bdm::PF Class Reference
Trivial particle filter with proposal density equal to parameter evolution model. More...
#include <particles.h>
Inheritance diagram for bdm::PF:

Public Types | |
| __VA_ARGS__ | |
| enum | log_level_enums { __VA_ARGS__ } |
Public Member Functions | |
| virtual void | bayes_weights () |
| bayes compute weights of the | |
| virtual bool | do_resampling () |
| important part of particle filtering - decide if it is time to perform resampling | |
| void | bayes (const vec &yt, const vec &cond) |
| vec & | _lls () |
| access function | |
| RESAMPLING_METHOD | _resmethod () const |
| access function | |
| const pf_mix & | posterior () const |
| return correctly typed posterior (covariant return) | |
| void | from_setting (const Setting &set) |
| void | to_setting (Setting &set) const |
| void | log_register (bdm::logger &L, const string &prefix) |
| void | log_write () const |
| void | set_prior (const epdf *pri) |
| void | resmethod_from_set (const Setting &set) |
| auxiliary function reading parameter 'resmethod' from configuration file | |
| void | validate () |
| void | resample () |
| resample posterior density (from outside - see MPF) | |
| Array< BM * > & | _particles () |
| access function | |
Constructors | |
| void | set_parameters (int n0, double res_th0=0.5, RESAMPLING_METHOD rm=SYSTEMATIC) |
| void | set_model (const BM *particle0, const epdf *prior) |
| void | set_statistics (const vec w0, const epdf &epdf0) |
Public Attributes | |
| log_level_template< PF > | log_level |
Protected Attributes | |
| int | n |
| number of particles; | |
| pf_mix | est |
| posterior density | |
| vec | w |
| weights; | |
| Array< BM * > | particles |
| particles | |
| vec | lls |
| internal structure storing loglikelihood of predictions | |
| RESAMPLING_METHOD | resmethod |
| which resampling method will be used | |
| double | res_threshold |
Friends | |
| class | log_level_intermediate< PF > |
Classes | |
| class | pf_mix |
Detailed Description
Trivial particle filter with proposal density equal to parameter evolution model.
Posterior density is represented by a weighted empirical density (eEmp ).
Member Function Documentation
| void bdm::PF::from_setting | ( | const Setting & | set | ) | [inline, virtual] |
configuration structure for basic PF
particle = bdm::BootstrapParticle; % one bayes rule for each point in the empirical support - or - = bdm::MarginalizedParticle; % (in case of Marginalized Particle filtering prior = epdf_class; % prior probability density on the empirical variable --- optional --- n = 10; % number of particles resmethod = 'systematic', or 'multinomial', or 'stratified' % resampling method res_threshold = 0.5; % resample when active particles drop below 50%
Reimplemented from bdm::BM.
Member Data Documentation
double bdm::PF::res_threshold [protected] |
resampling threshold; in this case its meaning is minimum ratio of active particles For example, for 0.5 resampling is performed when the numebr of active aprticles drops belo 50%.
The documentation for this class was generated from the following files:
- particles.h
- particles.cpp
Generated on 2 Dec 2013 for mixpp by
1.4.7
