84 | | tic |
85 | | |
86 | | %hlavni iteracni smycka |
87 | | for iterace = 1:It, |
88 | | %generovani stavu |
89 | | for n = 1:N, |
90 | | xn(:, 1, n) = x0' + neznalost*sqrtm(P)*randn(4,1); |
91 | | for k = 1:Kt-1, |
92 | | tu = L(:, :, k)*(xn(:, k, n) - [0 0 OMEGAt 0]'); |
93 | | xn(1, k+1, n) = a*xn(1, k, n) + b*xn(3, k, n)*sin(xn(4, k, n)) + c*tu(1) + sumsim*sqrt(Q(1, 1))*randn(); |
94 | | xn(2, k+1, n) = a*xn(2, k, n) - b*xn(3, k, n)*cos(xn(4, k, n)) + c*tu(2) + sumsim*sqrt(Q(2, 2))*randn(); |
95 | | xn(3, k+1, n) = d*xn(3, k, n) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sumsim*sqrt(Q(3, 3))*randn(); |
96 | | xn(4, k+1, n) = xn(4, k, n) + xn(3, k, n)*DELTAt + sumsim*sqrt(Q(4, 4))*randn(); |
97 | | % xn(1, k+1, n) = a*xn(1, k, n) + b*(xn(3, k, n)+OMEGAt)*sin(xn(4, k, n)) + c*tu(1) + sum*sqrt(Q(1, 1))*randn(); |
98 | | % xn(2, k+1, n) = a*xn(2, k, n) - b*(xn(3, k, n)+OMEGAt)*cos(xn(4, k, n)) + c*tu(2) + sum*sqrt(Q(2, 2))*randn(); |
99 | | % xn(3, k+1, n) = -OMEGAt + d*(xn(3, k, n)+OMEGAt) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sum*sqrt(Q(3, 3))*randn(); |
100 | | % xn(4, k+1, n) = xn(4, k, n) + (xn(3, k, n)+OMEGAt)*DELTAt + sum*sqrt(Q(4, 4))*randn(); |
101 | | end |
102 | | end |
103 | | |
104 | | %prumerny stav |
105 | | xs = mean(xn, 3); |
106 | | |
107 | | %napocteni S a L |
108 | | for kt = 1:Kt-1, |
109 | | % receding horizon |
110 | | if((K-1+kt)<Kt) |
111 | | S(:, :, K) = X; |
112 | | for k = K-1+kt-1:-1:1+kt-1, |
113 | | A(3, 1) = -e*sin(xs(4, k)); |
114 | | A(3, 2) = e*cos(xs(4, k)); |
115 | | A(1, 3) = b*sin(xs(4, k)); |
116 | | A(2, 3) = -b*cos(xs(4, k)); |
117 | | A(1, 4) = b*(xs(3, k))*cos(xs(4, k)); |
118 | | A(2, 4) = b*(xs(3, k))*sin(xs(4, k)); |
119 | | % A(1, 4) = b*(xs(3, k)+OMEGAt)*cos(xs(4, k)); |
120 | | % A(2, 4) = b*(xs(3, k)+OMEGAt)*sin(xs(4, k)); |
121 | | A(3, 4) = -e*(xs(2, k)*sin(xs(4, k) + xs(1,k)*cos(xs(4, k)))); |
122 | | S(:, :, k-kt+1) = A'*(S(:, :, k-kt+2) - S(:, :, k-kt+2)*B*inv(B'*S(:, :, k-kt+2)*B + Y)*B'*S(:, :, k-kt+2))*A + X; |
123 | | end |
124 | | L(:, :, kt) = -inv(B'*S(:, :, 1)*B + Y)*B'*S(:, :, 1)*A; |
125 | | else |
126 | | L(:, :, kt) = L(:, :, kt-1); %kopiruje poslednich K kroku z Kt kde to nejde na K predpocitat |
127 | | end |
128 | | |
129 | | end |
130 | | end |
131 | | toc |
132 | | |
133 | | %vysledky |
| 87 | |
| 88 | |
| 89 | % vycisti kreslici okno |
138 | | % L(:,:,1) |
139 | | for n = 1:N, |
140 | | xn(:, 1, n) = x0' + neznalost*sqrtm(P)*randn(4,1); |
141 | | for k = 1:Kt-1, |
142 | | tu = L(:, :, 1)*(xn(:, k, n) - [0 0 OMEGAt 0]'); |
143 | | xn(1, k+1, n) = a*xn(1, k, n) + b*xn(3, k, n)*sin(xn(4, k, n)) + c*tu(1) + sumsim*sqrt(Q(1, 1))*randn(); |
144 | | xn(2, k+1, n) = a*xn(2, k, n) - b*xn(3, k, n)*cos(xn(4, k, n)) + c*tu(2) + sumsim*sqrt(Q(2, 2))*randn(); |
145 | | xn(3, k+1, n) = d*xn(3, k, n) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sumsim*sqrt(Q(3, 3))*randn(); |
146 | | xn(4, k+1, n) = xn(4, k, n) + xn(3, k, n)*DELTAt + sumsim*sqrt(Q(4, 4))*randn(); |
147 | | % xn(1, k+1, n) = a*xn(1, k, n) + b*(xn(3, k, n)+OMEGAt)*sin(xn(4, k, n)) + c*tu(1) + sum*sqrt(Q(1, 1))*randn(); |
148 | | % xn(2, k+1, n) = a*xn(2, k, n) - b*(xn(3, k, n)+OMEGAt)*cos(xn(4, k, n)) + c*tu(2) + sum*sqrt(Q(2, 2))*randn(); |
149 | | % xn(3, k+1, n) = -OMEGAt + d*(xn(3, k, n)+OMEGAt) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sum*sqrt(Q(3, 3))*randn(); |
150 | | % xn(4, k+1, n) = xn(4, k, n) + (xn(3, k, n)+OMEGAt)*DELTAt + sum*sqrt(Q(4, 4))*randn(); |
151 | | |
152 | | u(:, k) = tu; |
153 | | end |
| 94 | |
| 95 | tic |
| 96 | |
| 97 | % vzorky stavu |
| 98 | for n = 1:N, |
| 99 | L = zeros(2, 5, Kt+K); |
| 100 | %iterace |
| 101 | % for iterace = 1:It, |
| 102 | x00 = x0' + neznalost*sqrt(P)*randn(5,1); |
| 103 | %testovaci casy |
| 104 | for kt = 1:Kt, |
| 105 | %generovani stavu - jen pro horizont |
| 106 | xn(:, 1, n) = x00; |
| 107 | for k = 1:kt+K-1, |
| 108 | tu = L(:, :, k)*(xn(:, k, n)); |
| 109 | xn(1, k+1, n) = a*xn(1, k, n) + b*(xn(3, k, n) + xn(5, k, n))*sin(xn(4, k, n)) + c*tu(1) + sumsim*sqrt(Q(1, 1))*randn(); |
| 110 | xn(2, k+1, n) = a*xn(2, k, n) - b*(xn(3, k, n) + xn(5, k, n))*cos(xn(4, k, n)) + c*tu(2) + sumsim*sqrt(Q(2, 2))*randn(); |
| 111 | xn(3, k+1, n) = d*xn(3, k, n) + (d-1)*xn(5, k, n) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sumsim*sqrt(Q(3, 3))*randn(); |
| 112 | xn(4, k+1, n) = xn(4, k, n) + (xn(3, k, n) + xn(5, k, n))*DELTAt + sumsim*sqrt(Q(4, 4))*randn(); |
| 113 | xn(5, k+1, n) = xn(5, k, n); |
| 114 | end |
| 115 | %prumerny stav |
| 116 | xs = xn(:, :, n);%mean(xn, 3); |
| 117 | |
| 118 | %receding horizon |
| 119 | S(:, :, K) = X; |
| 120 | for k = K:-1:2, |
| 121 | A(3, 1) = -e*sin(xs(4, k+kt-1)); |
| 122 | A(3, 2) = e*cos(xs(4, k+kt-1)); |
| 123 | A(1, 3) = b*sin(xs(4, k+kt-1)); |
| 124 | A(2, 3) = -b*cos(xs(4, k+kt-1)); |
| 125 | A(1, 4) = b*(xs(3, k+kt-1) + xs(5, k+kt-1))*cos(xs(4, k+kt-1)); |
| 126 | A(2, 4) = b*(xs(3, k+kt-1) + xs(5, k+kt-1))*sin(xs(4, k+kt-1)); |
| 127 | A(3, 4) = -e*(xs(2, k+kt-1)*sin(xs(4, k+kt-1) + xs(1,k+kt-1)*cos(xs(4, k+kt-1)))); |
| 128 | A(1, 5) = b*sin(xs(4, k+kt-1)); |
| 129 | A(2, 5) = -b*cos(xs(4, k+kt-1)); |
| 130 | S(:, :, k-1) = A'*(S(:, :, k) - S(:, :, k)*B*inv(B'*S(:, :, k)*B + Y)*B'*S(:, :, k))*A + X; |
| 131 | end |
| 132 | L(:, :, kt) = -inv(B'*S(:, :, 1)*B + Y)*B'*S(:, :, 1)*A; |
| 133 | %spocital kt-te rizeni a vsechna dalsi nahradi jim |
| 134 | for k = kt+1:kt+K-1, |
| 135 | L(:, :, k) = L(:, :, kt); |
| 136 | end |
| 137 | end |
155 | | % xn(3, :, n) = xn(3, :, n) + OMEGAt*ones(1, Kt); |
156 | | |
| 139 | % end |
| 140 | %napocte trajektorii pro vykresleni s kompletnim rizenim |
| 141 | xn(:, 1, n) = x00; |
| 142 | for k = 1:Kt+K-1, |
| 143 | u(:, k) = L(:, :, k)*(xn(:, k, n)); |
| 144 | xn(1, k+1, n) = a*xn(1, k, n) + b*(xn(3, k, n) + xn(5, k, n))*sin(xn(4, k, n)) + c*u(1, k) + sumsim*sqrt(Q(1, 1))*randn(); |
| 145 | xn(2, k+1, n) = a*xn(2, k, n) - b*(xn(3, k, n) + xn(5, k, n))*cos(xn(4, k, n)) + c*u(2, k) + sumsim*sqrt(Q(2, 2))*randn(); |
| 146 | xn(3, k+1, n) = d*xn(3, k, n) + (d-1)*xn(5, k, n) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sumsim*sqrt(Q(3, 3))*randn(); |
| 147 | xn(4, k+1, n) = xn(4, k, n) + (xn(3, k, n) + xn(5, k, n))*DELTAt + sumsim*sqrt(Q(4, 4))*randn(); |
| 148 | xn(5, k+1, n) = xn(5, k, n); |
| 149 | end |
| 150 | |
| 151 | |
| 152 | %vykresleni |
| 178 | |
| 179 | toc |
| 180 | |
| 181 | % %hlavni iteracni smycka |
| 182 | % for iterace = 1:It, |
| 183 | % %generovani stavu |
| 184 | % for n = 1:N, |
| 185 | % xn(:, 1, n) = x0' + neznalost*sqrtm(P)*randn(4,1); |
| 186 | % for k = 1:Kt-1, |
| 187 | % tu = L(:, :, k)*(xn(:, k, n) - [0 0 OMEGAt 0]'); |
| 188 | % xn(1, k+1, n) = a*xn(1, k, n) + b*xn(3, k, n)*sin(xn(4, k, n)) + c*tu(1) + sumsim*sqrt(Q(1, 1))*randn(); |
| 189 | % xn(2, k+1, n) = a*xn(2, k, n) - b*xn(3, k, n)*cos(xn(4, k, n)) + c*tu(2) + sumsim*sqrt(Q(2, 2))*randn(); |
| 190 | % xn(3, k+1, n) = d*xn(3, k, n) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sumsim*sqrt(Q(3, 3))*randn(); |
| 191 | % xn(4, k+1, n) = xn(4, k, n) + xn(3, k, n)*DELTAt + sumsim*sqrt(Q(4, 4))*randn(); |
| 192 | % % xn(1, k+1, n) = a*xn(1, k, n) + b*(xn(3, k, n)+OMEGAt)*sin(xn(4, k, n)) + c*tu(1) + sum*sqrt(Q(1, 1))*randn(); |
| 193 | % % xn(2, k+1, n) = a*xn(2, k, n) - b*(xn(3, k, n)+OMEGAt)*cos(xn(4, k, n)) + c*tu(2) + sum*sqrt(Q(2, 2))*randn(); |
| 194 | % % xn(3, k+1, n) = -OMEGAt + d*(xn(3, k, n)+OMEGAt) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sum*sqrt(Q(3, 3))*randn(); |
| 195 | % % xn(4, k+1, n) = xn(4, k, n) + (xn(3, k, n)+OMEGAt)*DELTAt + sum*sqrt(Q(4, 4))*randn(); |
| 196 | % end |
| 197 | % end |
| 198 | % |
| 199 | % %prumerny stav |
| 200 | % xs = mean(xn, 3); |
| 201 | % |
| 202 | % %napocteni S a L |
| 203 | % for kt = 1:Kt-1, |
| 204 | % % receding horizon |
| 205 | % if((K-1+kt)<Kt) |
| 206 | % S(:, :, K) = X; |
| 207 | % for k = K-1+kt-1:-1:1+kt-1, |
| 208 | % A(3, 1) = -e*sin(xs(4, k)); |
| 209 | % A(3, 2) = e*cos(xs(4, k)); |
| 210 | % A(1, 3) = b*sin(xs(4, k)); |
| 211 | % A(2, 3) = -b*cos(xs(4, k)); |
| 212 | % A(1, 4) = b*(xs(3, k))*cos(xs(4, k)); |
| 213 | % A(2, 4) = b*(xs(3, k))*sin(xs(4, k)); |
| 214 | % % A(1, 4) = b*(xs(3, k)+OMEGAt)*cos(xs(4, k)); |
| 215 | % % A(2, 4) = b*(xs(3, k)+OMEGAt)*sin(xs(4, k)); |
| 216 | % A(3, 4) = -e*(xs(2, k)*sin(xs(4, k) + xs(1,k)*cos(xs(4, k)))); |
| 217 | % S(:, :, k-kt+1) = A'*(S(:, :, k-kt+2) - S(:, :, k-kt+2)*B*inv(B'*S(:, :, k-kt+2)*B + Y)*B'*S(:, :, k-kt+2))*A + X; |
| 218 | % end |
| 219 | % L(:, :, kt) = -inv(B'*S(:, :, 1)*B + Y)*B'*S(:, :, 1)*A; |
| 220 | % else |
| 221 | % L(:, :, kt) = L(:, :, kt-1); %kopiruje poslednich K kroku z Kt kde to nejde na K predpocitat |
| 222 | % end |
| 223 | % |
| 224 | % end |
| 225 | % end |
| 226 | % toc |
| 227 | % |
| 228 | % %vysledky |
| 229 | % clf |
| 230 | % subplot(2, 3, 3); |
| 231 | % hold all |
| 232 | % plot(1:Kt, OMEGAt*ones(1,Kt)); |
| 233 | % % L(:,:,1) |
| 234 | % for n = 1:N, |
| 235 | % xn(:, 1, n) = x0' + neznalost*sqrtm(P)*randn(4,1); |
| 236 | % for k = 1:Kt-1, |
| 237 | % tu = L(:, :, 1)*(xn(:, k, n) - [0 0 OMEGAt 0]'); |
| 238 | % xn(1, k+1, n) = a*xn(1, k, n) + b*xn(3, k, n)*sin(xn(4, k, n)) + c*tu(1) + sumsim*sqrt(Q(1, 1))*randn(); |
| 239 | % xn(2, k+1, n) = a*xn(2, k, n) - b*xn(3, k, n)*cos(xn(4, k, n)) + c*tu(2) + sumsim*sqrt(Q(2, 2))*randn(); |
| 240 | % xn(3, k+1, n) = d*xn(3, k, n) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sumsim*sqrt(Q(3, 3))*randn(); |
| 241 | % xn(4, k+1, n) = xn(4, k, n) + xn(3, k, n)*DELTAt + sumsim*sqrt(Q(4, 4))*randn(); |
| 242 | % % xn(1, k+1, n) = a*xn(1, k, n) + b*(xn(3, k, n)+OMEGAt)*sin(xn(4, k, n)) + c*tu(1) + sum*sqrt(Q(1, 1))*randn(); |
| 243 | % % xn(2, k+1, n) = a*xn(2, k, n) - b*(xn(3, k, n)+OMEGAt)*cos(xn(4, k, n)) + c*tu(2) + sum*sqrt(Q(2, 2))*randn(); |
| 244 | % % xn(3, k+1, n) = -OMEGAt + d*(xn(3, k, n)+OMEGAt) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sum*sqrt(Q(3, 3))*randn(); |
| 245 | % % xn(4, k+1, n) = xn(4, k, n) + (xn(3, k, n)+OMEGAt)*DELTAt + sum*sqrt(Q(4, 4))*randn(); |
| 246 | % |
| 247 | % u(:, k) = tu; |
| 248 | % end |
| 249 | % |
| 250 | % % xn(3, :, n) = xn(3, :, n) + OMEGAt*ones(1, Kt); |
| 251 | % |
| 252 | % subplot(2, 3, 1); |
| 253 | % hold all |
| 254 | % plot(1:Kt, xn(1, :, n)); |
| 255 | % title('i_{\alpha}'); |
| 256 | % subplot(2, 3, 2); |
| 257 | % hold all |
| 258 | % plot(1:Kt, xn(2, :, n)); |
| 259 | % title('i_{\beta}'); |
| 260 | % subplot(2, 3, 3); |
| 261 | % hold all |
| 262 | % plot(1:Kt, xn(3, :, n)); |
| 263 | % title('\omega'); |
| 264 | % subplot(2, 3, 4); |
| 265 | % hold all |
| 266 | % plot(1:Kt, xn(4, :, n)); |
| 267 | % title('\theta'); |
| 268 | % subplot(2, 3, 5); |
| 269 | % hold all |
| 270 | % plot(1:Kt, u(1, :)); |
| 271 | % title('u_{\alpha}'); |
| 272 | % subplot(2, 3, 6); |
| 273 | % hold all |
| 274 | % plot(1:Kt, u(2, :)); |
| 275 | % title('u_{\beta}'); |
| 276 | % end |
| 277 | |
| 278 | |
| 279 | end |