Changeset 79 for doc/latex/classchmat.tex
- Timestamp:
- 04/18/08 14:03:19 (17 years ago)
- Files:
-
- 1 modified
Legend:
- Unmodified
- Added
- Removed
-
doc/latex/classchmat.tex
r37 r79 23 23 \begin{CompactItemize} 24 24 \item 25 v irtual void {\bf opupdt} (const vec \&v, double w)25 void {\bf opupdt} (const vec \&v, double w) 26 26 \item 27 virtualmat {\bf to\_\-mat} ()\label{classchmat_a37e2c726e4fc3ad50b26ac2ca6c1452}27 mat {\bf to\_\-mat} ()\label{classchmat_a37e2c726e4fc3ad50b26ac2ca6c1452} 28 28 29 29 \begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item 30 virtual void {\bf mult\_\-sym} (const mat \&C) 31 \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \item\end{CompactList}\item 32 virtual void {\bf mult\_\-sym\_\-t} (const mat \&C) 33 \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$. \item\end{CompactList}\item 34 virtual double {\bf logdet} () const \label{classchmat_b504ca818203b13e667cb3c503980382} 30 void {\bf mult\_\-sym} (const mat \&C) 31 \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item 32 void \textbf{mult\_\-sym} (const mat \&C, {\bf chmat} \&U) const \label{classchmat_d558ab63475a2f2ebc0c0e149796dcc6} 33 34 \item 35 void {\bf mult\_\-sym\_\-t} (const mat \&C) 36 \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item 37 void \textbf{mult\_\-sym\_\-t} (const mat \&C, {\bf chmat} \&U) const \label{classchmat_31c3b985214a150b2a6b4be3b0fd40e3} 38 39 \item 40 double {\bf logdet} () const \label{classchmat_b504ca818203b13e667cb3c503980382} 35 41 36 42 \begin{CompactList}\small\item\em Logarithm of a determinant. \item\end{CompactList}\item 37 v irtual vec {\bf sqrt\_\-mult} (const vec \&v) const38 \begin{CompactList}\small\item\em Multiplies square root of \$V\$ by vector \$x\$. \item\end{CompactList}\item39 virtualdouble {\bf qform} (const vec \&v) const \label{classchmat_6807737c7ffdb7041256b51db7592248}43 vec {\bf sqrt\_\-mult} (const vec \&v) const 44 \begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item 45 double {\bf qform} (const vec \&v) const \label{classchmat_6807737c7ffdb7041256b51db7592248} 40 46 41 \begin{CompactList}\small\item\em Evaluates quadratic form \$x= v'$\ast$V$\ast$v\$;. \item\end{CompactList}\item 42 virtual void {\bf clear} ()\label{classchmat_d0a995d312ecc11d3b43693f5e224ba9} 47 \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item 48 double {\bf invqform} (const vec \&v) const \label{classchmat_b49427cff186c62f5df3724e5d2c34b4} 49 50 \begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item 51 void {\bf clear} ()\label{classchmat_d0a995d312ecc11d3b43693f5e224ba9} 43 52 44 53 \begin{CompactList}\small\item\em Clearing matrix so that it corresponds to zeros. \item\end{CompactList}\item 45 v irtual void \textbf{inv} (mat \&Inv)\label{classchmat_9875dc244d23ccec039fd2e5447a9cf7}54 void \textbf{add} (const {\bf chmat} \&A2, double w=1.0)\label{classchmat_f3921e3e5e31337cdbda40a3a5467257} 46 55 47 56 \item 48 v irtual void \textbf{inv} ({\bf chmat} \&Inv)\label{classchmat_465a895ce060429a35ee451182aa546a}57 void {\bf inv} ({\bf chmat} \&Inv) const \label{classchmat_5ce4e21a9012a4e98c1f0ed1ca5669bd} 49 58 50 \ item59 \begin{CompactList}\small\item\em Inversion in the same form, i.e. cholesky. \item\end{CompactList}\item 51 60 virtual {\bf $\sim$chmat} ()\label{classchmat_ba62fbf7cb8e065a4f3d24457824e89b} 52 61 … … 55 64 56 65 \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item 66 {\bf chmat} (const vec \&v)\label{classchmat_d4f0a94e81279295e60e72812130f9d4} 67 68 \begin{CompactList}\small\item\em Default constructor. \item\end{CompactList}\item 69 {\bf chmat} (const {\bf chmat} \&Ch0)\label{classchmat_d92f3bd9a727b8c88a8c7385feb3449a} 70 71 \begin{CompactList}\small\item\em Copy constructor. \item\end{CompactList}\item 57 72 {\bf chmat} (const mat \&M)\label{classchmat_8334a00f30f0a05f893c2aeec395ef10} 58 73 … … 61 76 62 77 \begin{CompactList}\small\item\em Access function. \item\end{CompactList}\item 78 void {\bf setD} (const vec \&nD)\label{classchmat_a4fc7f9b0539b97c414442a22f3db6e8} 79 80 \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item 81 void {\bf setD} (const vec \&nD, int i)\label{classchmat_4b9271097d8317d9514c5d0d62cccb39} 82 83 \begin{CompactList}\small\item\em Access functions. \item\end{CompactList}\item 84 {\bf chmat} \& {\bf operator+=} (const {\bf chmat} \&A2) 85 \begin{CompactList}\small\item\em Operators. \item\end{CompactList}\item 86 {\bf chmat} \& {\bf operator-=} (const {\bf chmat} \&A2)\label{classchmat_a8c3628a8c15eb0009e57c66fcac1a76} 87 88 \begin{CompactList}\small\item\em mapping of negative add operation to operators \item\end{CompactList}\item 63 89 int {\bf cols} () const \label{classsqmat_ecc2e2540f95a04f4449842588170f5b} 64 90 … … 72 98 mat {\bf Ch}\label{classchmat_95158bb150f5e7f939168abcd577fd9c} 73 99 74 \begin{CompactList}\small\item\em Upper chollesky triangle of thematrix. \item\end{CompactList}\item100 \begin{CompactList}\small\item\em Upper triangle of the cholesky matrix. \item\end{CompactList}\item 75 101 int {\bf dim}\label{classsqmat_0abed904bdc0882373ba9adba919689d} 76 102 … … 81 107 Symmetric matrix stored in square root decomposition using upper cholesky. 82 108 83 This matrix represent \$A=Ch Ch'\$ where only the upper triangleis stored;109 This matrix represent $A=Ch' Ch$ where only the upper triangle $Ch$ is stored; 84 110 85 111 \subsection{Member Function Documentation} … … 89 115 90 116 91 Perfroms a rank-1 update by outer product of vectors: \$V = V + w v v'\$. \begin{Desc}117 Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc} 92 118 \item[Parameters:] 93 119 \begin{description} … … 101 127 102 128 103 Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$.129 Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. 104 130 105 131 \begin{Desc} … … 115 141 116 142 117 Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$.143 Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. 118 144 119 145 \begin{Desc} … … 129 155 130 156 131 Multiplies square root of \$V\$ by vector \$x\$.157 Multiplies square root of $V$ by vector $x$. 132 158 133 159 Used e.g. in generating normal samples. 134 160 135 Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_6b79438b5d7544a9c8e110a145355d8f}. 161 Implements {\bf sqmat} \doxyref{}{p.}{classsqmat_6b79438b5d7544a9c8e110a145355d8f}.\index{chmat@{chmat}!operator+=@{operator+=}} 162 \index{operator+=@{operator+=}!chmat@{chmat}} 163 \subsubsection{\setlength{\rightskip}{0pt plus 5cm}{\bf chmat} \& chmat::operator+= (const {\bf chmat} \& {\em A2})\hspace{0.3cm}{\tt [inline]}}\label{classchmat_6a8b39fe3a28d2c8e3fc0d74141229fb} 164 165 166 Operators. 167 168 Operations: mapping of add operation to operators 136 169 137 170 The documentation for this class was generated from the following files:\begin{CompactItemize}