- Timestamp:
- 11/25/09 18:02:21 (15 years ago)
- Location:
- library/bdm
- Files:
-
- 10 modified
Legend:
- Unmodified
- Added
- Removed
-
library/bdm/estim/kalman.cpp
r737 r739 150 150 } 151 151 152 void StateCanonical::connect_mlnorm ( const mlnorm<fsqmat> &ml ) { 153 //get ids of yrv 154 const RV &yrv = ml._rv(); 155 //need to determine u_t - it is all in _rvc that is not in ml._rv() 156 RV rgr0 = ml._rvc().remove_time(); 157 RV urv = rgr0.subt ( yrv ); 158 159 //We can do only 1d now... :( 160 bdm_assert ( yrv._dsize() == 1, "Only for SISO so far..." ); 161 162 // create names for 163 RV xrv; //empty 164 RV Crv; //empty 165 int td = ml._rvc().mint(); 166 // assuming strictly proper function!!! 167 for ( int t = -1; t >= td; t-- ) { 168 xrv.add ( yrv.copy_t ( t ) ); 169 Crv.add ( urv.copy_t ( t ) ); 170 } 171 172 // get mapp 173 th2A.set_connection ( xrv, ml._rvc() ); 174 th2C.set_connection ( Crv, ml._rvc() ); 175 th2D.set_connection ( urv, ml._rvc() ); 176 177 //set matrix sizes 178 this->A = zeros ( xrv._dsize(), xrv._dsize() ); 179 for ( int j = 1; j < xrv._dsize(); j++ ) { 180 A ( j, j - 1 ) = 1.0; // off diagonal 181 } 182 this->B = zeros ( xrv._dsize(), 1 ); 183 this->B ( 0 ) = 1.0; 184 this->C = zeros ( 1, xrv._dsize() ); 185 this->D = zeros ( 1, urv._dsize() ); 186 this->Q = zeros ( xrv._dsize(), xrv._dsize() ); 187 // R is set by update 188 189 //set cache 190 this->A1row = zeros ( xrv._dsize() ); 191 this->C1row = zeros ( xrv._dsize() ); 192 this->D1row = zeros ( urv._dsize() ); 193 194 update_from ( ml ); 195 validate(); 196 }; 197 198 void StateCanonical::update_from ( const mlnorm<fsqmat> &ml ) { 199 200 vec theta = ml._A().get_row ( 0 ); // this 201 202 th2A.filldown ( theta, A1row ); 203 th2C.filldown ( theta, C1row ); 204 th2D.filldown ( theta, D1row ); 205 206 R = ml._R(); 207 208 A.set_row ( 0, A1row ); 209 C.set_row ( 0, C1row + D1row ( 0 ) *A1row ); 210 D.set_row ( 0, D1row ); 211 } 212 213 void StateFromARX::connect_mlnorm ( const mlnorm<chmat> &ml, RV &xrv, RV &urv ) { 214 //get ids of yrv 215 const RV &yrv = ml._rv(); 216 //need to determine u_t - it is all in _rvc that is not in ml._rv() 217 const RV &rgr = ml._rvc(); 218 RV rgr0 = rgr.remove_time(); 219 urv = rgr0.subt ( yrv ); 220 221 // create names for state variables 222 xrv = yrv; 223 224 int y_multiplicity = -rgr.mint ( yrv ); 225 int y_block_size = yrv.length() * ( y_multiplicity ); // current yt + all delayed yts 226 for ( int m = 0; m < y_multiplicity - 1; m++ ) { // ========= -1 is important see arx2statespace_notes 227 xrv.add ( yrv.copy_t ( -m - 1 ) ); //add delayed yt 228 } 229 //! temporary RV for connection to ml.rvc, since notation of xrv and ml.rvc does not match 230 RV xrv_ml = xrv.copy_t ( -1 ); 231 232 // add regressors 233 ivec u_block_sizes ( urv.length() ); // no_blocks = yt + unique rgr 234 for ( int r = 0; r < urv.length(); r++ ) { 235 RV R = urv.subselect ( vec_1 ( r ) ); //non-delayed element of rgr 236 int r_size = urv.size ( r ); 237 int r_multiplicity = -rgr.mint ( R ); 238 u_block_sizes ( r ) = r_size * r_multiplicity ; 239 for ( int m = 0; m < r_multiplicity; m++ ) { 240 xrv.add ( R.copy_t ( -m - 1 ) ); //add delayed yt 241 xrv_ml.add ( R.copy_t ( -m - 1 ) ); //add delayed yt 242 } 243 } 244 // add constant 245 if ( any ( ml._mu_const() != 0.0 ) ) { 246 have_constant = true; 247 xrv.add ( RV ( "bdm_reserved_constant_one", 1 ) ); 248 } else { 249 have_constant = false; 250 } 251 252 253 // get mapp 254 th2A.set_connection ( xrv_ml, ml._rvc() ); 255 th2B.set_connection ( urv, ml._rvc() ); 256 257 //set matrix sizes 258 this->A = zeros ( xrv._dsize(), xrv._dsize() ); 259 //create y block 260 diagonal_part ( this->A, yrv._dsize(), 0, y_block_size - yrv._dsize() ); 261 262 this->B = zeros ( xrv._dsize(), urv._dsize() ); 263 //add diagonals for rgr 264 int active_x = y_block_size; 265 for ( int r = 0; r < urv.length(); r++ ) { 266 diagonal_part ( this->A, active_x + urv.size ( r ), active_x, u_block_sizes ( r ) - urv.size ( r ) ); 267 this->B.set_submatrix ( active_x, 0, eye ( urv.size ( r ) ) ); 268 active_x += u_block_sizes ( r ); 269 } 270 this->C = zeros ( yrv._dsize(), xrv._dsize() ); 271 this->C.set_submatrix ( 0, 0, eye ( yrv._dsize() ) ); 272 this->D = zeros ( yrv._dsize(), urv._dsize() ); 273 this->R.setCh ( zeros ( yrv._dsize(), yrv._dsize() ) ); 274 this->Q.setCh ( zeros ( xrv._dsize(), xrv._dsize() ) ); 275 // Q is set by update 276 277 update_from ( ml ); 278 validate(); 279 } 280 281 void StateFromARX::update_from ( const mlnorm<chmat> &ml ) { 282 vec Arow = zeros ( A.cols() ); 283 vec Brow = zeros ( B.cols() ); 284 // ROW- WISE EVALUATION ===== 285 for ( int i = 0; i < ml._rv()._dsize(); i++ ) { 286 287 vec theta = ml._A().get_row ( i ); 288 289 th2A.filldown ( theta, Arow ); 290 if ( have_constant ) { 291 // constant is always at the end no need for datalink 292 Arow ( A.cols() - 1 ) = ml._mu_const() ( i ); 293 } 294 this->A.set_row ( i, Arow ); 295 296 th2B.filldown ( theta, Brow ); 297 this->B.set_row ( i, Brow ); 298 } 299 this->Q._Ch().set_submatrix ( 0, 0, ml.__R()._Ch() ); 300 301 } 152 302 153 303 -
library/bdm/estim/kalman.h
r737 r739 457 457 public: 458 458 //! set up this object to match given mlnorm 459 void connect_mlnorm ( const mlnorm<fsqmat> &ml ) { 460 //get ids of yrv 461 const RV &yrv = ml._rv(); 462 //need to determine u_t - it is all in _rvc that is not in ml._rv() 463 RV rgr0 = ml._rvc().remove_time(); 464 RV urv = rgr0.subt ( yrv ); 465 466 //We can do only 1d now... :( 467 bdm_assert ( yrv._dsize() == 1, "Only for SISO so far..." ); 468 469 // create names for 470 RV xrv; //empty 471 RV Crv; //empty 472 int td = ml._rvc().mint(); 473 // assuming strictly proper function!!! 474 for ( int t = -1; t >= td; t-- ) { 475 xrv.add ( yrv.copy_t ( t ) ); 476 Crv.add ( urv.copy_t ( t ) ); 477 } 478 479 // get mapp 480 th2A.set_connection ( xrv, ml._rvc() ); 481 th2C.set_connection ( Crv, ml._rvc() ); 482 th2D.set_connection ( urv, ml._rvc() ); 483 484 //set matrix sizes 485 this->A = zeros ( xrv._dsize(), xrv._dsize() ); 486 for ( int j = 1; j < xrv._dsize(); j++ ) { 487 A ( j, j - 1 ) = 1.0; // off diagonal 488 } 489 this->B = zeros ( xrv._dsize(), 1 ); 490 this->B ( 0 ) = 1.0; 491 this->C = zeros ( 1, xrv._dsize() ); 492 this->D = zeros ( 1, urv._dsize() ); 493 this->Q = zeros ( xrv._dsize(), xrv._dsize() ); 494 // R is set by update 495 496 //set cache 497 this->A1row = zeros ( xrv._dsize() ); 498 this->C1row = zeros ( xrv._dsize() ); 499 this->D1row = zeros ( urv._dsize() ); 500 501 update_from ( ml ); 502 validate(); 503 }; 459 void connect_mlnorm ( const mlnorm<fsqmat> &ml ); 460 504 461 //! fast function to update parameters from ml - not checked for compatibility!! 505 void update_from ( const mlnorm<fsqmat> &ml ) { 506 507 vec theta = ml._A().get_row ( 0 ); // this 508 509 th2A.filldown ( theta, A1row ); 510 th2C.filldown ( theta, C1row ); 511 th2D.filldown ( theta, D1row ); 512 513 R = ml._R(); 514 515 A.set_row ( 0, A1row ); 516 C.set_row ( 0, C1row + D1row ( 0 ) *A1row ); 517 D.set_row ( 0, D1row ); 518 519 } 462 void update_from ( const mlnorm<fsqmat> &ml ); 520 463 }; 521 464 /*! … … 553 496 //!While mlnorm typically assumes that \f$ u_t \rightarrow y_t \f$ in state space it is \f$ u_{t-1} \rightarrow y_t \f$ 554 497 //! For consequences in notation of internal variable xt see arx2statespace_notes.lyx. 555 void connect_mlnorm ( const mlnorm<chmat> &ml, RV &xrv, RV &urv ) { 556 557 //get ids of yrv 558 const RV &yrv = ml._rv(); 559 //need to determine u_t - it is all in _rvc that is not in ml._rv() 560 const RV &rgr = ml._rvc(); 561 RV rgr0 = rgr.remove_time(); 562 urv = rgr0.subt ( yrv ); 563 564 // create names for state variables 565 xrv = yrv; 566 567 int y_multiplicity = -rgr.mint ( yrv ); 568 int y_block_size = yrv.length() * ( y_multiplicity ); // current yt + all delayed yts 569 for ( int m = 0; m < y_multiplicity - 1; m++ ) { // ========= -1 is important see arx2statespace_notes 570 xrv.add ( yrv.copy_t ( -m - 1 ) ); //add delayed yt 571 } 572 //! temporary RV for connection to ml.rvc, since notation of xrv and ml.rvc does not match 573 RV xrv_ml = xrv.copy_t ( -1 ); 574 575 // add regressors 576 ivec u_block_sizes ( urv.length() ); // no_blocks = yt + unique rgr 577 for ( int r = 0; r < urv.length(); r++ ) { 578 RV R = urv.subselect ( vec_1 ( r ) ); //non-delayed element of rgr 579 int r_size = urv.size ( r ); 580 int r_multiplicity = -rgr.mint ( R ); 581 u_block_sizes ( r ) = r_size * r_multiplicity ; 582 for ( int m = 0; m < r_multiplicity; m++ ) { 583 xrv.add ( R.copy_t ( -m - 1 ) ); //add delayed yt 584 xrv_ml.add ( R.copy_t ( -m - 1 ) ); //add delayed yt 585 } 586 } 587 // add constant 588 if ( any ( ml._mu_const() != 0.0 ) ) { 589 have_constant = true; 590 xrv.add ( RV ( "bdm_reserved_constant_one", 1 ) ); 591 } else { 592 have_constant = false; 593 } 594 595 596 // get mapp 597 th2A.set_connection ( xrv_ml, ml._rvc() ); 598 th2B.set_connection ( urv, ml._rvc() ); 599 600 //set matrix sizes 601 this->A = zeros ( xrv._dsize(), xrv._dsize() ); 602 //create y block 603 diagonal_part ( this->A, yrv._dsize(), 0, y_block_size - yrv._dsize() ); 604 605 this->B = zeros ( xrv._dsize(), urv._dsize() ); 606 //add diagonals for rgr 607 int active_x = y_block_size; 608 for ( int r = 0; r < urv.length(); r++ ) { 609 diagonal_part ( this->A, active_x + urv.size ( r ), active_x, u_block_sizes ( r ) - urv.size ( r ) ); 610 this->B.set_submatrix ( active_x, 0, eye ( urv.size ( r ) ) ); 611 active_x += u_block_sizes ( r ); 612 } 613 this->C = zeros ( yrv._dsize(), xrv._dsize() ); 614 this->C.set_submatrix ( 0, 0, eye ( yrv._dsize() ) ); 615 this->D = zeros ( yrv._dsize(), urv._dsize() ); 616 this->R.setCh ( zeros ( yrv._dsize(), yrv._dsize() ) ); 617 this->Q.setCh ( zeros ( xrv._dsize(), xrv._dsize() ) ); 618 // Q is set by update 619 620 update_from ( ml ); 621 validate(); 622 }; 498 void connect_mlnorm ( const mlnorm<chmat> &ml, RV &xrv, RV &urv ); 499 623 500 //! fast function to update parameters from ml - not checked for compatibility!! 624 void update_from ( const mlnorm<chmat> &ml ) { 625 626 vec Arow = zeros ( A.cols() ); 627 vec Brow = zeros ( B.cols() ); 628 // ROW- WISE EVALUATION ===== 629 for ( int i = 0; i < ml._rv()._dsize(); i++ ) { 630 631 vec theta = ml._A().get_row ( i ); 632 633 th2A.filldown ( theta, Arow ); 634 if ( have_constant ) { 635 // constant is always at the end no need for datalink 636 Arow ( A.cols() - 1 ) = ml._mu_const() ( i ); 637 } 638 this->A.set_row ( i, Arow ); 639 640 th2B.filldown ( theta, Brow ); 641 this->B.set_row ( i, Brow ); 642 } 643 this->Q._Ch().set_submatrix ( 0, 0, ml.__R()._Ch() ); 644 645 }; 501 void update_from ( const mlnorm<chmat> &ml ); 502 646 503 //! access function 647 504 bool _have_constant() const { -
library/bdm/estim/particles.cpp
r737 r739 75 75 // } 76 76 77 vec MPF::mpfepdf::mean() const { 78 const vec &w = pf->posterior()._w(); 79 vec pom = zeros ( BMs ( 0 )->posterior ().dimension() ); 80 //compute mean of BMs 81 for ( int i = 0; i < w.length(); i++ ) { 82 pom += BMs ( i )->posterior().mean() * w ( i ); 83 } 84 return concat ( pf->posterior().mean(), pom ); 85 } 86 87 vec MPF::mpfepdf::variance() const { 88 const vec &w = pf->posterior()._w(); 89 90 vec pom = zeros ( BMs ( 0 )->posterior ().dimension() ); 91 vec pom2 = zeros ( BMs ( 0 )->posterior ().dimension() ); 92 vec mea; 93 94 for ( int i = 0; i < w.length(); i++ ) { 95 // save current mean 96 mea = BMs ( i )->posterior().mean(); 97 pom += mea * w ( i ); 98 //compute variance 99 pom2 += ( BMs ( i )->posterior().variance() + pow ( mea, 2 ) ) * w ( i ); 100 } 101 return concat ( pf->posterior().variance(), pom2 - pow ( pom, 2 ) ); 102 } 103 104 void MPF::mpfepdf::qbounds ( vec &lb, vec &ub, double perc ) const { 105 //bounds on particles 106 vec lbp; 107 vec ubp; 108 pf->posterior().qbounds ( lbp, ubp ); 109 110 //bounds on Components 111 int dimC = BMs ( 0 )->posterior().dimension(); 112 int j; 113 // temporary 114 vec lbc ( dimC ); 115 vec ubc ( dimC ); 116 // minima and maxima 117 vec Lbc ( dimC ); 118 vec Ubc ( dimC ); 119 Lbc = std::numeric_limits<double>::infinity(); 120 Ubc = -std::numeric_limits<double>::infinity(); 121 122 for ( int i = 0; i < BMs.length(); i++ ) { 123 // check Coms 124 BMs ( i )->posterior().qbounds ( lbc, ubc ); 125 //save either minima or maxima 126 for ( j = 0; j < dimC; j++ ) { 127 if ( lbc ( j ) < Lbc ( j ) ) { 128 Lbc ( j ) = lbc ( j ); 129 } 130 if ( ubc ( j ) > Ubc ( j ) ) { 131 Ubc ( j ) = ubc ( j ); 132 } 133 } 134 } 135 lb = concat ( lbp, Lbc ); 136 ub = concat ( ubp, Ubc ); 137 } 138 139 140 77 141 void MPF::bayes ( const vec &yt, const vec &cond ) { 78 142 // follows PF::bayes in most places!!! -
library/bdm/estim/particles.h
r737 r739 236 236 bdm_assert_debug ( dim == rv._dsize(), "Wrong name " ); 237 237 } 238 vec mean() const { 239 const vec &w = pf->posterior()._w(); 240 vec pom = zeros ( BMs ( 0 )->posterior ().dimension() ); 241 //compute mean of BMs 242 for ( int i = 0; i < w.length(); i++ ) { 243 pom += BMs ( i )->posterior().mean() * w ( i ); 244 } 245 return concat ( pf->posterior().mean(), pom ); 246 } 247 vec variance() const { 248 const vec &w = pf->posterior()._w(); 249 250 vec pom = zeros ( BMs ( 0 )->posterior ().dimension() ); 251 vec pom2 = zeros ( BMs ( 0 )->posterior ().dimension() ); 252 vec mea; 253 254 for ( int i = 0; i < w.length(); i++ ) { 255 // save current mean 256 mea = BMs ( i )->posterior().mean(); 257 pom += mea * w ( i ); 258 //compute variance 259 pom2 += ( BMs ( i )->posterior().variance() + pow ( mea, 2 ) ) * w ( i ); 260 } 261 return concat ( pf->posterior().variance(), pom2 - pow ( pom, 2 ) ); 262 } 263 264 void qbounds ( vec &lb, vec &ub, double perc = 0.95 ) const { 265 //bounds on particles 266 vec lbp; 267 vec ubp; 268 pf->posterior().qbounds ( lbp, ubp ); 269 270 //bounds on Components 271 int dimC = BMs ( 0 )->posterior().dimension(); 272 int j; 273 // temporary 274 vec lbc ( dimC ); 275 vec ubc ( dimC ); 276 // minima and maxima 277 vec Lbc ( dimC ); 278 vec Ubc ( dimC ); 279 Lbc = std::numeric_limits<double>::infinity(); 280 Ubc = -std::numeric_limits<double>::infinity(); 281 282 for ( int i = 0; i < BMs.length(); i++ ) { 283 // check Coms 284 BMs ( i )->posterior().qbounds ( lbc, ubc ); 285 //save either minima or maxima 286 for ( j = 0; j < dimC; j++ ) { 287 if ( lbc ( j ) < Lbc ( j ) ) { 288 Lbc ( j ) = lbc ( j ); 289 } 290 if ( ubc ( j ) > Ubc ( j ) ) { 291 Ubc ( j ) = ubc ( j ); 292 } 293 } 294 } 295 lb = concat ( lbp, Lbc ); 296 ub = concat ( ubp, Ubc ); 297 } 238 vec mean() const; 239 240 vec variance() const; 241 242 void qbounds ( vec &lb, vec &ub, double perc = 0.95 ) const; 298 243 299 244 vec sample() const { -
library/bdm/stat/emix.cpp
r737 r739 34 34 35 35 return Coms ( i )->sample(); 36 } 37 38 vec emix::mean() const { 39 int i; 40 vec mu = zeros ( dim ); 41 for ( i = 0; i < w.length(); i++ ) { 42 mu += w ( i ) * Coms ( i )->mean(); 43 } 44 return mu; 45 } 46 47 vec emix::variance() const { 48 //non-central moment 49 vec mom2 = zeros ( dim ); 50 for ( int i = 0; i < w.length(); i++ ) { 51 mom2 += w ( i ) * ( Coms ( i )->variance() + pow ( Coms ( i )->mean(), 2 ) ); 52 } 53 //central moment 54 return mom2 - pow ( mean(), 2 ); 55 } 56 57 double emix::evallog ( const vec &val ) const { 58 int i; 59 double sum = 0.0; 60 for ( i = 0; i < w.length(); i++ ) { 61 sum += w ( i ) * exp ( Coms ( i )->evallog ( val ) ); 62 } 63 if ( sum == 0.0 ) { 64 sum = std::numeric_limits<double>::epsilon(); 65 } 66 double tmp = log ( sum ); 67 bdm_assert_debug ( std::isfinite ( tmp ), "Infinite" ); 68 return tmp; 69 } 70 71 vec emix::evallog_mat ( const mat &Val ) const { 72 vec x = zeros ( Val.cols() ); 73 for ( int i = 0; i < w.length(); i++ ) { 74 x += w ( i ) * exp ( Coms ( i )->evallog_mat ( Val ) ); 75 } 76 return log ( x ); 77 }; 78 79 mat emix::evallog_coms ( const mat &Val ) const { 80 mat X ( w.length(), Val.cols() ); 81 for ( int i = 0; i < w.length(); i++ ) { 82 X.set_row ( i, w ( i ) *exp ( Coms ( i )->evallog_mat ( Val ) ) ); 83 } 84 return X; 36 85 } 37 86 … … 203 252 }; 204 253 254 double mprod::evallogcond ( const vec &val, const vec &cond ) { 255 int i; 256 double res = 0.0; 257 for ( i = pdfs.length() - 1; i >= 0; i-- ) { 258 /* if ( pdfs(i)->_rvc().count() >0) { 259 pdfs ( i )->condition ( dls ( i )->get_cond ( val,cond ) ); 260 } 261 // add logarithms 262 res += epdfs ( i )->evallog ( dls ( i )->pushdown ( val ) );*/ 263 res += pdfs ( i )->evallogcond ( 264 dls ( i )->pushdown ( val ), 265 dls ( i )->get_cond ( val, cond ) 266 ); 267 } 268 return res; 269 } 270 271 vec mprod::evallogcond_mat ( const mat &Dt, const vec &cond ) { 272 vec tmp ( Dt.cols() ); 273 for ( int i = 0; i < Dt.cols(); i++ ) { 274 tmp ( i ) = evallogcond ( Dt.get_col ( i ), cond ); 275 } 276 return tmp; 277 } 278 279 vec mprod::evallogcond_mat ( const Array<vec> &Dt, const vec &cond ) { 280 vec tmp ( Dt.length() ); 281 for ( int i = 0; i < Dt.length(); i++ ) { 282 tmp ( i ) = evallogcond ( Dt ( i ), cond ); 283 } 284 return tmp; 285 } 286 205 287 void mprod::set_elements ( const Array<shared_ptr<pdf> > &mFacs ) { 206 288 pdfs = mFacs; … … 236 318 237 319 return Coms ( i )->samplecond ( cond ); 320 } 321 322 vec eprod::mean() const { 323 vec tmp ( dim ); 324 for ( int i = 0; i < epdfs.length(); i++ ) { 325 vec pom = epdfs ( i )->mean(); 326 dls ( i )->pushup ( tmp, pom ); 327 } 328 return tmp; 329 } 330 331 vec eprod::variance() const { 332 vec tmp ( dim ); //second moment 333 for ( int i = 0; i < epdfs.length(); i++ ) { 334 vec pom = epdfs ( i )->mean(); 335 dls ( i )->pushup ( tmp, pow ( pom, 2 ) ); 336 } 337 return tmp - pow ( mean(), 2 ); 338 } 339 vec eprod::sample() const { 340 vec tmp ( dim ); 341 for ( int i = 0; i < epdfs.length(); i++ ) { 342 vec pom = epdfs ( i )->sample(); 343 dls ( i )->pushup ( tmp, pom ); 344 } 345 return tmp; 346 } 347 double eprod::evallog ( const vec &val ) const { 348 double tmp = 0; 349 for ( int i = 0; i < epdfs.length(); i++ ) { 350 tmp += epdfs ( i )->evallog ( dls ( i )->pushdown ( val ) ); 351 } 352 bdm_assert_debug ( std::isfinite ( tmp ), "Infinite" ); 353 return tmp; 238 354 } 239 355 … … 267 383 // } 268 384 // }; 385 -
library/bdm/stat/emix.h
r737 r739 129 129 130 130 vec sample() const; 131 vec mean() const { 132 int i; 133 vec mu = zeros ( dim ); 134 for ( i = 0; i < w.length(); i++ ) { 135 mu += w ( i ) * Coms ( i )->mean(); 136 } 137 return mu; 138 } 139 vec variance() const { 140 //non-central moment 141 vec mom2 = zeros ( dim ); 142 for ( int i = 0; i < w.length(); i++ ) { 143 mom2 += w ( i ) * ( Coms ( i )->variance() + pow ( Coms ( i )->mean(), 2 ) ); 144 } 145 //central moment 146 return mom2 - pow ( mean(), 2 ); 147 } 148 double evallog ( const vec &val ) const { 149 int i; 150 double sum = 0.0; 151 for ( i = 0; i < w.length(); i++ ) { 152 sum += w ( i ) * exp ( Coms ( i )->evallog ( val ) ); 153 } 154 if ( sum == 0.0 ) { 155 sum = std::numeric_limits<double>::epsilon(); 156 } 157 double tmp = log ( sum ); 158 bdm_assert_debug ( std::isfinite ( tmp ), "Infinite" ); 159 return tmp; 160 }; 161 162 vec evallog_mat ( const mat &Val ) const { 163 vec x = zeros ( Val.cols() ); 164 for ( int i = 0; i < w.length(); i++ ) { 165 x += w ( i ) * exp ( Coms ( i )->evallog_mat ( Val ) ); 166 } 167 return log ( x ); 168 }; 131 132 vec mean() const; 133 134 vec variance() const; 135 136 double evallog ( const vec &val ) const; 137 138 vec evallog_mat ( const mat &Val ) const; 169 139 170 140 //! Auxiliary function that returns pdflog for each component 171 mat evallog_coms ( const mat &Val ) const { 172 mat X ( w.length(), Val.cols() ); 173 for ( int i = 0; i < w.length(); i++ ) { 174 X.set_row ( i, w ( i ) *exp ( Coms ( i )->evallog_mat ( Val ) ) ); 175 } 176 return X; 177 }; 141 mat evallog_coms ( const mat &Val ) const; 178 142 179 143 shared_ptr<epdf> marginal ( const RV &rv ) const; … … 334 298 void set_elements ( const Array<shared_ptr<pdf> > &mFacs ); 335 299 336 double evallogcond ( const vec &val, const vec &cond ) { 337 int i; 338 double res = 0.0; 339 for ( i = pdfs.length() - 1; i >= 0; i-- ) { 340 /* if ( pdfs(i)->_rvc().count() >0) { 341 pdfs ( i )->condition ( dls ( i )->get_cond ( val,cond ) ); 342 } 343 // add logarithms 344 res += epdfs ( i )->evallog ( dls ( i )->pushdown ( val ) );*/ 345 res += pdfs ( i )->evallogcond ( 346 dls ( i )->pushdown ( val ), 347 dls ( i )->get_cond ( val, cond ) 348 ); 349 } 350 return res; 351 } 352 vec evallogcond_mat ( const mat &Dt, const vec &cond ) { 353 vec tmp ( Dt.cols() ); 354 for ( int i = 0; i < Dt.cols(); i++ ) { 355 tmp ( i ) = evallogcond ( Dt.get_col ( i ), cond ); 356 } 357 return tmp; 358 }; 359 vec evallogcond_mat ( const Array<vec> &Dt, const vec &cond ) { 360 vec tmp ( Dt.length() ); 361 for ( int i = 0; i < Dt.length(); i++ ) { 362 tmp ( i ) = evallogcond ( Dt ( i ), cond ); 363 } 364 return tmp; 365 }; 366 300 double evallogcond ( const vec &val, const vec &cond ); 301 302 vec evallogcond_mat ( const mat &Dt, const vec &cond ); 303 304 vec evallogcond_mat ( const Array<vec> &Dt, const vec &cond ); 367 305 368 306 //TODO smarter... … … 441 379 } 442 380 443 vec mean() const { 444 vec tmp ( dim ); 445 for ( int i = 0; i < epdfs.length(); i++ ) { 446 vec pom = epdfs ( i )->mean(); 447 dls ( i )->pushup ( tmp, pom ); 448 } 449 return tmp; 450 } 451 vec variance() const { 452 vec tmp ( dim ); //second moment 453 for ( int i = 0; i < epdfs.length(); i++ ) { 454 vec pom = epdfs ( i )->mean(); 455 dls ( i )->pushup ( tmp, pow ( pom, 2 ) ); 456 } 457 return tmp - pow ( mean(), 2 ); 458 } 459 vec sample() const { 460 vec tmp ( dim ); 461 for ( int i = 0; i < epdfs.length(); i++ ) { 462 vec pom = epdfs ( i )->sample(); 463 dls ( i )->pushup ( tmp, pom ); 464 } 465 return tmp; 466 } 467 double evallog ( const vec &val ) const { 468 double tmp = 0; 469 for ( int i = 0; i < epdfs.length(); i++ ) { 470 tmp += epdfs ( i )->evallog ( dls ( i )->pushdown ( val ) ); 471 } 472 bdm_assert_debug ( std::isfinite ( tmp ), "Infinite" ); 473 return tmp; 474 } 381 vec mean() const; 382 383 vec variance() const; 384 385 vec sample() const; 386 387 double evallog ( const vec &val ) const; 388 475 389 //!access function 476 390 const epdf* operator () ( int i ) const { -
library/bdm/stat/exp_family.cpp
r737 r739 279 279 M = iLsub * Lpsi; 280 280 R = ldR.to_mat() ; 281 } 282 283 void egiw::log_register ( bdm::logger& L, const string& prefix ) { 284 if ( log_level == 3 ) { 285 root::log_register ( L, prefix ); 286 logrec->ids.set_length ( 2 ); 287 int th_dim = dimension() - dimx * ( dimx + 1 ) / 2; 288 logrec->ids ( 0 ) = L.add_vector ( RV ( "", th_dim ), prefix + logrec->L.prefix_sep() + "mean" ); 289 logrec->ids ( 1 ) = L.add_vector ( RV ( "", th_dim * th_dim ), prefix + logrec->L.prefix_sep() + "variance" ); 290 } else { 291 epdf::log_register ( L, prefix ); 292 } 293 } 294 295 void egiw::log_write() const { 296 if ( log_level == 3 ) { 297 mat M; 298 ldmat Lam; 299 ldmat Vz; 300 factorize ( M, Vz, Lam ); 301 logrec->L.log_vector ( logrec->ids ( 0 ), est_theta() ); 302 logrec->L.log_vector ( logrec->ids ( 1 ), cvectorize ( est_theta_cov().to_mat() ) ); 303 } else { 304 epdf::log_write(); 305 } 306 307 } 308 309 void multiBM::bayes ( const vec &yt, const vec &cond ) { 310 if ( frg < 1.0 ) { 311 beta *= frg; 312 last_lognc = est.lognc(); 313 } 314 beta += yt; 315 if ( evalll ) { 316 ll = est.lognc() - last_lognc; 317 } 318 } 319 320 double multiBM::logpred ( const vec &yt ) const { 321 eDirich pred ( est ); 322 vec &beta = pred._beta(); 323 324 double lll; 325 if ( frg < 1.0 ) { 326 beta *= frg; 327 lll = pred.lognc(); 328 } else if ( evalll ) { 329 lll = last_lognc; 330 } else { 331 lll = pred.lognc(); 332 } 333 334 beta += yt; 335 return pred.lognc() - lll; 336 } 337 void multiBM::flatten ( const BMEF* B ) { 338 const multiBM* E = dynamic_cast<const multiBM*> ( B ); 339 // sum(beta) should be equal to sum(B.beta) 340 const vec &Eb = E->beta;//const_cast<multiBM*> ( E )->_beta(); 341 beta *= ( sum ( Eb ) / sum ( beta ) ); 342 if ( evalll ) { 343 last_lognc = est.lognc(); 344 } 281 345 } 282 346 … … 462 526 } 463 527 528 void mlstudent::condition ( const vec &cond ) { 529 if ( cond.length() > 0 ) { 530 iepdf._mu() = A * cond + mu_const; 531 } else { 532 iepdf._mu() = mu_const; 533 } 534 double zeta; 535 //ugly hack! 536 if ( ( cond.length() + 1 ) == Lambda.rows() ) { 537 zeta = Lambda.invqform ( concat ( cond, vec_1 ( 1.0 ) ) ); 538 } else { 539 zeta = Lambda.invqform ( cond ); 540 } 541 _R = Re; 542 _R *= ( 1 + zeta );// / ( nu ); << nu is in Re!!!!!! 543 } 544 545 void eEmp::qbounds ( vec &lb, vec &ub, double perc ) const { 546 // lb in inf so than it will be pushed below; 547 lb.set_size ( dim ); 548 ub.set_size ( dim ); 549 lb = std::numeric_limits<double>::infinity(); 550 ub = -std::numeric_limits<double>::infinity(); 551 int j; 552 for ( int i = 0; i < n; i++ ) { 553 for ( j = 0; j < dim; j++ ) { 554 if ( samples ( i ) ( j ) < lb ( j ) ) { 555 lb ( j ) = samples ( i ) ( j ); 556 } 557 if ( samples ( i ) ( j ) > ub ( j ) ) { 558 ub ( j ) = samples ( i ) ( j ); 559 } 560 } 561 } 562 } 563 564 464 565 }; -
library/bdm/stat/exp_family.h
r737 r739 323 323 // check sizes, rvs etc. 324 324 } 325 void log_register ( bdm::logger& L, const string& prefix ) { 326 if ( log_level == 3 ) { 327 root::log_register ( L, prefix ); 328 logrec->ids.set_length ( 2 ); 329 int th_dim = dimension() - dimx * ( dimx + 1 ) / 2; 330 logrec->ids ( 0 ) = L.add_vector ( RV ( "", th_dim ), prefix + logrec->L.prefix_sep() + "mean" ); 331 logrec->ids ( 1 ) = L.add_vector ( RV ( "", th_dim * th_dim ), prefix + logrec->L.prefix_sep() + "variance" ); 332 } else { 333 epdf::log_register ( L, prefix ); 334 } 335 } 336 void log_write() const { 337 if ( log_level == 3 ) { 338 mat M; 339 ldmat Lam; 340 ldmat Vz; 341 factorize ( M, Vz, Lam ); 342 logrec->L.log_vector ( logrec->ids ( 0 ), est_theta() ); 343 logrec->L.log_vector ( logrec->ids ( 1 ), cvectorize ( est_theta_cov().to_mat() ) ); 344 } else { 345 epdf::log_write(); 346 } 347 348 } 325 void log_register ( bdm::logger& L, const string& prefix ); 326 327 void log_write() const; 349 328 //!@} 350 329 }; … … 526 505 beta = mB->beta; 527 506 } 528 void bayes ( const vec &yt, const vec &cond = empty_vec ) { 529 if ( frg < 1.0 ) { 530 beta *= frg; 531 last_lognc = est.lognc(); 532 } 533 beta += yt; 534 if ( evalll ) { 535 ll = est.lognc() - last_lognc; 536 } 537 } 538 double logpred ( const vec &yt ) const { 539 eDirich pred ( est ); 540 vec &beta = pred._beta(); 541 542 double lll; 543 if ( frg < 1.0 ) { 544 beta *= frg; 545 lll = pred.lognc(); 546 } else if ( evalll ) { 547 lll = last_lognc; 548 } else { 549 lll = pred.lognc(); 550 } 551 552 beta += yt; 553 return pred.lognc() - lll; 554 } 555 void flatten ( const BMEF* B ) { 556 const multiBM* E = dynamic_cast<const multiBM*> ( B ); 557 // sum(beta) should be equal to sum(B.beta) 558 const vec &Eb = E->beta;//const_cast<multiBM*> ( E )->_beta(); 559 beta *= ( sum ( Eb ) / sum ( beta ) ); 560 if ( evalll ) { 561 last_lognc = est.lognc(); 562 } 563 } 507 void bayes ( const vec &yt, const vec &cond = empty_vec ); 508 509 double logpred ( const vec &yt ) const; 510 511 void flatten ( const BMEF* B ); 512 564 513 //! return correctly typed posterior (covariant return) 565 514 const eDirich& posterior() const { … … 971 920 Lambda = Lambda0; 972 921 } 973 void condition ( const vec &cond ) { 974 if ( cond.length() > 0 ) { 975 iepdf._mu() = A * cond + mu_const; 976 } else { 977 iepdf._mu() = mu_const; 978 } 979 double zeta; 980 //ugly hack! 981 if ( ( cond.length() + 1 ) == Lambda.rows() ) { 982 zeta = Lambda.invqform ( concat ( cond, vec_1 ( 1.0 ) ) ); 983 } else { 984 zeta = Lambda.invqform ( cond ); 985 } 986 _R = Re; 987 _R *= ( 1 + zeta );// / ( nu ); << nu is in Re!!!!!! 988 }; 922 923 void condition ( const vec &cond ); 989 924 990 925 void validate() { … … 1526 1461 } 1527 1462 //! For this class, qbounds are minimum and maximum value of the population! 1528 void qbounds ( vec &lb, vec &ub, double perc = 0.95 ) const { 1529 // lb in inf so than it will be pushed below; 1530 lb.set_size ( dim ); 1531 ub.set_size ( dim ); 1532 lb = std::numeric_limits<double>::infinity(); 1533 ub = -std::numeric_limits<double>::infinity(); 1534 int j; 1535 for ( int i = 0; i < n; i++ ) { 1536 for ( j = 0; j < dim; j++ ) { 1537 if ( samples ( i ) ( j ) < lb ( j ) ) { 1538 lb ( j ) = samples ( i ) ( j ); 1539 } 1540 if ( samples ( i ) ( j ) > ub ( j ) ) { 1541 ub ( j ) = samples ( i ) ( j ); 1542 } 1543 } 1544 } 1545 } 1463 void qbounds ( vec &lb, vec &ub, double perc = 0.95 ) const; 1546 1464 }; 1547 1465 -
library/bdm/stat/merger.cpp
r737 r739 8 8 Npoints ( 0 ), DBG ( false ), dbg_file ( 0 ) { 9 9 set_sources ( S ); 10 } 11 12 void merger_base::set_sources ( const Array<shared_ptr<pdf> > &Sources ) { 13 pdfs = Sources; 14 Nsources = pdfs.length(); 15 //set sizes 16 dls.set_size ( Sources.length() ); 17 rvzs.set_size ( Sources.length() ); 18 zdls.set_size ( Sources.length() ); 19 20 rv = get_composite_rv ( pdfs, /* checkoverlap = */ false ); 21 22 RV rvc; 23 // Extend rv by rvc! 24 for ( int i = 0; i < pdfs.length(); i++ ) { 25 RV rvx = pdfs ( i )->_rvc().subt ( rv ); 26 rvc.add ( rvx ); // add rv to common rvc 27 } 28 29 // join rv and rvc - see descriprion 30 rv.add ( rvc ); 31 // get dimension 32 dim = rv._dsize(); 33 34 // create links between sources and common rv 35 RV xytmp; 36 for ( int i = 0; i < pdfs.length(); i++ ) { 37 //Establich connection between pdfs and merger 38 dls ( i ) = new datalink_m2e; 39 dls ( i )->set_connection ( pdfs ( i )->_rv(), pdfs ( i )->_rvc(), rv ); 40 41 // find out what is missing in each pdf 42 xytmp = pdfs ( i )->_rv(); 43 xytmp.add ( pdfs ( i )->_rvc() ); 44 // z_i = common_rv-xy 45 rvzs ( i ) = rv.subt ( xytmp ); 46 //establish connection between extension (z_i|x,y)s and common rv 47 zdls ( i ) = new datalink_m2e; 48 zdls ( i )->set_connection ( rvzs ( i ), xytmp, rv ) ; 49 }; 50 } 51 52 void merger_base::set_support ( rectangular_support &Sup ) { 53 Npoints = Sup.points(); 54 eSmp.set_parameters ( Npoints, false ); 55 Array<vec> &samples = eSmp._samples(); 56 eSmp._w() = ones ( Npoints ) / Npoints; //unifrom size of bins 57 //set samples 58 samples ( 0 ) = Sup.first_vec(); 59 for ( int j = 1; j < Npoints; j++ ) { 60 samples ( j ) = Sup.next_vec(); 61 } 62 } 63 64 void merger_base::merge () { 65 validate(); 66 67 //check if sources overlap: 68 bool OK = true; 69 for ( int i = 0; i < pdfs.length(); i++ ) { 70 OK &= ( rvzs ( i )._dsize() == 0 ); // z_i is empty 71 OK &= ( pdfs ( i )->_rvc()._dsize() == 0 ); // y_i is empty 72 } 73 74 if ( OK ) { 75 mat lW = zeros ( pdfs.length(), eSmp._w().length() ); 76 77 vec emptyvec ( 0 ); 78 for ( int i = 0; i < pdfs.length(); i++ ) { 79 for ( int j = 0; j < eSmp._w().length(); j++ ) { 80 lW ( i, j ) = pdfs ( i )->evallogcond ( eSmp._samples() ( j ), emptyvec ); 81 } 82 } 83 84 vec w_nn = merge_points ( lW ); 85 vec wtmp = exp ( w_nn - max ( w_nn ) ); 86 //renormalize 87 eSmp._w() = wtmp / sum ( wtmp ); 88 } else { 89 bdm_error ( "Sources are not compatible - use merger_mix" ); 90 } 10 91 } 11 92 … … 62 143 } 63 144 145 vec merger_base::mean() const { 146 const Vec<double> &w = eSmp._w(); 147 const Array<vec> &S = eSmp._samples(); 148 vec tmp = zeros ( dim ); 149 for ( int i = 0; i < Npoints; i++ ) { 150 tmp += w ( i ) * S ( i ); 151 } 152 return tmp; 153 } 154 155 mat merger_base::covariance() const { 156 const vec &w = eSmp._w(); 157 const Array<vec> &S = eSmp._samples(); 158 159 vec mea = mean(); 160 161 // cout << sum (w) << "," << w*w << endl; 162 163 mat Tmp = zeros ( dim, dim ); 164 for ( int i = 0; i < Npoints; i++ ) { 165 Tmp += w ( i ) * outer_product ( S ( i ), S ( i ) ); 166 } 167 return Tmp - outer_product ( mea, mea ); 168 } 169 170 vec merger_base::variance() const { 171 const vec &w = eSmp._w(); 172 const Array<vec> &S = eSmp._samples(); 173 174 vec tmp = zeros ( dim ); 175 for ( int i = 0; i < Nsources; i++ ) { 176 tmp += w ( i ) * pow ( S ( i ), 2 ); 177 } 178 return tmp - pow ( mean(), 2 ); 179 } 180 64 181 void merger_mix::merge ( ) { 65 182 Array<vec> &Smp = eSmp._samples(); //aux -
library/bdm/stat/merger.h
r737 r739 93 93 94 94 //! Function setting the main internal structures 95 void set_sources ( const Array<shared_ptr<pdf> > &Sources ) { 96 pdfs = Sources; 97 Nsources = pdfs.length(); 98 //set sizes 99 dls.set_size ( Sources.length() ); 100 rvzs.set_size ( Sources.length() ); 101 zdls.set_size ( Sources.length() ); 102 103 rv = get_composite_rv ( pdfs, /* checkoverlap = */ false ); 104 105 RV rvc; 106 // Extend rv by rvc! 107 for ( int i = 0; i < pdfs.length(); i++ ) { 108 RV rvx = pdfs ( i )->_rvc().subt ( rv ); 109 rvc.add ( rvx ); // add rv to common rvc 110 } 111 112 // join rv and rvc - see descriprion 113 rv.add ( rvc ); 114 // get dimension 115 dim = rv._dsize(); 116 117 // create links between sources and common rv 118 RV xytmp; 119 for ( int i = 0; i < pdfs.length(); i++ ) { 120 //Establich connection between pdfs and merger 121 dls ( i ) = new datalink_m2e; 122 dls ( i )->set_connection ( pdfs ( i )->_rv(), pdfs ( i )->_rvc(), rv ); 123 124 // find out what is missing in each pdf 125 xytmp = pdfs ( i )->_rv(); 126 xytmp.add ( pdfs ( i )->_rvc() ); 127 // z_i = common_rv-xy 128 rvzs ( i ) = rv.subt ( xytmp ); 129 //establish connection between extension (z_i|x,y)s and common rv 130 zdls ( i ) = new datalink_m2e; 131 zdls ( i )->set_connection ( rvzs ( i ), xytmp, rv ) ; 132 }; 133 } 95 void set_sources ( const Array<shared_ptr<pdf> > &Sources ); 96 134 97 //! Set support points from rectangular grid 135 void set_support ( rectangular_support &Sup ) { 136 Npoints = Sup.points(); 137 eSmp.set_parameters ( Npoints, false ); 138 Array<vec> &samples = eSmp._samples(); 139 eSmp._w() = ones ( Npoints ) / Npoints; //unifrom size of bins 140 //set samples 141 samples ( 0 ) = Sup.first_vec(); 142 for ( int j = 1; j < Npoints; j++ ) { 143 samples ( j ) = Sup.next_vec(); 144 } 145 } 98 void set_support ( rectangular_support &Sup ); 99 146 100 //! Set support points from dicrete grid 147 101 void set_support ( discrete_support &Sup ) { … … 180 134 181 135 //!Merge given sources in given points 182 virtual void merge () { 183 validate(); 184 185 //check if sources overlap: 186 bool OK = true; 187 for ( int i = 0; i < pdfs.length(); i++ ) { 188 OK &= ( rvzs ( i )._dsize() == 0 ); // z_i is empty 189 OK &= ( pdfs ( i )->_rvc()._dsize() == 0 ); // y_i is empty 190 } 191 192 if ( OK ) { 193 mat lW = zeros ( pdfs.length(), eSmp._w().length() ); 194 195 vec emptyvec ( 0 ); 196 for ( int i = 0; i < pdfs.length(); i++ ) { 197 for ( int j = 0; j < eSmp._w().length(); j++ ) { 198 lW ( i, j ) = pdfs ( i )->evallogcond ( eSmp._samples() ( j ), emptyvec ); 199 } 200 } 201 202 vec w_nn = merge_points ( lW ); 203 vec wtmp = exp ( w_nn - max ( w_nn ) ); 204 //renormalize 205 eSmp._w() = wtmp / sum ( wtmp ); 206 } else { 207 bdm_error ( "Sources are not compatible - use merger_mix" ); 208 } 209 }; 210 136 virtual void merge (); 211 137 212 138 //! Merge log-likelihood values in points using method specified by parameter METHOD … … 216 142 //! sample from merged density 217 143 //! weight w is a 218 vec mean() const { 219 const Vec<double> &w = eSmp._w(); 220 const Array<vec> &S = eSmp._samples(); 221 vec tmp = zeros ( dim ); 222 for ( int i = 0; i < Npoints; i++ ) { 223 tmp += w ( i ) * S ( i ); 224 } 225 return tmp; 226 } 227 mat covariance() const { 228 const vec &w = eSmp._w(); 229 const Array<vec> &S = eSmp._samples(); 230 231 vec mea = mean(); 232 233 // cout << sum (w) << "," << w*w << endl; 234 235 mat Tmp = zeros ( dim, dim ); 236 for ( int i = 0; i < Npoints; i++ ) { 237 Tmp += w ( i ) * outer_product ( S ( i ), S ( i ) ); 238 } 239 return Tmp - outer_product ( mea, mea ); 240 } 241 vec variance() const { 242 const vec &w = eSmp._w(); 243 const Array<vec> &S = eSmp._samples(); 244 245 vec tmp = zeros ( dim ); 246 for ( int i = 0; i < Nsources; i++ ) { 247 tmp += w ( i ) * pow ( S ( i ), 2 ); 248 } 249 return tmp - pow ( mean(), 2 ); 250 } 144 vec mean() const; 145 146 mat covariance() const; 147 148 vec variance() const; 149 251 150 //!@} 252 151