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SUMMARY

This paper presents the use of iterative dynamic programming employing exact penalty functions for
minimum energy control problems. We show that exact continuously non-differentiable penalty functions
are superior to continuously differentiable penalty functions in terms of satisfying final state constraints,
We also demonstrate that the choice of an appropriate penalty function factor depends on the relative size
of the time delay with respect to the final time and on the expected value of the energy consumption. A
quadratic approximation (QA) of the delayed variables is much better than a linear approximation (LA)
of the same for relatively large time delays. The QA improves the rate of convergence and avoids the
formation of 'kinks'.

A more general way of selecting appropriate penalty function factors is given and the results obtained
using four illustrative examples of varying complexity corroborate the efficacy of the method.

KEY WORDS iterative dynamic programming; absolute error penalty function; quadratic approximation;
time delay systems; minimum energy control

1. INTRODUCTION

The solution of minimum energy control {MEC) problems based on the maximum principle is
generally difficult because the transversality condition does not provide the freedom to state an
initial condition for the adjoint variables. For systems with time delay the situation is aggravated
because the set of differential equations involves both delayed (in state) and advanced (in
adjoint) variables. Therefore several methods of solving MEC problems with time delay have
been proposed.'~* Most of these methods require considerable mathematical effort and expertise
and have been limited to linear systems.

We present the use of iterative dynamic programming (IDP) for minimum energy control of
any general dynamic system with or without time delay. Luus and Rosen® have applied IDP to
final state constrained optimal control problems but not to systems with time delay. Recently
Dadebo and Luus® have shown that IDP can be applied to free endpoint time delay systems to
give good results. The purpose of this paper is to employ exact penalty functions in handling
final state constraints and to extend the algorithm proposed by Dadebo and Luus® to handle
minimum energy control problems. However, for time delay systems we investigate the
possibility of improving the convergence of the algorithm by using a quadratic approximation
rather than a linear approximation of the delayed state profiles which often resulted in ‘kinks’.?

*Part of this article was presented at the 1993 American Control Conference, San Francisco, CA.,
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We investigate the effect of the relative size of the time delay and the energy consumption on
the choice of an appropriate penalty function. We also address the problem of how to choose
suitable weighting factors for these penalty functions. The size of a suitable penalty function
factor in relation to energy consumption, the magnitude of the time delay and convergence are
investigated using four examples of varying complexity.

2. MINIMUM ENERGY CONTROL PROBLEM FORMULATICON

Consider the system described by the following vector differential equation with a constant time
delay 7 in one or more of the state variables:

X0 _ 0, x- 1), u(0) M)
The initial state profile for each of the delayed states is a known function of time,
| x(t)= ¢(f), -71<t<0 @)
and the initial condition is specified for each of the states,
x(0)=x, (3)
x(#) is an (n x 1) state vector and u(r) is an (m x 1) control vector which may be bounded,
aswsf, j=12,..,m 4)

For a minimum energy problem the associated performance index to be minimized is
1x©), 8 = 4 | "u"ORu() dr (5)

where R is a diagonal positive definite weighting matrix. The final time ¢, is specified. The
minimum energy control problem is to find the control policy u(¢) in the given time interval
(0, t¢) such that the performance index 7 is minimized while satisfying the terminal constraint

X(tr) =X¢ (6

3. APPLICATION OF ITERATIVE DYNAMIC PROGRAMMING

Details of the IDP algorithm for MEC and derivation of the equations for the quadratic
approximation of the delayed state profiles required for each grid point integration during the
backward optimization step can be found in Reference 6. In order to satisfy the terminal
constraints, we construct the augmented performance indices

A
h=I+) 8l ~nl, l<j<ns<n )

i=1

/i
h=1+) ol -xl 1<j<psn ®)

j=1
where # is the number of terminally constrained state variables and 8, and ), are corresponding
penalty function factors or weighting factors. The acronyms SEPF (squared error penalty
function) and AEPF (absolute error penalty function) corresponding to equations (7) and (8)
respectively will be used throughout this paper. Luus and Rosen* suggested the use of a
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relatively small value of @, for non-delay systems. Since the relative benefits of the SEPF and
AEPF approaches are not well understood, especially for time delay systems, we investigate the
effects of the penalty function and weighting factor choices on the convergence properties of
the solution. Our goal is to develop a reliable guideline in selecting appropriate weighting
factors, since the use of the AEPF has rarely been seen in the optimal control literature. This
alternative is easily managed with IDP, wheteas other techniques, more often than not, use the
quadratic penalty function for mathematical tractability.

The convergence of the IDP algorithm depends on the initial choice of the control region
which is contracted after each iteration. If a contraction factor of about 70% is used, the control
region will be reduced by at least a factor of 1000 after 20 iterations and thus convergence to
the optimum will be attained.’

4. NUMERICAL EXAMPLES AND DISCUSSION

All integrations were done on a 386/33 personal computer using a modified Runge—Kutta
subroutine of order 4/5 to handle delay terms in the differential equations.®

Example 1. SISO linear problems with stable and unstable open loop behaviour

We consider the linear time delay system optimized by Palanisamy and Rao® using single-
term Walsh series and also by Inoue ef al.' using sensitivity analysis. The system is described by
the delay differential equation

dx(?)
dr

sax(+bx(t—1)+ (), a,bER 9

x()=10, -1st<0 (10)

with the associated performance index to be minimized,

1=} [D' 26y dt  such that x(1) = 0-0 (11)
For this system we consider two cases, system A (a=1,b=1) and system B (a=-1,b=-1),
which are open loop unstable and stable respectively. The results obtained are given in Table I
using the AEPF and a quadratic approximation of the delayed state profile with y=0-70, r=1-0

Table I. Effect of time delay on energy consumption
for Example 1 using N=17, M=3, P=10 and
allowing 20 iterations

Energy consumption [

Time delay System A System B
T {(a=1,b=1) (a=-1,b=-1)
0-00 204682 0-03737
0-05 2-18606 0-02856
0-10 2-28403 0-02099
0-15 2-35599 0-01461

0-20 2:43097 0-00937
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and w = 1.0. The final state constraint was satisfied in each case. Table II presents a comparison
of the results obtained using IDP and other methods in the literature. Clearly IDP gives more
reliable results. Table IIl indicates the effect of the penalty function on the performance index
and the degree to which the final state constraints are met. Notice that x(¢;) deviates significantly
from zero even for very large values of 6 using the SEPF, whereas the AEPF reliably meets the
terminal constraint for a wide range of weighting factors. Figure 1 shows the plot of
performance index [ obtained after 20 iterations versus time delay for system B using linear and
quadratic approximations. Clearly a quadratic interpolation of the delayed state becomes
necessary for rapid convergence to the optimum when the relative size of the time delay is
large.

Example 2. A linear SISO problem with large time delay and bounded input
Consider the linear time delay system optimized by Liou and Chou® and Chyung and Lee.®
The system is described by
dx(?)
dt
xnN=1, 1€[-1,0] (13)

The problem is to find an optimal control policy u(t) on [0, 2] driving the response x(f) to the
origin while minimizing the performance index

= —x(t — 1) + u(f) (12)

1=} ["W(de suchtharx(2)=0 (14)
Here the control is bounded (u(¢)=0) and measurable on [0, 2]. Chyung and Lee® obtained
the exact solution of the system analytically and reported a performance index of 0-09375.
We obtained a minimum value of 010611 in 20 iterations using w=10, P=8, M=3,
N=17 and a guess of ¥°=0-0 with r=0-12. The terminal error was —0-00012. The
convergence, however, was quite slow. For relatively small values of 7 the convergence is

Table II. Comparison of present results (boldface) with other methods reported
in the literature for Example 1

Time delay Terminal error Performance
System T Method” x(te) = x¢ index
A 0-0 Cs (-2933 20373
(a=b=1) 0-0 SS 0-0078 5-4181
0-0 STWS 0-0000 2:.2381
0-0 IDP 0-0000 2-0468
B 0-0 5§ -0-0356 0.0373
(a=b=-1) 0-0 IDP 0-0000 0-03737
0-1 ss 0-0122 1-4181
0-1 STWS 0-0000 0-0209
01 IDP 0-00000 0-02099

*CS, conventional synthesis (as reported by Inoue e al.'); SS, sensitivity synthesis (as
reportedzby Inoue et al.’); STWS, single-term Walsh seties (as reported by Palanisamy
and Rao?),
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Table OI. Effect of penalty function factor on I for Example 1,
system A (r=0-1)

Absclute error penalty Squared error penalty
Penalty function function
function (AEPF) (SEPF)
factor
0,w I x(te} I x(tp)
1.0 2-283936 0-00006498 2.006491  0-340480100
10 2.747395 —0:-00000316 2.234977  0-035988570
100 2934113 0-00000220 234583t  0-003605908
1000 2:830834 0-00036539 2:868448  0-000457411

very rapid with P as low as 8. However, for 7=1-0, which is one-half of the final time of
2.0, it was necessary to try different values of @ before an appropriate penalty function was
obtained. The values of M and N were increased to 5 and 21 respectively. The number of
stages chosen was four initially (corresponding to L =0-5 = 0-57) and doubled to eight after
20 iterations. The variation in the performance index ! with the penalty function factor w is
shown in Figure 2. The best value of the performance index obtained was 0-094963 with
x(2) = —0-00032774 using w=0-5. By increasing the number of grid points to 41, we
obtained /=0-093538 and x(2)= -0-007464. The quadratic approximation gives reliable
results over a wider range of w. However, the appropriate choice of @ for relatively large
time delays is quite critical. It may be necessary to use a higher-order approximation for
such systems with large time delays.
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Figure 1. Effect of time delay on I* for Example 1
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Figure 2. Effect of @ on /* for Example 2

Example 3. A multivariable non-linear problem

Example 3 is a non-linear problem given by Malek-Zavarei and Jamshidi.'®

described by
dfil(t) = =240 %) + X - 0-1) + u(®
t
dfilit) = —Xo{1) = 2x,(0)x (7 = O-1) + wy(1)

with the initial state profile
u{H=x(0=10, -0-1=<¢<00

and the associated performance index to be minimized is

N GORTEOR

I

We shall impose the constraint that
x(1)=x,(1)=0-0

The system is

(15)

(16)

17

(18)

(19)

We obtained [=0-417318 with x,(1)=0-062446 and x,(1) =0-000910 using P =12, M =35,
N=21, y=0-80, w,=1 and w,=1. Although x,(1) is acceptable, x,(1) is too large, so we
increased the weighting on x,(1) to w,=10. The associated control policy and the state
trajectories obtained are shown in Figures 3 and 4 respectively. The performance index more
than doubled (7 =0-838197 with x, (1) =0-000027 and x,(1} = 0-000569) to achieve the terminal
constraint. Therefore, if the final state constraint on x, can be relaxed, a considerable energy
saving can be realized and w, = w, =1 is an appropriate choice. When 6, = 8, = 100 was used,
the best choice in the SEPF case, the performance index obtained was 1-00359 after 20
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Figure 3. Control policy for Example 3 with 12 stages

iterations {with x, (1) =0-000154 and x,(1) = 0-005339), illustrating that the choice of both the
penalty function and weighting parameters affects the convergence of the IDP scheme.

Example 4. A nuclear reactor problem

Consider the nuclear reactor system with a single group of delayed neutrons described by
Sage and White'' and subsequently by Van Dooren'? and Luus and Rosen:*

dn@ 1000[e() — 0-00641x,(2) + 0-1x,(8) 20)
t
% = 6-4x)(1) + 0-1x,(¢) @l
¢

with x,(0)=0-5, x,(0)=32 and a desired final state constraint x,(1)=35-0. Here x,(¢) and
x,(t) refer to the neutron flux density and the precursor concentration respectively. The
problem is to find the reactivity (control} u(f)|u(¢)=0 which will drive the neutron flux
density from its initial state to the desired final state x,(1)=35-0 with minimum control
effort:

I=} IO' (1) dt (22)

This problem has been studied quite extensively by Luus and Rosen using IDP (with the
SEPF), who seemed to have had some difficulty in selecting a suitable value of 8 and resorted
to trying several values. They concluded that if 6 is reasonably small, then the solution
converges to the optimum readily. Using the AEPF, we note that if w is chosen to be of the
same magnitude as the expected performance index, then convergence to the global optimum
occurs, Using P=10, N=17, M=3, w=1x 10" and allowing 25 iterations, we obtained
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Figure 4. Evolution of states for Example 3 using w, = 10 and w, =1

{=1-787 x 10~ with x,(1) = 5-00000. This result is important because Luus and Rosen could
not get that close to the optimum using an SEPF with M =3, Using P=20, M=21, N=21 and
w=1x10"°, we obtained /=1.769x 10~ with x,(1)=5-00000, which compares very
favourably with Van Dooren’s value of 1.767 x 1075, There was no difficulty in converging to
the optimum using the AEPF approach and the final state constraint x,(1) was exactly 5-0 as
required. Figures 5 and 6 show the evelution of the states and the corresponding control policy
respectively.
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Figure 5. Evolution of states for Example 4 using P =20
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Figure 6. Piecewise constant control policy for Example 4 using P =20

5. CONCLUSIONS

Iterative dynamic programming provides a reliable method for solving the minimum energy
control problem without having to solve a two-point boundary value problem. For relatively
small time delays (less than 20% of the final time) a linear approximation is adequate.
However, for larger time delays a quadratic approximation leads to faster convergence towards
the optimum.

Final state constraints can be enforced implicitly by augmenting the minimum energy
performance index with either a squared error penalty function (SEPF) or an absolute error
penalty function (AEPF). The superiority of exact penalty functions has been confirmed and the
AEPF approach gives reliable results with rapid convergence over a wider range of penalty
function factors than does the SEPF. The most appropriate choice of the weighting factor w
when using the AEPF is similar in magnitude to the expected minimum energy. This choice of
o is generally smaller than the comesponding @ when an SEPF is desired. In situations where
the final constraint requirement far outweighs the energy consumption, the AEPF approach is
highly recommended. On the other hand, depending on the problem, some trade-off between
quality or final state specification and energy consumption may be necessary especially when
one or more of the terminal constraints can be relaxed. An advantage of the IDP approach is
that the procedure can easily handle both linear and non-linear time-varying systems.
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APPENDIX: NOMENCLATURE

vector of n functions of x(1), x(¢— ) and u(r)
performance index to be minimized

augmented performance index

index used to denote time stage

length of time stage

dimension of the control vector

odd number of allowable values of each control variable at each time stage
dimension of state vector

odd number of grid points for x

number of time stages chosen

region allowed for control

diagonal weighting matrix

time

{m x 1) control vector

{n x 1) state vector

initial condition of state vector

FRE-DMIPZIS gI AN

Greek letters

a lower bound on control

B upper bound on control

¥ amount by which control region is contracted after each iteration
/] number of final state constrained variables
7] squared error penalty function factor
T time delay

¢ initial state profile

w absolute error penalty function factor
Subscripts

f final

i index for entry in vector

k index for time at stage k

0 initial

Superscripts

H iteration index

0 optimal

T transpose

Acronyms

AEPF absolute error penaity function

CSs conventional synthesis

IDP iterative dynamic programming

LA linear approximation
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QA quadratic approximation
SEPF squared error penalty function
SISO single-input/single-output

SS

sensitivity synthesis

STWS single-term Walsh series

Rl B

in

P <

Se®

1i.
12,
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