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1 Model of PMSM Drive
Permanent magnet synchronous machine (PMSM) drive with surface magnets on the
rotor is described by conventional equations of PMSM in the stationary reference frame:

diα
dt

= −Rs
Ls
iα + ΨPM

Ls
ωme sinϑ+ uα

Ls
,

diβ
dt

= −Rs
Ls
iβ −

ΨPM

Ls
ωme cosϑ+ uβ

Ls
, (1)

dω

dt
=
kpp

2
pΨpm

J
(iβ cos(ϑ)− iα sin(ϑ))− B

J
ω − pp

J
TL,

dϑ

dt
= ωme.

Here, iα, iβ, uα and uβ represent stator current and voltage in the stationary reference
frame, respectively; ω is electrical rotor speed and ϑ is electrical rotor position. Rs
and Ls is stator resistance and inductance respectively, Ψpm is the flux of permanent
magnets on the rotor, B is friction and TL is load torque, J is moment of inertia, pp is
the number of pole pairs, kp is the Park constant.
The sensor-less control scenario arise when sensors of the speed and position (ω and

ϑ) are missing (from various reasons). Then, the only observed variables are:

yt =
[
iα(t), iβ(t), uα(t), uβ(t)

]
. (2)

Which are, however, observed only up to some precision.
Discretization of the model (1) was performed using Euler method with the following

result:

iα,t+1 = (1− Rs
Ls

∆t)iα,t + Ψpm

Ls
∆tωt sinϑe,t + uα,t

∆t
Ls
,

iβ,t+1 = (1− Rs
Ls

∆t)iβ,t −
Ψpm

Ls
∆tωt cosϑt + uβ,t

∆t
Ls
,

ωt+1 = (1− B

J
∆t)ωt + ∆t

kpp
2
pΨpm

J
(iβ,t cos(ϑt)− iα,t sin(ϑt))−

pp
J
TL∆t,

ϑt+1 = ϑt + ωt∆t.
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In this work, we consider parameters of the model known, we can make the following
substitutions to simplify notation, a = 1 − Rs

Ls
∆t, b = Ψpm

Ls
∆t, c = ∆t

Ls
, d = 1 − B

J ∆t,

e = ∆tkpp2
pΨpm

J , which results in a simplified model:

iα,t+1 = a iα,t + bωt sinϑt + cuα,t,

iβ,t+1 = a iβ,t − bωt cosϑt + cuβ,t, (3)
ωt+1 = dωt + e (iβ,t cos(ϑt)− iα,t sin(ϑt)) ,
ϑt+1 = ϑt + ωt∆t.

The above equations can be aggregated into state xt = [iα,t, iβ,t, ωt, ϑt] will be denoted
as xt+1 = g(xt, ut).

1.1 Gaussian model of disturbances
This model is motivated by the well known Kalman filter, which is optimal for linear sys-
tem with Gaussian noise. Hence, we model all disturbances to have covariance matrices
Qt and Rt for the state xt and observations yt respectively.

xt+1 ∼ N (g(xt), Qt) (4)
yt ∼ N ([iα,t, iβ,t]′, Rt)

Under this assumptions, Bayesian estimation of the state, xt, can be approximated by
so called Extended Kalman filter which approximates posterior density of the state by
a Gaussian

f(xt|y1 . . . yt) = N (x̂t, St).
Its sufficient statistics St = [x̂t, Pt] is evaluated recursively as follows:

x̂t = g(x̂t−1)−K (yt − h(x̂t−1)) . (5)
Ry = CPt−1C

′ +Rt,

K = Pt−1C
′R−1

y ,

St = Pt−1 − Pt−1C
′R−1

y CPt−1, (6)
Pt = AStA

′ +Qt. (7)

where A = d
dxt
g(xt), C = d

dxt
h(xt), g(xt) is model (3) and h(xt) direct observation of

yt = [iα,t, iβ,t], i.e.

A =


a 0 b sinϑ bω cosϑ
0 a −b cosϑ bω sinϑ

−e sinϑ e cosϑ d −e(iβ sinϑ+ iα cosϑ)
0 0 ∆t 1

 , C =
[

1 0 0 0
0 1 0 0

]

B =


c 0
0 c
0 0
0 0


Covariance matrices of the system Q and R are supposed to be known.
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1.2 Test system
A real PMSM system on which the algorithms will be tested has parameters:

Rs = 0.28;
Ls = 0.003465;

Ψpm = 0.1989;
kp = 1.5
p = 4.0;
J = 0.04;

∆t = 0.000125

which yields

a = 0.9898
b = 0.0072
c = 0.0361
d = 1
e = 0.0149

The covaraince matrices Q and R are assumed to be known. For the initial tests, we
can use the following values:

Q = diag(0.0013, 0.0013, 5e− 6, 1e− 10),
R = diag(0.0006, 0.0006).

Limits:

uα,max = 50V, uα,min = −50V,
uβ,max = 50V. uβ,min = −50V,

Perhaps better:
u2
α + u2

β < 1002.

2 Control
The task is to reach predefined speed ωt.
For simplicity, we will assume additive loss function:

l(xt, ut) = (ωt − ωt)2 + q(u2
α,t + u2

β,t).

= (ωt − ωt)Ξ(ωt − ωt) + [uαt, uβt]
[
υ 0
0 υ

]
︸ ︷︷ ︸

Υ

[
uαt
uβt

]
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Here, Υ is the chosen penalization of the inputs, which remains to be tuned.
Note: classical notation of penalization matrices is Q and R, but it conflicts wit Q

and R in (4).
Following the standard dynamic programming approach, optimization of the loss func-

tion can be done recursively, as follows:

V (xt−1, ut−1) = arg min
ut

Ef(xt,yt|xt−1) {l(xt, ut) + V (xt, ut)} ,

where V (xt, ut) is the Bellman function. Since the model evolution is stochastic, we can
reformulate it in terms of sufficient statistics, S as follows:

V (St−1) = min
ut

Ef(xt,yt|xt−1) {l(xt, ut) + V (St)} .

Representation of the Bellman function depends on chosen approximation.

2.1 LQG control
Control of linear state-space model with Gaussian noise

xt = Axt−1 +But +Q
1
2 vt,

yt = Cxt +Dut +R
1
2wt.

to minimize loss function

Lt = (xt − xt)′Ξ(xt − xt) + u′tΥut.

Optimal solution in the sense of dynamic programming on horizon t+ h is:

ut = Lt (x̂t − xt) ,
Lt = −(B′St+1B + Υ)−1B′St+1A,

St = A′(St+1 − St+1B(B′St+1B + Υ)−1B′St+1)A+ Ξ,

This solution is certainty equivalent, i.e. only the first moment, x̂, of the Kalman filter
is used.

2.2 PI control
The classical control is based on transformation to dq reference frame:

id = iα cos(ϑ) + iβ sin(ϑ),
iq = iβ cos(ϑ)− iα sin(ϑ).

Desired iq current, iq, is derived using PI controller

iq = PI(ω − ω, Pi, Ii).
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This current needs to be achieved through voltages ud, uq which are again obtained from
a PI controller

ud = PI(−id, Pu, Iu),
uq = PI(iq − iq, Pu, Iu).

These are compensated (for some reason) as follows:

ud = ud − LSωiq,
uq = uq + Ψpmω.

Conversion to uα, uβ is

uα = |U | cos(φ), uβ = |U | sin(φ)

|U | =
√
u2
d + u2

q , φ =
{

arctan(uq

ud
) + ϑ ud ≥ 0

arctan(uq

ud
) + π + ϑ ud < 0

PI controller is defined as follows:

x = PI(ε, P, I)
= Pε+ I(St−1 + ε)

St = St−1 + ε

Constants for the system:

Pi = 3, Ii = 0.00375, Pu = 20, Iu = 0.5.

The requested values for ω should be kept in interval < −30, 30 >.

2.3 Poor-man’s dual LQG control
Various heuristic solutions to dual extension of LQG has been proposed. Most of them
is based on approximation of the loss function

Lt = (xt − xt)′Ξ(xt − xt) + (ut − ut)′Υ(ut − ut) +DUAL_TERM.

where DUAL_TERM is typically a function of Pt+2.
To be continued...

2.4 Test Scenarios
With almost full information, design of the control strategy should be almost trivial:

îα = 0, îβ = 0, ω̂ = 1, ϑ = π

2 ,

Pt = diag([0.01, 0.01, 0.01, 0.01]).

5



The difficulty arise with growing initial covariance matrix:

îα = 0, îβ = 0, ω̂ = 1, ϑ = π

2 ,

Pt = diag([0.01, 0.01, 0.01, 1]).

Or even worse:

îα = 0, îβ = 0, ω̂ = 1, ϑ = π

2 ,

Pt = diag([0.01, 0.01, 0.01, 10]).

===
The requested value ωt = 1.0015.

Conjecture 1. It is sufficient to consider hyper-state H = [̂iα, îβ, ω̂, ϑ̂, P (3, 3), P (4, 4)].
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