bdm::egiw Class Reference
Gauss-inverse-Wishart density stored in LD form. More...
#include <exp_family.h>
Inheritance diagram for bdm::egiw:
Public Types | |
__VA_ARGS__ | |
enum | log_level_enums { __VA_ARGS__ } |
Public Member Functions | |
vec | sample () const |
mat | sample_mat (int n) const |
vec | mean () const |
vec | variance () const |
void | sample_mat (mat &Mi, chmat &Ri) const |
void | factorize (mat &M, ldmat &Vz, ldmat &Lam) const |
vec | est_theta () const |
LS estimate of . | |
ldmat | est_theta_cov () const |
Covariance of the LS estimate. | |
void | mean_mat (mat &M, mat &R) const |
expected values of the linear coefficient and the covariance matrix are written to M and R , respectively | |
double | evallog_nn (const vec &val) const |
In this instance, val= [theta, r]. For multivariate instances, it is stored columnwise val = [theta_1 theta_2 ... r_1 r_2 ]. | |
double | lognc () const |
void | pow (double p) |
shared_ptr< epdf > | marginal (const RV &rvm) const |
marginal density (only student for now) | |
Constructors | |
egiw (int dimx0, ldmat V0, double nu0=-1.0) | |
void | set_parameters (int dimx0, ldmat V0, double nu0=-1.0) |
Access attributes | |
ldmat & | _V () |
const ldmat & | _V () const |
double & | _nu () |
const double & | _nu () const |
const int & | _dimx () const |
void | from_setting (const Setting &set) |
void | to_setting (Setting &set) const |
see egiw::from_setting | |
void | validate () |
void | log_register (bdm::logger &L, const string &prefix) |
void | log_write () const |
Public Attributes | |
log_level_template< egiw > | log_level |
Protected Attributes | |
ldmat | V |
Extended information matrix of sufficient statistics. | |
double | nu |
Number of data records (degrees of freedom) of sufficient statistics. | |
int | dimx |
Dimension of the output. | |
int | nPsi |
Dimension of the regressor. | |
Friends | |
class | log_level_intermediate< egiw > |
Detailed Description
Gauss-inverse-Wishart density stored in LD form.For -variate densities,
Factorizes as: where in standard notation , i.e.
Member Function Documentation
void bdm::egiw::from_setting | ( | const Setting & | set | ) | [virtual] |
Create object from the following structure
class = 'egiw'; dimx = [...]; % dimension of the wishart part V.L = [...]; % L part of matrix V V.D = [...]; % D part of matrix V -or- fV = [...]; % full matrix V -or- dV = [...]; % vector of diagonal of V (when V not given) rv = RV({'names',...},[sizes,...],[times,...]); % description of RV rvc = RV({'names',...},[sizes,...],[times,...]); % description of RV in condition --- optional fields --- nu = []; % scalar \nu ((almost) degrees of freedom) --- inherited fields --- bdm::eEF::from_setting
fulfilling formula
If is not given, it will be computed to obtain proper pdf.
- See also:
- log_level_enums
Reimplemented from bdm::epdf.
The documentation for this class was generated from the following files:
- exp_family.h
- exp_family.cpp
Generated on 2 Dec 2013 for mixpp by 1.4.7