Show
Ignore:
Timestamp:
04/18/08 14:03:19 (17 years ago)
Author:
smidl
Message:

oprava dokumentace

Files:
1 modified

Legend:

Unmodified
Added
Removed
  • doc/latex/classchmat.tex

    r37 r79  
    2323\begin{CompactItemize} 
    2424\item  
    25 virtual void {\bf opupdt} (const vec \&v, double w) 
     25void {\bf opupdt} (const vec \&v, double w) 
    2626\item  
    27 virtual mat {\bf to\_\-mat} ()\label{classchmat_a37e2c726e4fc3ad50b26ac2ca6c1452} 
     27mat {\bf to\_\-mat} ()\label{classchmat_a37e2c726e4fc3ad50b26ac2ca6c1452} 
    2828 
    2929\begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item  
    30 virtual void {\bf mult\_\-sym} (const mat \&C) 
    31 \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \item\end{CompactList}\item  
    32 virtual void {\bf mult\_\-sym\_\-t} (const mat \&C) 
    33 \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$. \item\end{CompactList}\item  
    34 virtual double {\bf logdet} () const \label{classchmat_b504ca818203b13e667cb3c503980382} 
     30void {\bf mult\_\-sym} (const mat \&C) 
     31\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item  
     32void \textbf{mult\_\-sym} (const mat \&C, {\bf chmat} \&U) const \label{classchmat_d558ab63475a2f2ebc0c0e149796dcc6} 
     33 
     34\item  
     35void {\bf mult\_\-sym\_\-t} (const mat \&C) 
     36\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item  
     37void \textbf{mult\_\-sym\_\-t} (const mat \&C, {\bf chmat} \&U) const \label{classchmat_31c3b985214a150b2a6b4be3b0fd40e3} 
     38 
     39\item  
     40double {\bf logdet} () const \label{classchmat_b504ca818203b13e667cb3c503980382} 
    3541 
    3642\begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item  
    37 virtual vec {\bf sqrt\_\-mult} (const vec \&v) const  
    38 \begin{CompactList}\small\item\em Multiplies square root of \$V\$ by vector \$x\$. \item\end{CompactList}\item  
    39 virtual double {\bf qform} (const vec \&v) const \label{classchmat_6807737c7ffdb7041256b51db7592248} 
     43vec {\bf sqrt\_\-mult} (const vec \&v) const  
     44\begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item  
     45double {\bf qform} (const vec \&v) const \label{classchmat_6807737c7ffdb7041256b51db7592248} 
    4046 
    41 \begin{CompactList}\small\item\em Evaluates quadratic form \$x= v'$\ast$V$\ast$v\$;. \item\end{CompactList}\item  
    42 virtual void {\bf clear} ()\label{classchmat_d0a995d312ecc11d3b43693f5e224ba9} 
     47\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item  
     48double {\bf invqform} (const vec \&v) const \label{classchmat_b49427cff186c62f5df3724e5d2c34b4} 
     49 
     50\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item  
     51void {\bf clear} ()\label{classchmat_d0a995d312ecc11d3b43693f5e224ba9} 
    4352 
    4453\begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item  
    45 virtual void \textbf{inv} (mat \&Inv)\label{classchmat_9875dc244d23ccec039fd2e5447a9cf7} 
     54void \textbf{add} (const {\bf chmat} \&A2, double w=1.0)\label{classchmat_f3921e3e5e31337cdbda40a3a5467257} 
    4655 
    4756\item  
    48 virtual void \textbf{inv} ({\bf chmat} \&Inv)\label{classchmat_465a895ce060429a35ee451182aa546a} 
     57void {\bf inv} ({\bf chmat} \&Inv) const \label{classchmat_5ce4e21a9012a4e98c1f0ed1ca5669bd} 
    4958 
    50 \item  
     59\begin{CompactList}\small\item\em Inversion in the same form, i.e. cholesky. \item\end{CompactList}\item  
    5160virtual {\bf $\sim$chmat} ()\label{classchmat_ba62fbf7cb8e065a4f3d24457824e89b} 
    5261 
     
    5564 
    5665\begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item  
     66{\bf chmat} (const vec \&v)\label{classchmat_d4f0a94e81279295e60e72812130f9d4} 
     67 
     68\begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item  
     69{\bf chmat} (const {\bf chmat} \&Ch0)\label{classchmat_d92f3bd9a727b8c88a8c7385feb3449a} 
     70 
     71\begin{CompactList}\small\item\em Copy constructor. \item\end{CompactList}\item  
    5772{\bf chmat} (const mat \&M)\label{classchmat_8334a00f30f0a05f893c2aeec395ef10} 
    5873 
     
    6176 
    6277\begin{CompactList}\small\item\em Access function. \item\end{CompactList}\item  
     78void {\bf setD} (const vec \&nD)\label{classchmat_a4fc7f9b0539b97c414442a22f3db6e8} 
     79 
     80\begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item  
     81void {\bf setD} (const vec \&nD, int i)\label{classchmat_4b9271097d8317d9514c5d0d62cccb39} 
     82 
     83\begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item  
     84{\bf chmat} \& {\bf operator+=} (const {\bf chmat} \&A2) 
     85\begin{CompactList}\small\item\em Operators. \item\end{CompactList}\item  
     86{\bf chmat} \& {\bf operator-=} (const {\bf chmat} \&A2)\label{classchmat_a8c3628a8c15eb0009e57c66fcac1a76} 
     87 
     88\begin{CompactList}\small\item\em mapping of negative add operation to operators \item\end{CompactList}\item  
    6389int {\bf cols} () const \label{classsqmat_ecc2e2540f95a04f4449842588170f5b} 
    6490 
     
    7298mat {\bf Ch}\label{classchmat_95158bb150f5e7f939168abcd577fd9c} 
    7399 
    74 \begin{CompactList}\small\item\em Upper chollesky triangle of the matrix. \item\end{CompactList}\item  
     100\begin{CompactList}\small\item\em Upper triangle of the cholesky matrix. \item\end{CompactList}\item  
    75101int {\bf dim}\label{classsqmat_0abed904bdc0882373ba9adba919689d} 
    76102 
     
    81107Symmetric matrix stored in square root decomposition using upper cholesky.  
    82108 
    83 This matrix represent \$A=Ch Ch'\$ where only the upper triangle is stored;  
     109This matrix represent $A=Ch' Ch$ where only the upper triangle $Ch$ is stored;  
    84110 
    85111\subsection{Member Function Documentation} 
     
    89115 
    90116 
    91 Perfroms a rank-1 update by outer product of vectors: \$V = V + w v v'\$. \begin{Desc} 
     117Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc} 
    92118\item[Parameters:] 
    93119\begin{description} 
     
    101127 
    102128 
    103 Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$.  
     129Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$.  
    104130 
    105131\begin{Desc} 
     
    115141 
    116142 
    117 Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$.  
     143Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$.  
    118144 
    119145\begin{Desc} 
     
    129155 
    130156 
    131 Multiplies square root of \$V\$ by vector \$x\$.  
     157Multiplies square root of $V$ by vector $x$.  
    132158 
    133159Used e.g. in generating normal samples.  
    134160 
    135 Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_6b79438b5d7544a9c8e110a145355d8f}. 
     161Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_6b79438b5d7544a9c8e110a145355d8f}.\index{chmat@{chmat}!operator+=@{operator+=}} 
     162\index{operator+=@{operator+=}!chmat@{chmat}} 
     163\subsubsection{\setlength{\rightskip}{0pt plus 5cm}{\bf chmat} \& chmat::operator+= (const {\bf chmat} \& {\em A2})\hspace{0.3cm}{\tt  [inline]}}\label{classchmat_6a8b39fe3a28d2c8e3fc0d74141229fb} 
     164 
     165 
     166Operators.  
     167 
     168Operations: mapping of add operation to operators  
    136169 
    137170The documentation for this class was generated from the following files:\begin{CompactItemize}