182 | | \begin_inset CommandInset citation |
183 | | LatexCommand cite |
184 | | key "Ber:01" |
185 | | |
186 | | \end_inset |
187 | | |
188 | | |
| 182 | \end_layout |
| 183 | |
| 184 | \begin_layout Subsection* |
| 185 | LQ rizeni |
| 186 | \end_layout |
| 187 | |
| 188 | \begin_layout Standard |
| 189 | Algoritmus LQ rizeni je aplikovatelny v pripade, ze |
| 190 | \begin_inset Formula $b$ |
| 191 | \end_inset |
| 192 | |
| 193 | v ( |
| 194 | \begin_inset CommandInset ref |
| 195 | LatexCommand ref |
| 196 | reference "eq:sys" |
| 197 | |
| 198 | \end_inset |
| 199 | |
| 200 | ) je zname. |
| 201 | V pripade, ze |
| 202 | \begin_inset Formula $b$ |
| 203 | \end_inset |
| 204 | |
| 205 | nezmame je mozne optimalni rizeni aproximovat tzv. |
| 206 | receding horizon strategii. |
| 207 | Tato strategie spociva v nahrazeni |
| 208 | \begin_inset Formula $b\equiv\hat{b}_{t}$ |
| 209 | \end_inset |
| 210 | |
| 211 | , spocteni optimalniho zasahu, provedeni |
| 212 | \begin_inset Formula $u_{t}$ |
| 213 | \end_inset |
| 214 | |
| 215 | , oprava |
| 216 | \begin_inset Formula $b_{t}$ |
| 217 | \end_inset |
| 218 | |
| 219 | a opetovne prepocteni strategie. |
| 220 | \end_layout |
| 221 | |
| 222 | \begin_layout Standard |
| 223 | Tomuto postupu se rika certainty equivalence. |
| 224 | Nevyhodou tohoto pristupu je, ze chyba rizeni pro chybny odhad |
| 225 | \begin_inset Formula $\hat{b}$ |
| 226 | \end_inset |
| 227 | |
| 228 | je znacna. |
| 229 | \end_layout |
| 230 | |
| 231 | \begin_layout Standard |
| 232 | Druhou moznosti aproximace je pouziti systemu ( |
| 233 | \begin_inset CommandInset ref |
| 234 | LatexCommand ref |
| 235 | reference "eq:sys2" |
| 236 | |
| 237 | \end_inset |
| 238 | |
| 239 | ) s nahradou |
| 240 | \begin_inset Formula $\hat{b}_{t+1}=\hat{b}_{t}$ |
| 241 | \end_inset |
| 242 | |
| 243 | , |
| 244 | \begin_inset Formula $P_{t+1}=P_{t}$ |
| 245 | \end_inset |
| 246 | |
| 247 | . |
| 248 | Vysledek je velmi podobny jako u CE strategie, avsak do ztratove funkce |
| 249 | pribyl penalizacni clen |
| 250 | \begin_inset Formula $P_{t}u_{t}^{2}$ |
| 251 | \end_inset |
| 252 | |
| 253 | , ktery penalizuje velke hodnoty |
| 254 | \begin_inset Formula $u_{t}$ |
| 255 | \end_inset |
| 256 | |
| 257 | . |
| 258 | Pro velke hodnoty |
| 259 | \begin_inset Formula $P_{t}$ |
| 260 | \end_inset |
| 261 | |
| 262 | tak vznika preference pro male hodnoty |
| 263 | \begin_inset Formula $u_{t}$ |
| 264 | \end_inset |
| 265 | |
| 266 | . |
| 267 | Vysledne strategii rizeni se proto rika cautious, tedy opatrna. |
| 268 | Nevyhodou teto strategie je prilisna |
| 269 | \begin_inset Quotes eld |
| 270 | \end_inset |
| 271 | |
| 272 | opatrnost |
| 273 | \begin_inset Quotes erd |
| 274 | \end_inset |
| 275 | |
| 276 | , ktera vychazi z predpokladu konstantnosti |
| 277 | \begin_inset Formula $P_{t}$ |
| 278 | \end_inset |
| 279 | |
| 280 | , tedy velke penalizace |
| 281 | \begin_inset Formula $u_{t}$ |
| 282 | \end_inset |
| 283 | |
| 284 | na celem horizontu. |
| 285 | Kvuli aproximaci neni ve strategii zohlednen vliv |
| 286 | \begin_inset Formula $u_{t}$ |
| 287 | \end_inset |
| 288 | |
| 289 | na |
| 290 | \begin_inset Formula $P_{t}$ |
| 291 | \end_inset |
| 292 | |
| 293 | , a tim i fakt, ze vhodne zvolene |
| 294 | \begin_inset Formula $u_{t}$ |
| 295 | \end_inset |
| 296 | |
| 297 | muze hodnoty |
| 298 | \begin_inset Formula $P_{t}$ |
| 299 | \end_inset |
| 300 | |
| 301 | snizit. |
| 302 | \end_layout |
| 303 | |
| 304 | \begin_layout Standard |
| 305 | Tento efekt se da kompenzovat tim, ze predpokladame, ze |
| 306 | \begin_inset Formula $P_{t}$ |
| 307 | \end_inset |
| 308 | |
| 309 | bude s casem klesat, napr: |
| 310 | \begin_inset Formula \[ |
| 311 | P_{t+1}=\frac{1}{2}P_{t}.\] |
| 312 | |
| 313 | \end_inset |
| 314 | |
| 315 | pripadne az do krajnosti: |
| 316 | \begin_inset Formula \[ |
| 317 | P_{t+1}=0.\] |
| 318 | |
| 319 | \end_inset |
| 320 | |
| 321 | |
| 322 | \end_layout |
| 323 | |
| 324 | \begin_layout Standard |