Changeset 918 for applications/dual/SIDP/text/ch2.tex
- Timestamp:
- 04/28/10 00:16:27 (15 years ago)
- Files:
-
- 1 modified
Legend:
- Unmodified
- Added
- Removed
-
applications/dual/SIDP/text/ch2.tex
r917 r918 44 44 45 45 O��nou ztr� nyn�� ps�ve tvaru 46 \begin{equation} 47 J_N(I_N)=\tilde{g}_N(I_N) 48 \end{equation} 49 \begin{equation} 46 \begin{gather} 47 J_N(I_N)=\tilde{g}_N(I_N)\\ 50 48 J_t(I_t)=\min_{u_t \in U_t}\E_{w_t,y_{t+1}}\left\{\tilde{g}_t(I_t,u_t,w_t)+J_{t+1}((I_t,u_t,y_{t+1}))|I_t,u_t\right\} \qquad t=0,\ldots,N-1 51 \end{ equation}49 \end{gather} 52 50 53 51 Tato � ji� m��ena pomoc�ynamick� programov�. P��en�udeme postupovat od konce �� horizontu a postupn�ledat $J_t(I_t)$. Potom libovoln�\pi=\{\mu_0,\ldots,\mu_{N-1}\}$, kter�ab�nim����n�tr� $J_0(y_0)$ je optim��osloupnost rozhodnut� … … 159 157 P_{t+1}=(I-K_tA_t)P_t 160 158 \end{equation} 161 Celkov�edy od p�� odhadu parametru $N(\hat{\theta}_t,P_t)$ k nov� $N(\hat{\theta}_{t+1},P_{t+1})$ p�me pomoc�\begin{equation} 162 K_t=P_tA_t(A_t^TP_tA_t+Q_t)^{-1} 163 \end{equation} 164 \begin{equation} 165 \hat{\theta}_{t+1}=\hat{\theta}_t+K_t(x_{t+1}-f_t(x_t,u_t)-A_t\hat{\theta}_t) 166 \end{equation} 167 \begin{equation} 168 P_{t+1}=(I-K_tA_t)P_t 169 \end{equation} 159 Celkov�edy od p�� odhadu parametru $N(\hat{\theta}_t,P_t)$ k nov� $N(\hat{\theta}_{t+1},P_{t+1})$ p�me pomoc�\begin{gather} 160 K_t=P_tA_t(A_t^TP_tA_t+Q_t)^{-1}\\ 161 \hat{\theta}_{t+1}=\hat{\theta}_t+K_t(y_{t+1}-\tilde{h}_t(I_t,u_t)-A_t\hat{\theta}_t),\\ 162 P_{t+1}=(I-K_tA_t)P_t. 163 \end{gather} 170 164 171 165 Tato odhadovac�rocedura se naz�lman�ltr [ref].