| 2 | | \section{Transformace syst�} |
| | 4 | V�syst� je pops�jako |
| | 5 | \begin{gather} |
| | 6 | \label{simple} |
| | 7 | y_{t+1}=y_t+\theta_tu_t+v_{t+1} \qquad t=0,\ldots,N-1,\\ |
| | 8 | v_t\sim N(0,\sigma^2).\\ |
| | 9 | \theta_t\sim N(\hat{\theta},P_t),\\ |
| | 10 | \cov(v_{t+1},\theta)=0. |
| | 11 | \end{gather} |
| | 12 | |
| | 13 | Ztr�vou funkci vol� kvadratickou, tedy |
| | 14 | \begin{equation} |
| | 15 | g(y_{0:N},u_{0:N-1},v_{0:N-1})=\sum_{t=0}^{N-1}y_{t+1}^2. |
| | 16 | \end{equation} |
| | 17 | |
| | 18 | Za odhadovac�roceduru pro parametr $\theta$ vezmeme Kalman�ltr. Pro syst�\eqref{simple} bude m�tvar |
| | 19 | \begin{gather} |
| | 20 | \label{kal} |
| | 21 | K_t=\frac{u_tP_t}{u_t^2P_t+\sigma^2}\\ |
| | 22 | \hat{\theta}_{t+1}=\hat{\theta}_t+K_t(y_{t+1}-u_t\hat{\theta}_t),\\ |
| | 23 | P_{t+1}=(1-K_tu_t)P_t. |
| | 24 | \end{gather} |
| | 25 | |
| | 26 | O��n�tr� je |
| | 27 | \begin{equation} |
| | 28 | J_t(y_t,\theta_t)=\min_{u_t \in U_t}\E_{y_{t+1},v_t}\left\{y_{t+1}^2+J_{t+1}(y_{t+1},\theta_{t+1})|y_t,\theta_t,u_t\right\}, \qquad t=0,\ldots,N-1. |
| | 29 | \end{equation} |
| | 30 | |
| | 31 | Ta po dosazen� \eqref{simple} a �te�m proveden�t� hodnoty p� na tvar |
| | 32 | \begin{gather} |
| | 33 | \label{dos} |
| | 34 | J_t(y_t,\theta_t)=\min_{u_t \in U_t}\left\{(y_t+\hat{\theta}_tu_t)^2+u_t^2P_t+\sigma^2+\E_{y_{t+1},v_t}(J_{t+1}(y_{t+1},\theta_{t+1}))|y_t,\theta_t,u_t\right\}. |
| | 35 | \end{gather} |
| | 36 | |
| | 37 | \section{Specifika jednotliv��up� tomto odd� jsou pops� n�er�spekty algoritm�er�udeme srovn�t, p�likaci na syst�\eqref{simple}. |
| | 38 | |
| | 39 | \subsection{Certainty equivalent control} |
| | 40 | O��n�tr� \eqref{CE} prejde v |
| | 41 | \begin{gather} |
| | 42 | J_t(y_t, \theta_t)=\min_{u_t \in U_t}\left\{\hat{y}_{t+1}^2 +J_{t+1}(y_{t+1},\theta_{t+1})|I_t,\theta_t,u_t\right\}. |
| | 43 | \end{gather} |
| | 44 | St� hodnota v� je |
| | 45 | \begin{equation} |
| | 46 | \hat{y}_{t+1}=y_t+\hat{\theta}_tu_t |
| | 47 | \end{equation} |
| | 48 | a rozhodnut�ude tedy |
| | 49 | \begin{equation} |
| | 50 | \mu_t(y_t,\hat{\theta}_t)=-\frac{y_t}{\hat{\theta}_t}. |
| | 51 | \end{equation} |
| | 52 | |
| | 53 | \subsection{Metoda separace} |
| | 54 | V prvn�� metody separace polo�� ���h |
| | 55 | \begin{equation} |
| | 56 | u_0=\sqrt{C-\frac{1}{P_0}}. |
| | 57 | \end{equation} |
| | 58 | T�se dle \eqref{kal} sn� rozptyl $P_0$ nezn�ho parametru $\theta$ na $\frac{1}{C}$. Konstanta $C$ by m� b�ena dostate� mal�aby odhad $\hat{\theta}$ pro druhou f� ��yl dostate� bl�o skute� hodnot�arametru $\theta$. P�ovn� jednotliv�goritm�l�me $C=100$. |
| | 59 | |
| | 60 | \subsection{SIDP} |
| | 61 | Dle \eqref{dos} je optim��u_t$ z�sl�a $(y_t,\hat{\theta}_t,P_t)$. P�mulaci m� tedy v ka�d��ov�okam�iku $t$ diskretizovat t�enzion��rostor nez�sle prom��le [ref] je v�ak p�amotnou simulac�hodn�� k transformaci prostoru $(y_t,\hat{\theta}_t,P_t,u_t)$ do nov�om��\eta_t,\beta_t,\zeta_t,\nu_t)$ dle |
| | 62 | \begin{gather} |
| | 63 | \eta_t=\frac{y_t}{\sigma} \\ |
| | 64 | \beta_t=\frac{\hat{\theta}_t}{\sqrt{P_t}} \\ |
| | 65 | \zeta_t=\frac{1}{\sqrt{P_t}} \\ |
| | 66 | \nu_t=\frac{u_t\sqrt{P_t}}{\sigma} |
| | 67 | \end{gather} |
| | 68 | |
| | 69 | Sou�n�� neur�ost ve v� \eqref{simple} reprezentovat jedinou normalizovanou n�dnou veli�ou podle |
| | 70 | \begin{equation} |
| | 71 | s_t=\frac{y_{t+1}-y_t+\hat{\theta}_tu_t}{\sqrt{u_t^2P_t+\sigma^2}} \sim N(0,1). |
| | 72 | \end{equation} |
| | 73 | |
| | 74 | Rovnice pro v�\eqref{simple} a n�eduj� odhad nezn�ho parametru \eqref{kal} tak p� v |
| | 75 | \begin{gather} |
| | 76 | \eta_{t+1}=\eta_t+\beta_t\nu_t+\sqrt{1+\nu^2}s_t\\ |
| | 77 | \beta_{t+1}=\sqrt{1+\nu^2}\beta_t+\nu_ts_t |
| | 78 | \end{gather} |
| | 79 | |
| | 80 | P�me-li k vhodn�praven���n�tr�, dostaneme |
| | 81 | \begin{align} |
| | 82 | V_t(\eta_t,\beta_t,\zeta_t)&=\frac{J_t(y_t,\hat{\theta}_t,P_t)}{\sigma^2}\\ |
| | 83 | &=\min_{\nu_t }\left\{(\eta_t+\beta_t\nu_t)^2+\nu_t^2+1+\E_{y_{t+1},v_t}(V_{t+1}(\eta_{t+1},\beta_{t+1},\zeta))\right\}. |
| | 84 | \end{align} |
| | 85 | |
| | 86 | Nyn�po�me o��nou ztr� pro $N-1$. |
| | 87 | \begin{equation} |
| | 88 | V_{N-1}(\eta_{N-1},\beta_{N-1},\zeta_{N-1})=\min_{\nu_{N-1}}\left\{(\eta_{N-1}+\beta_{N-1}\nu_{N-1})^2+\nu_{N-1}^2+1\right\}. |
| | 89 | \end{equation} |
| | 90 | |
| | 91 | Derivac��� optim���h jako |
| | 92 | \begin{equation} |
| | 93 | \label{optcon} |
| | 94 | \nu_{N-1}=-\frac{\eta_{N-1}\beta_{N-1}}{1+\beta_{N-1}^2} |
| | 95 | \end{equation} |
| | 96 | a o��nou ztr� |
| | 97 | \begin{equation} |
| | 98 | V_{N-1}(\eta_{N-1},\beta_{N-1},\zeta_{N-1})= \frac{\eta_{N-1}^2+1}{\beta_{N-1}^2+1} |
| | 99 | \end{equation} |
| | 100 | |
| | 101 | Proto�e optim���h $\nu_{N-1}$ ani o��n�tr� $V_{N-1}$ nez�s�a $\zeta_{N-1}$, d� tvaru $V_t$ nebude rovn�optim���h $\nu_t$ a o��n�tr� $V_t$ z�set na $\zeta_t$. P�skretizaci tedy sta�uva�ovat pouze dvoudimenzion��rostor nez�sle prom��\eta_t,\beta_t)$. |
| | 102 | |