Show
Ignore:
Timestamp:
05/02/10 23:05:37 (15 years ago)
Author:
zimamiro
Message:
 
Files:
1 modified

Legend:

Unmodified
Added
Removed
  • applications/dual/SIDP/text/ch4.tex

    r918 r919  
    1 V t� kapitole je pops�jednoduch��popsan�ef]. Na n�jsou porovn� ��lgoritmy uveden� p�l�apitole. 
     1V t� kapitole je pops�jednoduch��diskutovan�ite{astrom1986dual}. Na n�jsou porovn� ��lgoritmy uveden� p�l�apitole. 
    22 
    33\section{Popis syst�} 
     
    5959 
    6060\subsection{SIDP} 
    61 Dle \eqref{dos} je optim��u_t$ z�sl�a $(y_t,\hat{\theta}_t,P_t)$. P�mulaci m� tedy v ka�d��ov�okam�iku $t$ diskretizovat t�enzion��rostor nez�sle prom��le [ref] je v�ak p�amotnou simulac�hodn�� k transformaci prostoru $(y_t,\hat{\theta}_t,P_t,u_t)$ do nov�om��\eta_t,\beta_t,\zeta_t,\nu_t)$ dle 
     61Dle \eqref{dos} je optim��u_t$ z�sl�a $(y_t,\hat{\theta}_t,P_t)$. P�mulaci m� tedy v ka�d��ov�okam�iku $t$ diskretizovat t�enzion��rostor nez�sle prom��le \cite{astrom1986dual} je v�ak p�amotnou simulac�hodn�� k transformaci prostoru $(y_t,\hat{\theta}_t,P_t,u_t)$ do nov�om��\eta_t,\beta_t,\zeta_t,\nu_t)$ dle 
    6262\begin{gather} 
    6363\eta_t=\frac{y_t}{\sigma} \\