ARX Class Reference

Linear Autoregressive model with Gaussian noise. More...

#include <arx.h>

Inheritance diagram for ARX:

Inheritance graph
[legend]
Collaboration diagram for ARX:

Collaboration graph
[legend]

List of all members.

Public Member Functions

 ARX (RV &rv, mat &V0, double &nu0, double frg0=1.0)
 Full constructor.
void bayes (const vec &dt)
 Here $dt = [y_t psi_t] $.
epdf_epdf ()
 Returns a pointer to the epdf representing posterior density on parameters. Use with care!
ivec structure_est (egiw Eg0)
 Brute force structure estimation.
void bayes (mat Dt)
 Batch Bayes rule (columns of Dt are observations).
const RV_rv () const
 access function
double _ll () const
 access function

Protected Attributes

egiw est
 Posterior estimate of $\theta,r$ in the form of Normal-inverse Wishart density.
ldmatV
 cached value of est.V
double & nu
 cached value of est.nu
double frg
 forgetting factor
double last_lognc
 cached value of lognc() in the previous step (used in evaluation of ll )
RV rv
 Random variable of the posterior.
double ll
 Logarithm of marginalized data likelihood.
bool evalll
 If true, the filter will compute likelihood of the data record and store it in ll . Set to false if you want to save time.


Detailed Description

Linear Autoregressive model with Gaussian noise.

Regression of the following kind:

\[ y_t = \theta_1 \psi_1 + \theta_2 + \psi_2 +\ldots + \theta_n \psi_n + r e_t \]

where unknown parameters rv are $[\theta r]$, regression vector $\psi=\psi(y_{1:t},u_{1:t})$ is a known function of past outputs and exogeneous variables $u_t$. Distrubances $e_t$ are supposed to be normally distributed:

\[ e_t \sim \mathcal{N}(0,1). \]

Extension for time-variant parameters $\theta_t,r_t$ may be achived using exponential forgetting (Kulhavy and Zarrop, 1993). In such a case, the forgetting factor frg $\in <0,1>$ should be given in the constructor. Time-invariant parameters are estimated for frg = 1.


Member Function Documentation

ivec ARX::structure_est ( egiw  Eg0  ) 

Brute force structure estimation.

Returns:
indeces of accepted regressors.

References RV::count(), est, egiw::lognc(), and BM::rv.


The documentation for this class was generated from the following files:

Generated on Fri May 9 23:06:34 2008 for mixpp by  doxygen 1.5.5