Show
Ignore:
Timestamp:
04/18/08 14:03:19 (17 years ago)
Author:
smidl
Message:

oprava dokumentace

Files:
1 modified

Legend:

Unmodified
Added
Removed
  • doc/latex/classldmat.tex

    r33 r79  
    4747\begin{CompactList}\small\item\em Conversion to full matrix. \item\end{CompactList}\item  
    4848void {\bf mult\_\-sym} (const mat \&C) 
    49 \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$. \item\end{CompactList}\item  
     49\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$. \item\end{CompactList}\item  
    5050void {\bf mult\_\-sym\_\-t} (const mat \&C) 
    51 \begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$. \item\end{CompactList}\item  
     51\begin{CompactList}\small\item\em Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$. \item\end{CompactList}\item  
    5252void {\bf add} (const {\bf ldmat} \&ld2, double w=1.0)\label{classldmat_a60f2c7e4f3c6a7738eaaaab81ffad20} 
    5353 
     
    5858double {\bf qform} (const vec \&v) const \label{classldmat_d64f331b781903e913cb2ee836886f3f} 
    5959 
    60 \begin{CompactList}\small\item\em Evaluates quadratic form \$x= v'$\ast$V$\ast$v\$;. \item\end{CompactList}\item  
     60\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*V*v$;. \item\end{CompactList}\item  
     61double {\bf invqform} (const vec \&v) const \label{classldmat_d876c5f83e02b3e809b35c9de5068f14} 
     62 
     63\begin{CompactList}\small\item\em Evaluates quadratic form $x= v'*inv(V)*v$;. \item\end{CompactList}\item  
    6164void {\bf clear} ()\label{classldmat_4d6e401de9607332305c27e67972a07a} 
    6265 
     
    6972\begin{CompactList}\small\item\em access function \item\end{CompactList}\item  
    7073vec {\bf sqrt\_\-mult} (const vec \&v) const  
    71 \begin{CompactList}\small\item\em Multiplies square root of \$V\$ by vector \$x\$. \item\end{CompactList}\item  
     74\begin{CompactList}\small\item\em Multiplies square root of $V$ by vector $x$. \item\end{CompactList}\item  
    7275virtual void {\bf inv} ({\bf ldmat} \&Inv) const  
    7376\begin{CompactList}\small\item\em Matrix inversion preserving the chosen form. \item\end{CompactList}\item  
    7477void {\bf mult\_\-sym} (const mat \&C, {\bf ldmat} \&U) const  
    75 \begin{CompactList}\small\item\em Symmetric multiplication of \$U\$ by a general matrix \$C\$, result of which is stored in the current class. \item\end{CompactList}\item  
     78\begin{CompactList}\small\item\em Symmetric multiplication of $U$ by a general matrix $C$, result of which is stored in the current class. \item\end{CompactList}\item  
    7679void {\bf mult\_\-sym\_\-t} (const mat \&C, {\bf ldmat} \&U) const  
    77 \begin{CompactList}\small\item\em Symmetric multiplication of \$U\$ by a transpose of a general matrix \$C\$, result of which is stored in the current class. \item\end{CompactList}\item  
     80\begin{CompactList}\small\item\em Symmetric multiplication of $U$ by a transpose of a general matrix $C$, result of which is stored in the current class. \item\end{CompactList}\item  
    7881void {\bf ldform} (const mat \&A, const vec \&D0) 
    79 \begin{CompactList}\small\item\em Transforms general \$A'D0 A\$ into pure \$L'DL\$. \item\end{CompactList}\item  
     82\begin{CompactList}\small\item\em Transforms general $A'D0 A$ into pure $L'DL$. \item\end{CompactList}\item  
    8083void {\bf setD} (const vec \&nD)\label{classldmat_0884a613b94fde61bfc84288e73ce57f} 
    8184 
     
    99102vec {\bf D}\label{classldmat_4cce04824539c4a8d062d9a36d6e014e} 
    100103 
    101 \begin{CompactList}\small\item\em Positive vector \$D\$. \item\end{CompactList}\item  
     104\begin{CompactList}\small\item\em Positive vector $D$. \item\end{CompactList}\item  
    102105mat {\bf L}\label{classldmat_f74a64b99fe58a75ebd37bb679e121ea} 
    103106 
    104 \begin{CompactList}\small\item\em Lower-triangular matrix \$L\$. \item\end{CompactList}\end{CompactItemize} 
     107\begin{CompactList}\small\item\em Lower-triangular matrix $L$. \item\end{CompactList}\end{CompactItemize} 
    105108\subsection*{Friends} 
    106109\begin{CompactItemize} 
     
    114117Matrix stored in LD form, (typically known as UD).  
    115118 
    116 Matrix is decomposed as follows: \[M = L'DL\] where only \$L\$ and \$D\$ matrices are stored. All inplace operations modifies only these and the need to compose and decompose the matrix is avoided.  
     119Matrix is decomposed as follows: \[M = L'DL\] where only $L$ and $D$ matrices are stored. All inplace operations modifies only these and the need to compose and decompose the matrix is avoided.  
    117120 
    118121\subsection{Member Function Documentation} 
     
    122125 
    123126 
    124 Perfroms a rank-1 update by outer product of vectors: \$V = V + w v v'\$. \begin{Desc} 
     127Perfroms a rank-1 update by outer product of vectors: $V = V + w v v'$. \begin{Desc} 
    125128\item[Parameters:] 
    126129\begin{description} 
     
    134137 
    135138 
    136 Inplace symmetric multiplication by a SQUARE matrix \$C\$, i.e. \$V = C$\ast$V$\ast$C'\$.  
     139Inplace symmetric multiplication by a SQUARE matrix $C$, i.e. $V = C*V*C'$.  
    137140 
    138141\begin{Desc} 
     
    148151 
    149152 
    150 Inplace symmetric multiplication by a SQUARE transpose of matrix \$C\$, i.e. \$V = C'$\ast$V$\ast$C\$.  
     153Inplace symmetric multiplication by a SQUARE transpose of matrix $C$, i.e. $V = C'*V*C$.  
    151154 
    152155\begin{Desc} 
     
    162165 
    163166 
    164 Multiplies square root of \$V\$ by vector \$x\$.  
     167Multiplies square root of $V$ by vector $x$.  
    165168 
    166169Used e.g. in generating normal samples.  
     
    183186 
    184187 
    185 Symmetric multiplication of \$U\$ by a general matrix \$C\$, result of which is stored in the current class.  
     188Symmetric multiplication of $U$ by a general matrix $C$, result of which is stored in the current class.  
    186189 
    187190\begin{Desc} 
     
    195198 
    196199 
    197 Symmetric multiplication of \$U\$ by a transpose of a general matrix \$C\$, result of which is stored in the current class.  
     200Symmetric multiplication of $U$ by a transpose of a general matrix $C$, result of which is stored in the current class.  
    198201 
    199202\begin{Desc} 
     
    207210 
    208211 
    209 Transforms general \$A'D0 A\$ into pure \$L'DL\$.  
    210  
    211 The new decomposition fullfills: \$A'$\ast$diag(D)$\ast$A = self.L'$\ast$diag(self.D)$\ast$self.L\$ \begin{Desc} 
     212Transforms general $A'D0 A$ into pure $L'DL$.  
     213 
     214The new decomposition fullfills: $A'*diag(D)*A = self.L'*diag(self.D)*self.L$ \begin{Desc} 
    212215\item[Parameters:] 
    213216\begin{description}