788 | | |
789 | | //% --------------------- END of MAIN program -------------------- |
790 | | |
791 | | % This is needed for bitstr manipulations |
792 | | /*function out = str_bitset(in,ns,nbits) |
793 | | out = in; |
794 | | for n = ns; |
795 | | index = 1+floor((n-2)/nbits); |
796 | | bitindex = 1+rem(n-2,nbits); |
797 | | out(index) = bitset(out(index),bitindex); |
798 | | end; |
799 | | function out = str_bitres(in,ns,nbits) |
800 | | out = in; |
801 | | for n = ns; |
802 | | index = 1+floor((n-2)/nbits); |
803 | | bitindex = 1+rem(n-2,nbits); |
804 | | mask = bitset(0,bitindex); |
805 | | out(index) = bitxor(bitor(out(index),mask),mask); |
806 | | end;*/ |
807 | | |
808 | | function out = strPrintstr(in) |
809 | | out = '0'; |
810 | | nbits = in.nbits; |
811 | | for f = 2:length(in.d0); |
812 | | index = 1+floor((f-2)/nbits); |
813 | | bitindex = 1+rem(f-2,nbits); |
814 | | if bitget(in.bitstr(index),bitindex); |
815 | | out(f) = '1'; |
816 | | else; |
817 | | out(f) = '0'; |
818 | | end; |
819 | | end; |
820 | | |
821 | | /*function global_best_out = add_new(global_best,new,nbest) |
822 | | % Eventually add to global best, but do not go over nbest values |
823 | | % Also avoids repeating things, which makes this function awfully slow |
824 | | if length(global_best)>=nbest; |
825 | | logliks = [global_best.loglik]; |
826 | | [loglik i] = min(logliks); |
827 | | global_best_out = global_best; |
828 | | if loglik<new.loglik; |
829 | | % if ~any(logliks == new.loglik); |
830 | | addit=1; |
831 | | for f = [global_best.bitstr]; |
832 | | if f == new.bitstr; |
833 | | addit = 0; |
834 | | break; |
835 | | end; |
836 | | end; |
837 | | if addit; |
838 | | global_best_out(i) = new; |
839 | | % DEBUGging print: |
840 | | % fprintf('ADDED structure, add_new: %s, loglik=%g\n', strPrintstr(new), new.loglik); |
841 | | end; |
842 | | end; |
843 | | else; |
844 | | global_best_out = [global_best new]; |
845 | | end;*/ |
846 | | |
847 | | /*function out = sestrremove(in,removed_elements); |
848 | | % Removes elements from regressor |
849 | | n_strL = length(in.strL); |
850 | | out = in; |
851 | | for f=removed_elements; |
852 | | posit1 = find(out.strL==1); |
853 | | positf = find(out.strL==f); |
854 | | for g=(positf-1):-1:posit1; |
855 | | % BEGIN: We are swapping g and g+1 NOW!!!! |
856 | | [out.L, out.d] = seswapudl(out.L, out.d, g); |
857 | | [out.L0, out.d0] = seswapudl(out.L0, out.d0, g); |
858 | | out.strL([g g+1]) = [out.strL(g+1) out.strL(g)]; |
859 | | % END |
860 | | end; |
861 | | end; |
862 | | out.posit1 = find(out.strL==1); |
863 | | out.strRgr = out.strL((out.posit1+1):n_strL); |
864 | | out.strMis = out.strL(1:(out.posit1-1)); |
865 | | out.bitstr = str_bitres(out.bitstr,removed_elements,out.nbits); |
866 | | out.loglik = seloglik1(out);*/ |
867 | | |
868 | | /*function out = sestrinsert(in,inserted_elements); |
869 | | % Moves elements into regressor |
870 | | n_strL = length(in.strL); |
871 | | out = in; |
872 | | for f=inserted_elements; |
873 | | posit1 = find(out.strL==1); |
874 | | positf = find(out.strL==f); |
875 | | for g=positf:(posit1-1); |
876 | | % BEGIN: We are swapping g and g+1 NOW!!!! |
877 | | [out.L, out.d] = seswapudl(out.L, out.d, g); |
878 | | [out.L0, out.d0] = seswapudl(out.L0, out.d0, g); |
879 | | out.strL([g g+1]) = [out.strL(g+1) out.strL(g)]; |
880 | | % END |
881 | | end; |
882 | | end; |
883 | | out.posit1 = find(out.strL==1); |
884 | | out.strRgr = out.strL((out.posit1+1):n_strL); |
885 | | out.strMis = out.strL(1:(out.posit1-1)); |
886 | | out.bitstr = str_bitset(out.bitstr,inserted_elements,out.nbits); |
887 | | out.loglik = seloglik1(out);*/ |
888 | | |
889 | | % |
890 | | % seloglik_real = seloglik1 + seloglik2 |
891 | | % |
892 | | |
893 | | /*function l = seloglik1(in) |
894 | | % This is the loglikelihood (non-constant part) - this should be used in |
895 | | % frequent computation |
896 | | len = length(in.d); |
897 | | p1 = in.posit1; |
898 | | |
899 | | i1 = -0.5*in.nu *log(in.d (p1)) -0.5*sum(log(in.d ((p1+1):len))); |
900 | | i0 = -0.5*in.nu0*log(in.d0(p1)) -0.5*sum(log(in.d0((p1+1):len))); |
901 | | l = i1-i0; |
902 | | |
903 | | % DEBUGGing print: |
904 | | % fprintf('SELOGLIK1: str=%s loglik=%g\n', strPrintstr(in), l);*/ |
905 | | |
906 | | |
907 | | function l = seloglik2(in) |
908 | | % This is the loglikelihood (constant part) - this should be added to |
909 | | % everything at the end. It needs some computation, so it is useless to |
910 | | % make it for all the stuff |
911 | | logpi = log(pi); |
912 | | |
913 | | i1 = gammaln(in.nu /2) - 0.5*in.nu *logpi; |
914 | | i0 = gammaln(in.nu0/2) - 0.5*in.nu0*logpi; |
915 | | l = i1-i0; |
916 | | |
917 | | |
918 | | /*function [Lout, dout] = seswapudl(L,d,i); |
919 | | %SESWAPUDL swaps information matrix in decomposition V=L^T diag(d) L |
920 | | % |
921 | | % [Lout, dout] = seswapudl(L,d,i); |
922 | | % |
923 | | % L : lower triangular matrix with 1's on diagonal of the decomposistion |
924 | | % d : diagonal vector of diagonal matrix of the decomposition |
925 | | % i : index of line to be swapped with the next one |
926 | | % Lout : output lower triangular matrix |
927 | | % dout : output diagional vector of diagonal matrix D |
928 | | % |
929 | | % Description: |
930 | | % Lout' * diag(dout) * Lout = P(i,i+1) * L' * diag(d) * L * P(i,i+1); |
931 | | % |
932 | | % Where permutation matrix P(i,j) permutates columns if applied from the |
933 | | % right and line if applied from the left. |
934 | | % |
935 | | % Note: naming: |
936 | | % se = structure estimation |
937 | | % lite = light, simple |
938 | | % udl = U*D*L, or more precisely, L'*D*L, also called as ld |
939 | | % |
940 | | % Design : L. Tesar |
941 | | % Updated : Feb 2003 |
942 | | % Project : post-ProDaCTool |
943 | | % Reference: sedydr |
944 | | |
945 | | j = i+1; |
946 | | |
947 | | pomd = d(i); |
948 | | d(i) = d(j); |
949 | | d(j) = pomd; |
950 | | |
951 | | pomL = L(i,:); |
952 | | L(i,:) = L(j,:); |
953 | | L(j,:) = pomL; |
954 | | |
955 | | pomL = L(:,i); |
956 | | L(:,i) = L(:,j); |
957 | | L(:,j) = pomL; |
958 | | |
959 | | % We must be working with LINES of matrix L ! |
960 | | |
961 | | r = L(i,:)'; |
962 | | f = L(j,:)'; |
963 | | Dr = d(i); |
964 | | Df = d(j); |
965 | | |
966 | | [r, f, Dr, Df] = sedydr(r, f, Dr, Df, j); |
967 | | |
968 | | r0 = r(i); |
969 | | Dr = Dr*r0*r0; |
970 | | r = r/r0; |
971 | | |
972 | | L(i,:) = r'; |
973 | | L(j,:) = f'; |
974 | | d(i) = Dr; |
975 | | d(j) = Df; |
976 | | |
977 | | L(i,i) = 1; |
978 | | L(j,j) = 1; |
979 | | |
980 | | Lout = L; |
981 | | dout = d;*/ |
982 | | |
983 | | /*function [rout, fout, Drout, Dfout, kr] = sedydr(r,f,Dr,Df,R,jl,jh); |
984 | | %SEDYDR dyadic reduction, performs transformation of sum of 2 dyads |
985 | | % |
986 | | % [rout, fout, Drout, Dfout, kr] = sedydr(r,f,Dr,Df,R,jl,jh); |
987 | | % [rout, fout, Drout, Dfout] = sedydr(r,f,Dr,Df,R); |
988 | | % |
989 | | % Description: dyadic reduction, performs transformation of sum of |
990 | | % 2 dyads r*Dr*r'+ f*Df*f' so that the element of r pointed by R is zeroed |
991 | | % |
992 | | % r : column vector of reduced dyad |
993 | | % f : column vector of reducing dyad |
994 | | % Dr : scalar with weight of reduced dyad |
995 | | % Df : scalar with weight of reducing dyad |
996 | | % R : scalar number giving 1 based index to the element of r, |
997 | | % which is to be reduced to |
998 | | % zero; the corresponding element of f is assumed to be 1. |
999 | | % jl : lower index of the range within which the dyads are |
1000 | | % modified (can be omitted, then everything is updated) |
1001 | | % jh : upper index of the range within which the dyads are |
1002 | | % modified (can be omitted then everything is updated) |
1003 | | % rout,fout,Drout,dfout : resulting two dyads |
1004 | | % kr : coefficient used in the transformation of r |
1005 | | % rnew = r + kr*f |
1006 | | % |
1007 | | % Description: dyadic reduction, performs transformation of sum of |
1008 | | % 2 dyads r*Dr*r'+ f*Df*f' so that the element of r indexed by R is zeroed |
1009 | | % Remark1: Constant mzero means machine zero and should be modified |
1010 | | % according to the precision of particular machine |
1011 | | % Remark2: jl and jh are, in fact, obsolete. It takes longer time to |
1012 | | % compute them compared to plain version. The reason is that we |
1013 | | % are doing vector operations in m-file. Other reason is that |
1014 | | % we need to copy whole vector anyway. It can save half of time for |
1015 | | % c-file, if you use it correctly. (please do tests) |
1016 | | % |
1017 | | % Note: naming: |
1018 | | % se = structure estimation |
1019 | | % dydr = dyadic reduction |
1020 | | % |
1021 | | % Original Fortran design: V. Peterka 17-7-89 |
1022 | | % Modified for c-language: probably R. Kulhavy |
1023 | | % Modified for m-language: L. Tesar 2/2003 |
1024 | | % Updated: Feb 2003 |
1025 | | % Project: post-ProDaCTool |
1026 | | % Reference: none |
1027 | | |
1028 | | if nargin<6; |
1029 | | update_whole=1; |
1030 | | else |
1031 | | update_whole=0; |
1032 | | end; |
1033 | | |
1034 | | mzero = 1e-32; |
1035 | | |
1036 | | if Dr<mzero; |
1037 | | Dr=0; |
1038 | | end; |
1039 | | |
1040 | | r0 = r(R); |
1041 | | kD = Df; |
1042 | | kr = r0 * Dr; |
1043 | | Dfout = kD + r0 * kr; |
1044 | | |
1045 | | if Dfout > mzero; |
1046 | | kD = kD / Dfout; |
1047 | | kr = kr / Dfout; |
1048 | | else; |
1049 | | kD = 1; |
1050 | | kr = 0; |
1051 | | end; |
1052 | | |
1053 | | Drout = Dr * kD; |
1054 | | |
1055 | | % Try to uncomment marked stuff (*) if in numerical problems, but I don't |
1056 | | % think it can make any difference for normal healthy floating-point unit |
1057 | | if update_whole; |
1058 | | rout = r - r0*f; |
1059 | | % rout(R) = 0; % * could be needed for some nonsense cases(or numeric reasons?), normally not |
1060 | | fout = f + kr*rout; |
1061 | | % fout(R) = 1; % * could be needed for some nonsense cases(or numeric reasons?), normally not |
1062 | | else; |
1063 | | rout = r; |
1064 | | fout = f; |
1065 | | rout(jl:jh) = r(jl:jh) - r0 * f(jl:jh); |
1066 | | rout(R) = 0; |
1067 | | fout(jl:jh) = f(jl:jh) + kr * rout(jl:jh); |
1068 | | end;*/ |
1069 | | |
1070 | | |
1071 | | |
1072 | | #endif |
1073 | | |
1074 | | |
1075 | | } |
1076 | | |
| 559 | return best.strRgr; |
| 560 | |
| 561 | } |
| 562 | |
| 563 | |
| 564 | |
| 565 | |
| 566 | |
| 567 | |
| 568 | } |
| 569 | |