Changeset 918 for applications/dual
- Timestamp:
- 04/28/10 00:16:27 (15 years ago)
- Location:
- applications/dual/SIDP/text
- Files:
-
- 6 modified
Legend:
- Unmodified
- Added
- Removed
-
TabularUnified applications/dual/SIDP/text/ch1.tex ¶
r917 r918 46 46 \end{equation} 47 47 48 Takto specifikovan�loha se d�e�it pou�it�dynamick� programov� []. Dynamick�rogramov� je p�p k ��ptimaliza�ch � na kter�e m� d�t jako na posloupnost rozhodnut�pro kter�lat�zv. princip optimality. Ten � �e optim��osloupnost rozhodnut��u vlastnost, �e pro libovoln�te� stav a rozhudnut�us��chna n�eduj� rozhodnut�ptim��zhledem k v��zhodnut�rvn�. D� �e pro ztr� tvaru \eqref{adi} plat�rincip optimality je snadn�e ho nal� nap�d v [ ].48 Takto specifikovan�loha se d�e�it pou�it�dynamick� programov� []. Dynamick�rogramov� je p�p k ��ptimaliza�ch � na kter�e m� d�t jako na posloupnost rozhodnut�pro kter�lat�zv. princip optimality. Ten � �e optim��osloupnost rozhodnut��u vlastnost, �e pro libovoln�te� stav a rozhudnut�us��chna n�eduj� rozhodnut�ptim��zhledem k v��zhodnut�rvn�. D� �e pro ztr� tvaru \eqref{adi} plat�rincip optimality je snadn�e ho nal� nap�d v [ref]. 49 49 50 50 P��en�lohy stochastick� �� aditivn�tr�u je tedy mo�n�ostupovat, jak je u ���moc�ynamick� programov� zvykem. Minim��odnotu st� ztr� od okam�iku $t$ do $N$ v z�slosti na $x_t$ ozna�e $J_t(x_t)$. M� pro ni ps� -
TabularUnified applications/dual/SIDP/text/ch2.tex ¶
r917 r918 44 44 45 45 O��nou ztr� nyn�� ps�ve tvaru 46 \begin{equation} 47 J_N(I_N)=\tilde{g}_N(I_N) 48 \end{equation} 49 \begin{equation} 46 \begin{gather} 47 J_N(I_N)=\tilde{g}_N(I_N)\\ 50 48 J_t(I_t)=\min_{u_t \in U_t}\E_{w_t,y_{t+1}}\left\{\tilde{g}_t(I_t,u_t,w_t)+J_{t+1}((I_t,u_t,y_{t+1}))|I_t,u_t\right\} \qquad t=0,\ldots,N-1 51 \end{ equation}49 \end{gather} 52 50 53 51 Tato � ji� m��ena pomoc�ynamick� programov�. P��en�udeme postupovat od konce �� horizontu a postupn�ledat $J_t(I_t)$. Potom libovoln�\pi=\{\mu_0,\ldots,\mu_{N-1}\}$, kter�ab�nim����n�tr� $J_0(y_0)$ je optim��osloupnost rozhodnut� … … 159 157 P_{t+1}=(I-K_tA_t)P_t 160 158 \end{equation} 161 Celkov�edy od p�� odhadu parametru $N(\hat{\theta}_t,P_t)$ k nov� $N(\hat{\theta}_{t+1},P_{t+1})$ p�me pomoc�\begin{equation} 162 K_t=P_tA_t(A_t^TP_tA_t+Q_t)^{-1} 163 \end{equation} 164 \begin{equation} 165 \hat{\theta}_{t+1}=\hat{\theta}_t+K_t(x_{t+1}-f_t(x_t,u_t)-A_t\hat{\theta}_t) 166 \end{equation} 167 \begin{equation} 168 P_{t+1}=(I-K_tA_t)P_t 169 \end{equation} 159 Celkov�edy od p�� odhadu parametru $N(\hat{\theta}_t,P_t)$ k nov� $N(\hat{\theta}_{t+1},P_{t+1})$ p�me pomoc�\begin{gather} 160 K_t=P_tA_t(A_t^TP_tA_t+Q_t)^{-1}\\ 161 \hat{\theta}_{t+1}=\hat{\theta}_t+K_t(y_{t+1}-\tilde{h}_t(I_t,u_t)-A_t\hat{\theta}_t),\\ 162 P_{t+1}=(I-K_tA_t)P_t. 163 \end{gather} 170 164 171 165 Tato odhadovac�rocedura se naz�lman�ltr [ref]. -
TabularUnified applications/dual/SIDP/text/ch3.tex ¶
r917 r918 28 28 P�u�it�etody Certainty equivalent control (CEC) [ref] se v rovnici pro o��nou ztr� nahrad��dn�eli�y sv��mi hodnotami. O��n�tr� tak p� v 29 29 \begin{gather} 30 \label{CE} 30 31 J_N(I_N, \theta_N)=g_N(y_N),\\ 31 32 J_t(I_t, \theta_t)=\min_{u_t \in U_t}\left\{g_t(y_t,u_t,\hat{v}_t) +J_{t+1}(I_t,\theta_{t+1},u_t,\hat{y}_{t+1}))|I_t,\theta_t,u_t\right\}, \\ \qquad t=0,\ldots,N-1, -
TabularUnified applications/dual/SIDP/text/ch4.tex ¶
r891 r918 1 V t� kapitole je pops�jednoduch��popsan�ef]. Na n�jsou porovn� ��lgoritmy uveden� p�l�apitole. 2 1 3 \section{Popis syst�} 2 \section{Transformace syst�} 4 V�syst� je pops�jako 5 \begin{gather} 6 \label{simple} 7 y_{t+1}=y_t+\theta_tu_t+v_{t+1} \qquad t=0,\ldots,N-1,\\ 8 v_t\sim N(0,\sigma^2).\\ 9 \theta_t\sim N(\hat{\theta},P_t),\\ 10 \cov(v_{t+1},\theta)=0. 11 \end{gather} 12 13 Ztr�vou funkci vol� kvadratickou, tedy 14 \begin{equation} 15 g(y_{0:N},u_{0:N-1},v_{0:N-1})=\sum_{t=0}^{N-1}y_{t+1}^2. 16 \end{equation} 17 18 Za odhadovac�roceduru pro parametr $\theta$ vezmeme Kalman�ltr. Pro syst�\eqref{simple} bude m�tvar 19 \begin{gather} 20 \label{kal} 21 K_t=\frac{u_tP_t}{u_t^2P_t+\sigma^2}\\ 22 \hat{\theta}_{t+1}=\hat{\theta}_t+K_t(y_{t+1}-u_t\hat{\theta}_t),\\ 23 P_{t+1}=(1-K_tu_t)P_t. 24 \end{gather} 25 26 O��n�tr� je 27 \begin{equation} 28 J_t(y_t,\theta_t)=\min_{u_t \in U_t}\E_{y_{t+1},v_t}\left\{y_{t+1}^2+J_{t+1}(y_{t+1},\theta_{t+1})|y_t,\theta_t,u_t\right\}, \qquad t=0,\ldots,N-1. 29 \end{equation} 30 31 Ta po dosazen� \eqref{simple} a �te�m proveden�t� hodnoty p� na tvar 32 \begin{gather} 33 \label{dos} 34 J_t(y_t,\theta_t)=\min_{u_t \in U_t}\left\{(y_t+\hat{\theta}_tu_t)^2+u_t^2P_t+\sigma^2+\E_{y_{t+1},v_t}(J_{t+1}(y_{t+1},\theta_{t+1}))|y_t,\theta_t,u_t\right\}. 35 \end{gather} 36 37 \section{Specifika jednotliv��up� tomto odd� jsou pops� n�er�spekty algoritm�er�udeme srovn�t, p�likaci na syst�\eqref{simple}. 38 39 \subsection{Certainty equivalent control} 40 O��n�tr� \eqref{CE} prejde v 41 \begin{gather} 42 J_t(y_t, \theta_t)=\min_{u_t \in U_t}\left\{\hat{y}_{t+1}^2 +J_{t+1}(y_{t+1},\theta_{t+1})|I_t,\theta_t,u_t\right\}. 43 \end{gather} 44 St� hodnota v� je 45 \begin{equation} 46 \hat{y}_{t+1}=y_t+\hat{\theta}_tu_t 47 \end{equation} 48 a rozhodnut�ude tedy 49 \begin{equation} 50 \mu_t(y_t,\hat{\theta}_t)=-\frac{y_t}{\hat{\theta}_t}. 51 \end{equation} 52 53 \subsection{Metoda separace} 54 V prvn�� metody separace polo�� ���h 55 \begin{equation} 56 u_0=\sqrt{C-\frac{1}{P_0}}. 57 \end{equation} 58 T�se dle \eqref{kal} sn� rozptyl $P_0$ nezn�ho parametru $\theta$ na $\frac{1}{C}$. Konstanta $C$ by m� b�ena dostate� mal�aby odhad $\hat{\theta}$ pro druhou f� ��yl dostate� bl�o skute� hodnot�arametru $\theta$. P�ovn� jednotliv�goritm�l�me $C=100$. 59 60 \subsection{SIDP} 61 Dle \eqref{dos} je optim��u_t$ z�sl�a $(y_t,\hat{\theta}_t,P_t)$. P�mulaci m� tedy v ka�d��ov�okam�iku $t$ diskretizovat t�enzion��rostor nez�sle prom��le [ref] je v�ak p�amotnou simulac�hodn�� k transformaci prostoru $(y_t,\hat{\theta}_t,P_t,u_t)$ do nov�om��\eta_t,\beta_t,\zeta_t,\nu_t)$ dle 62 \begin{gather} 63 \eta_t=\frac{y_t}{\sigma} \\ 64 \beta_t=\frac{\hat{\theta}_t}{\sqrt{P_t}} \\ 65 \zeta_t=\frac{1}{\sqrt{P_t}} \\ 66 \nu_t=\frac{u_t\sqrt{P_t}}{\sigma} 67 \end{gather} 68 69 Sou�n�� neur�ost ve v� \eqref{simple} reprezentovat jedinou normalizovanou n�dnou veli�ou podle 70 \begin{equation} 71 s_t=\frac{y_{t+1}-y_t+\hat{\theta}_tu_t}{\sqrt{u_t^2P_t+\sigma^2}} \sim N(0,1). 72 \end{equation} 73 74 Rovnice pro v�\eqref{simple} a n�eduj� odhad nezn�ho parametru \eqref{kal} tak p� v 75 \begin{gather} 76 \eta_{t+1}=\eta_t+\beta_t\nu_t+\sqrt{1+\nu^2}s_t\\ 77 \beta_{t+1}=\sqrt{1+\nu^2}\beta_t+\nu_ts_t 78 \end{gather} 79 80 P�me-li k vhodn�praven���n�tr�, dostaneme 81 \begin{align} 82 V_t(\eta_t,\beta_t,\zeta_t)&=\frac{J_t(y_t,\hat{\theta}_t,P_t)}{\sigma^2}\\ 83 &=\min_{\nu_t }\left\{(\eta_t+\beta_t\nu_t)^2+\nu_t^2+1+\E_{y_{t+1},v_t}(V_{t+1}(\eta_{t+1},\beta_{t+1},\zeta))\right\}. 84 \end{align} 85 86 Nyn�po�me o��nou ztr� pro $N-1$. 87 \begin{equation} 88 V_{N-1}(\eta_{N-1},\beta_{N-1},\zeta_{N-1})=\min_{\nu_{N-1}}\left\{(\eta_{N-1}+\beta_{N-1}\nu_{N-1})^2+\nu_{N-1}^2+1\right\}. 89 \end{equation} 90 91 Derivac��� optim���h jako 92 \begin{equation} 93 \label{optcon} 94 \nu_{N-1}=-\frac{\eta_{N-1}\beta_{N-1}}{1+\beta_{N-1}^2} 95 \end{equation} 96 a o��nou ztr� 97 \begin{equation} 98 V_{N-1}(\eta_{N-1},\beta_{N-1},\zeta_{N-1})= \frac{\eta_{N-1}^2+1}{\beta_{N-1}^2+1} 99 \end{equation} 100 101 Proto�e optim���h $\nu_{N-1}$ ani o��n�tr� $V_{N-1}$ nez�s�a $\zeta_{N-1}$, d� tvaru $V_t$ nebude rovn�optim���h $\nu_t$ a o��n�tr� $V_t$ z�set na $\zeta_t$. P�skretizaci tedy sta�uva�ovat pouze dvoudimenzion��rostor nez�sle prom��\eta_t,\beta_t)$. 102 3 103 \section{Srovn� jednotliv��up� -
TabularUnified applications/dual/SIDP/text/znaceni.tex ¶
r917 r918 7 7 &a_{t:s}&&\text{posloupnost veli� } (a_t,a_{t+1}, \ldots, a_s)\\ 8 8 &g_{t:s}(a_{t:s})&&\text{posloupnost funk�ch hodnot } (g_t(a_t),g_{t+1}(a_{t+1}), \ldots, g_s(a_s))\\ 9 &|H|&&\text{po� prvk�no�in� }9 &|H|&&\text{po� prvk�no�in� H 10 10 \end{align*}