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1 IntroductionComputational economics has enabled researchers to push out the frontiersof the discipline far beyond what purely analytical methods will allow. Noarea of economics seems to be untouched by this computational revolution. Ithas had profound e�ects on applied microeconomics, labor economics, busi-ness cycles, �nance, game theory, social choice, and econometrics. Unfortu-nately, researchers adopting the computational approach have quite naturallyreached another barrier: existing numerical algorithms cannot always dealwith the increasing complexities of economic models. Economic problemsthat lack su�cient smoothness (such as models with �xed costs or borrowingconstraints) do not easily �t into smooth approximation methods (such aslinear-quadratic approximations). Dynamic problems with high dimensionalstate spaces rule out most algorithms by virtue of simple memory require-ments. Econometric estimators based on repeated simulations of solutionsto dynamic economies are typically limited by the slowness of most com-putational algorithms. For these and countless other reasons the bene�tsfrom improving our ability to solve interesting/di�cult economic models areimmeasurable.This paper bring recent advances in Operations Research to bear on someof these computational issues in economics. Recent advances in algorithmsfor solving very large linear programs, speci�cally constraint generation, mo-tivate new algorithms for solving discrete stochastic dynamic programs. Weuse a standard optimal growth problem to demonstrate the performance ben-e�ts of these new algorithms for solving discrete problems and for accuratelyapproximating solutions to continuous problems through discretization. Ourresults, reported below, suggest that computational speed over value itera-tion is substantial. Furthermore, computational speed does not depend onthe parameter settings (in particular the degree of discounting).Perhaps most important, though, is our use of shadow prices to auto-matically generate a discrete grid. A major di�culty in discretization is thechoice of the grid. Too coarse a grid may lead to inaccurate solutions whiletoo �ne a grid may be computationally intractable. Our approach can au-tomatically generate a suitable grid without prior knowledge of propertiesof the solution. Moreover, this is accomplished at no extra computational2



cost. Our algorithms, therefore, obtain greater accuracy without increasingdimensionality or computational cost.The simplest algorithm for solving �nite discrete numerical dynamic pro-grams and for approximating continuous problems through discretization isvalue{function iteration. It requires no specialized computer software andis based on the same contraction{mapping principle that is typically usedto establish the existence of a solution. The problems associated with stan-dard value{function iteration are well known and have often led researchersto abandon this algorithm in favor of other methods (see Judd (1991), for athorough discussion of numerical dynamic programming and solution meth-ods). Among these problems are the rapid increase in the size of the problemas the state space expands, the sensitivity of the algorithm to properties of theproblem (in particular the degree of discounting), and when approximatingcontinuous problems, knowing how to discretize the state space and when aparticular discretization has provided a su�ciently accurate approximation.However, there are also bene�ts from solving directly for the value func-tion. For example, the value function is de�ned for all problems so it can beobtained in problems where corner solutions or non-di�erentiabilities makesolving for optimal policies using alternative methods inapplicable. More-over, the ability to obtain arbitrarily accurate discrete approximations tocontinuous problems by using arbitrarily �ne discretizations has lead to theuse of value-function-based solutions as a benchmark for accuracy checks(see, for example, Judd (1991), chapter 13, and Christiano (1990)).In this paper we adopt a linear programming approach for solving directlyfor value functions in stochastic dynamic programming problems. The useof linear programming, per se, is neither new nor, as we show below, is itnecessarily better than value iteration. What is new in this context is the useof constraint{generation algorithms for solving these linear programs, whichcan provide orders of magnitude computational savings, and the use of dualvalues (i.e., shadow prices) for determining an e�cient location of pointson the discretization of the state space. As we shall see, the combinationof constraint generation and adaptive grid generation provides an extremelyattractive algorithm for solving discretized stochastic dynamic programs.The class of dynamic programming problems that economists would liketo solve numerically is extremely large. Rather than present the most gen-3



eral case, we develop our computational methods in terms of the standardoptimizing growth model. Since this problem is the starting point for mostdynamic economic theories, other problems inherit much of the structure ofthis problem and generalizations are fairly obvious. Moreover, this modelhas become an informal benchmark for comparisons of competing algorithms(e.g., Taylor and Uhlig (1990)). We begin by laying out the structure of astandard optimal growth model (e.g., Stokey and Lucas (1989), chapter 2) inSection 2. This model serves both as a benchmark for comparisons with othersolution methods and as a canonical stochastic dynamic program. In Section3 we solve a variety of numerical examples of this growth model using threedi�erent algorithms. We compare speed and robustness for value functioniteration, straight linear programming and constraint generation and we dis-cuss grid generation as a way of speeding up both value iteration and linearprogramming. Finally in Section 4 we present the adaptive grid generationalgorithm and discuss issues of accuracy. Section 5 present extensions andother applications of this approach that we will pursue in the future.2 The Stochastic Growth ModelWe now lay out the basic structure of the stochastic growth model. For timeperiods t = 1; 2; : : :, the production technology is given byyt = ztf(kt) ;where yt is output produced in period t, kt is the stock of capital available atthe beginning of period t, f is a well-behaved production function and fztgis a stationary stochastic process representing the technology shock. Thesocial planner ranks random consumption sequences, fctg according to theexpected utility index U0 = E0 1Xt=0 �tu(ct) ;where 0 < � < 1 is the discount factor, u is a well-behaved within-periodutility function, and E0 denotes the period-0 conditional expectations oper-ator. The planner chooses a sequence of state-contingent consumption and4



capital pairs fct; kt+1g1t=1, to maximize utility subject to the constraintct + kt+1 � (1 � �)kt = ztf(kt) ;where 0 < � � 1 is the rate of depreciation of capital. Implicit in thisconstraint is a timing assumption that allows the planner to observe therealization of zt before making the period-t consumption/investment decision.The dynamic programming approach to solving this problem uses theBellman equationv(k; z) = maxk02A(k; z) fu (zf(k) + (1 � �)k � k0) + �E [v(k0; z0) j k; z]g ; (1)where v(k; z) is the value of the optimal plan given a capital stock k andtechnology shock z, and A(k; z) is the set of feasible actions satisfying 0 �k0 � zf(k)+(1��)k. Given v, optimal policies obtain from the maximizationon the right-hand side of (1). Closed-form solutions for optimal policies andvalues are generally unavailable. This motivates the interest in solutions tonumerical examples of these economies.We restrict our attention to a �nite discrete-state version of this economy.That is, capital and the technology shock are assumed to line in �nite setsde�ned respectively as K = nk(1); k(2); : : : ; k(nk)o ;and Z = nz(1); z(2); : : : ; z(nz)o :The stochastic process for the technology shock is a �rst-order Markov chainwith transition probabilities given by�ij = Prob �zt = z(j) ��� zt�1 = z(i)� :With this additional notation, we can write equation (1) asvij = maxa2Aij (uija + � nzXl=1 �jlval) ; (2)5



where vij = v(k(i); z(j)) ;uija = u �z(j)f(k(i)) + (1 � �)k(i) � k(a)� ;and Aij = na ���1 � a � nk; and z(j)f(k(i)) + (1� �)k(i) � k(a) > 0o :Let nij denote the number of elements in the set Aij.The maximization in (2) implies a set of inequalities that must be satis�edby the value function: s.t. vij � uija + � nzXl=1 �jlval ; (3)for all i, j, and a 2 Aij. It is well-known (e.g., Ross (1983)) that �nding thesmallest set of vij's that satisfy these constraints amounts to solving a linearprogram of the form minXij vij ;subject to (3). We can put this problem into more standard linear program-ming notation. De�nex = [v11; v12; : : : ; v1nz ; v21; v22; : : : ; v2nz;: : : ; vnk1; vnk2; : : : ; vnknz ]0 ;b = [u111; u111; : : : ; u11n11; u121; u122; : : : ; u12n12;: : : ; unknz1; unknz2; : : : ; unknznnknz ]0 ;and 1n = [1; 1; : : : ; 1]0 is an n = nknz dimensional column vector of ones.The value function ordinates are given by the solution tominx 10nxs.t. Ax � b ; (4)where A is an (Pij nij) � n matrix given by the constraints in (3). Thismatrix has a great deal of structure which can be seen from a simple example.Consider the case where nk = 3, nz = 2, nij = nk = 3 for all i and j, and theshocks are independent, �ij = �i. The matrix A in this case has the form:6



A =
266666666666666666666666666666666666664
1� ��1 ���2 0 0 0 01 0 ���1 ���2 0 01 0 0 0 ���1 ���2���1 1 � ��2 0 0 0 00 1 ���1 ���2 0 00 1 0 0 ���1 ���2���1 ���2 1 0 0 00 0 1� ��1 ���2 0 00 0 1 0 ���1 ���2���1 ���2 0 1 0 00 0 ���1 1 � ��2 0 00 0 0 1 ���1 ���2���1 ���2 0 0 1 00 0 ���1 ���2 1 00 0 0 0 1� ��1 ���2���1 ���2 0 0 0 10 0 ���1 ���2 0 10 0 0 0 ���1 1 � ��2

377777777777777777777777777777777777775 :The pattern in this matrix is fairly obvious and is easily extended to thegeneral case.The size of this linear program will clearly present a problem. The valuefunction at each point (i; j) in the state space must satisfy nij restrictions.The number of constraints for the nknz variables could be as large as n2knz.In particular, when this discrete problem is approximating a continuous one,accurate solutions would seem to require nk to be quite large, hence mak-ing standard numerical methods impractical. For this reason, we exploreconstraint generation algorithms in this context.Constraint generation is a technique for solving linear programs with alarge number of constraints. Rather than have a computer code attempt tosolve such a large linear program, the solution procedure begins with a smallnumber of constraints. The linear program over this subset of constraintsis solved. If the result is feasible to all of the other constraints, then the7



incumbent solution is optimal. Otherwise, some of the constraints violatedby the solution are added to the linear program and the linear program isresolved. This process iterates until all constraints are satis�ed.Constraint generation has been spectacularly successful recently in solv-ing tremendous linear programs. For instance, in the work of Gr�otschel andHolland (1991), a formulation for the traveling salesman problem that is esti-mated to have 260 constraints is solved in a matter of hours on a workstation.Work such as this requires the ability to solve some optimization problem inorder to identify violated constraints.We adapt the constraint generation technique to solving the linear pro-gramming formulation for discrete stochastic dynamic programs. We willbegin with a small number of constraints and add constraints only whenthe current solution violates them. Unlike the work listed above, we needto check each constraint in turn to see if it is violated. (In this paper wesolve linear programs in more than 8; 000 variables subject to more than 18:3million constraints. Moreover, we are able to accomplish this is a little morethan an hour and a quarter of workstation time.) In addition to solvinglarge problems, constraint generation provides speed gains over solving thefull linear program for a number of reasons:� By knowing that the optimal solution needs only one binding constraint(action) for each state, we can add only the most violated constraint foreach state, rather than possibly a large number of unneeded constraints.� We can precalculate common terms used in multiple constraints.� We can ignore entire states, and only add them when we have a goodestimate of where their optimal actions occur.As we shall see, these reasons are su�cient for orders of magnitudespeedup over the full linear program.8



3 Solving for Value FunctionsWe specialize the growth model further by specifying explicit functional formsfor f and u, choosing numerical values for all of the models parameters, andchoosing a discretization of the state space. For these numerical models wecompare the performance of value iteration, linear programming and con-straint generation algorithms.3.1 Parameter settingsThe exogenous technology shock is a two-state markov chain, with a highstate of z2 = 1:377 and a low state of z1 = 0:726. The transition matrix is� = " 0.975 0.0250.025 0.975 # :This is the high variance model in Christiano (1990) and corresponds to thelog of the shock having a mean of zero, a variance of 0:1, a high degree ofpersistence, and a symmetric ergodic distribution.We choose simple power functions for the production function, f(k) = k�,and the utility function, u(c) = c�=�. The share parameter, � is set at0:33 and the depreciation rate, �, is set at zero. In the \base case" we setthe discount factor, �, to 0:98 and the risk aversion parameter, �, to 0:5.For this base case, we evaluate the performance of each algorithm as thenk increases which increases both the number of choice variables and thenumber of constraints in the linear program. To evaluate the robustness ofthese results we also conduct experiments where nk is �xed and � varies overthe values f0:75; 0:85; 0:9; 0:95; 0:98; 0:99; 0:999g. The discrete grid over thecapital stock is equally spaced with end points chosen so that roughly 10%of the points lie below k�(z1) and roughly 10% of the points lie above k�(z2)de�ned byk�(z1) = " ��z1(1 � (1� �)�)# 11�� k�(z2) = " ��z2(1 � (1 � �)�)# 11�� :9



The quantities k�(z1) and k�(z2) are the deterministic steady{state valuesfor equilibrium capital when z1 and z2, respectively, are permanent featuresof the �xed technology. This somewhat arbitrary choice of endpoints for thecapital grid provides an automatic way of ensuring that the solution has awell dispersed ergodic set. If we were more interested in the exact solutionsto this problem rather than the properties of computational algorithms forsolving this problem, then we would want to be more careful in choosingthese points and perhaps tailor these choices to each numerical version of themodel being solved.Starting values for value iteration are chosen as follows. For each point inthe state space, we calculate the steady-state utility as if the smallest feasiblecapital stock was the deterministic steady state. This value, u(k)=(1 � �),forms the initial value from which we iterate until convergence. Starting val-ues for value iteration are an extremely important determinant of the speedof the algorithm: the better the starting values, the faster the algorithm. Themethod we adopt for choosing starting values is, we believe, as simple auto-matic method that does not require a lot of ex ante information about thesolution, hence, it allows for reasonably fair comparisons with other meth-ods. In particular, we take comparable steps when starting up the constraintgeneration linear programming algorithm described below. Later we willdiscuss the possibility for grid generation to provide more accurate startingvalues and a commensurate increase in speed. The convergence criterion ismax(i;j) jvm+1ij � vmij j < 0:000001.3.2 SolutionsThe following experiments were performed on an HP 720 workstation with32MB memory running HP{UX 8.0. All of the computer codes were writtenin \C" and compiled with the operating system's \cc" compiler. The linearprograms were solved with \CPLEX", a commercial code widely availablefor a number of computer systems.Our intention in these tests was to generate conclusions applicable tomore than just the simple growth model. To this end, we tried to exploitonly those features of the model that have wide applicability. Therefore, all10



Figure 1: Value Iteration and Linear Programming Comparisons
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of these codes precalculated terms when possible, provided the space requiredwas no more than nknz. This meant that codes could not precalculate all ofthe uija but they could precalculate the (expensive) term that depends onlyon i and j ((1 � �)ki + 
k�i zj in this case). Similarly, to update after eachiteration of value iteration or to generate constraints in constraint generation,the term �Pj0 �jj0vaj0 needs to be calculated only once for each (a; j). Otheraspects speci�c to the growth model, such as the curvature of the utilityfunction and the near{linearity of the value function for certain parametervalues are not explicitly exploited.Figure 1 plots the computational speed in seconds against the size of thegrid for the capital stock, for value iteration and linear programming solu-tions to the base-case growth model. It is clear from this �gure that linearprogramming provides dramatic increases in speed. Moreover, computationaltime appears to be growing much more slowly for linear programming thanfor value iteration. For the smallest problem in this �gure, nk = 33, linearprogramming is almost 80 times faster than value iteration (0:2 seconds com-11



Figure 2: LP, Constraint and Grid Generation Comparisons
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pared to 15:86 seconds). For the largest problem in this �gure, nk = 513,linear programming is approximately 13 times faster than value iteration(297:11 seconds compared to 3781:7 seconds). These results indicate thatstandard linear programming can provide at least an order-of-magnitude im-provement over standard value{function iteration for problems of this size.The drawback of standard linear programming is the large amount of memoryneeded to solve large problems. However, as discussed in the introduction,recent algorithmic advances help alleviate much of this memory burden. Hav-ing established the bene�ts of the linear programming approach over valueiteration, we now turn to re�nements on the linear programming algorithm,namely, constraint generation.Figure 2 compares the relative performance of standard linear program-ming to the constraint{generation algorithm for solving linear programs. Asdescribed above, constraint generation begins by solving the linear programsubject to a subset of the constraints, then repeatedly adding in violatedconstraints and resolving, until all constraints are satis�ed. For the problem12



at hand, we implement this algorithm by beginning with the linear programthat includes only the constraints de�ned by the smallest feasible action foreach point in the state space. At each iteration, for each state (i; j) we addthe constraint corresponding to the action, a, that has the largest value ofu(i; j; a) +Pj0 ��jj0vk�1(a; j), unless this constraint is already in the linearprogram. When each constraint is satis�ed to within 0:000001, we concludethat the algorithm has converged. For the smallest problem in the �gure,nk = 33, constraint generation is actually slower than straight linear pro-gramming (0:4 compared to 0:1), however, for the largest problem in this�gure, nk = 513, constraint generation is more than two and a half timesfaster than straight linear programming (115:82 seconds compared to 297:11).Speed is not the only motivation for constraint generation. Of even greaterbene�t is the ability to solve very large problems (as in Figure 3).Along with standard linear programming and constraint generation, Fig-ure 2 contains results for an algorithm that we term grid generation. Thebasic idea behind this algorithm is as follows. We begin by solving the prob-lem using only a subset of states. We use the solution to the subset togenerate good starting solutions to a larger set of states. We continue un-til we have solved for all the states. In this case, we begin by solving theproblem corresponding to nk = 16, choosing these 16 points equally spacedover the entire large grid. When we have found the solution to this smallproblem, we then add new points to the capital grid halfway between eachof the current points (note that these new points are also on the large grid),doubling the grid size in the process. For each point that we add, we in-clude three new constraints: the constraint corresponding to a guess for theoptimal action for the new point (computed as the average of the optimalactions of its neighbors) and the points on the nk = 32 grid adjacent to thisguess. We also include new constraints corresponding to the actions on this�ner grid that are adjacent to the optimal actions from the nk = 16 prob-lem, since these are the newly introduced actions that are most likely to beclose substitutes for the original actions. We then optimize this larger prob-lem completely over the set of capital points (using constraint generation)before adding new points. New points are added in exactly the same way,doubling the grid size each time, until the full problem is completely solved.Since, with constraint generation, we are already solving a sequence of largerand larger linear programs, increasing the grid size in this way is a natural13



Figure 3: Larger Problem
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extension.As we see in Figure 2, grid generation provides a speed gain over simpleconstraint generation comparable to that of constraint generation over stan-dard linear programming. For the largest sized problem in this �gure, gridgeneration is more than 4 times faster than constraint generation (27 secondscompared to 115:82). Grid generation is, therefore, more than 10 times fasterthan standard linear programming. Since memory demands are not as greatfor these two algorithms (relative to standard linear programming), we cansolve larger problems. Figure 3 continues the results in the left panel out tonk = 4097. We can see that the speed gains from grid generation continueas the size of the problem increases. It is worth noting the size of the linearprograms that we are solving. With a capital grid of 4; 097 points, we solvefor 8; 194 variables subject to 18; 507; 872 constraints. Grid generation solvesthis large linear program in a little over an hour and a quarter.We also experimented with a grid generation algorithm for standardvalue{function iteration. We began by solving on an initial grid of 16 points14



using the value{iteration algorithm described above. Given the solution tothis problem, we add points on the capital grid halfway between each of thecurrent points, doubling the size of the grid. We then take as the startingvalue for the next round of value iteration, the average of the values at thetwo neighboring points (given by the solution to the nk = 16 problem). Thisprocess is continued until the full problem has been solved. Although thisgrid generation improves the performance of the value{iteration algorithm,the gains are typically on the order of 30% (with a maximum of 90% for thenk = 513 problem), it is not enough to make value iteration competitive witheither column generation or grid generation.One of the known drawbacks of value iteration is its sensitivity to thedegree of persistence and the degree of discounting in the problem beingsolved. Our base case already has a high degree of persistence in the tech-nology shock and has no depreciation in the capital stock. To examine therelative performance of our algorithms we solve the base{case model withnk = 1025 for a grid of values for the discount factor: � 2 f0.75, 0.8, 0.9,0.95, 0.98, 0.99, 0.995, 0.999g. Figure 4 plots the computation time for gridgeneration and for value{function iteration against these values of the dis-count factor. In fact, standard value iteration takes a prohibitively long timeto converge for large values of �. We, therefore, exploit a very speci�c featureof the problem at hand to speed up the algorithm. This goes against ourobjective of providing results that are likely to be true beyond this simplemodel, but it does make the comparisons we have in mind feasible. Speci�-cally, when searching for the optimal action for each point in the state space,we begin at the current action and search by increasing the value of the ac-tion until the maximand decreases. This allows us to terminate the searchbefore conducting a full enumeration of the action space. The monotonic-ity that this procedure exploits is a property that can be shown to hold atthe optimum. It typically also holds at earlier iterations provided the initialconditions are increasing in the capital stock. We increase the speed of thisalgorithm further by exploiting the grid{generation method of obtaining ac-curate starting values, as described above. With this problem-speci�c speedup, value iteration can be faster than grid generation for small values for �.The important point to note, however, is that computational speed for gridgenerating is almost una�ected by increasing the values of �. In contrast,note the extremely rapid increase in computational time for value iteration15



Figure 4: Sensitivity to Discounting
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Grid Generation(2; 205 seconds for value iteration compared to 88:69 seconds for grid gen-eration at � = 0:999). Straight column generation, though slower than gridgeneration, is also insensitive to the value of �. With the increasing popu-larity of simulation estimators in econometrics, the stability of an algorithmas one searches over a parameter space is extremely important. Our linearprogramming algorithms seem to satisfy this need.4 Adaptive Grid GenerationThe algorithms that we have discussed thus far all require the solution oflarger problems to obtain greater accuracy. With the linear programmingapproach, however, the necessity of this size{accuracy tradeo� is less clear.Whenever we solve the problem for a given grid, the linear programming so-lution provides us with information about where to locate a new grid point toobtain the greatest impact on the accuracy of the ultimate solution. We for-16



Figure 5: � = �5: ({) nk = 2049; (x) nk = 129 �xed; (o) nk = 129 adaptive
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malize this as follows. We begin by optimizing over a coarse evenly spacedgrid using column generation. Each state (i; j) on this coarse grid has aoptimal action a(i; j) and a shadow price w(i; j) generated by the linear pro-gramming solution. This shadow price measures the impact on the sum ofthe value function ordinates (the objective function in the linear program),of a small change in the constraint, speci�cally u(i; j; a(i; j)). We next cal-culate the slack of each constraint adjacent to the constraint for a(i; j). Thisamounts to �nding the change in u that would result in the constraint holdingwith equality. We then multiply these slacks by the shadow price to obtain ameasure of the impact on the objective function of placing a new grid pointadjacent to a(i; j). We do this for all (i; j). We then add the actions and thestates corresponding to the highest values of this product of shadow priceand slack. The new points are always the midpoint between two existingpoints. We call this method adaptive grid generation.Figure 5 plots the optimal value functions (with a solid line) for our basicmodel with � = �5. This solution is still approximate since it was obtained17



Figure 6: � = �5: (x) nk = 129 �xed; (o) nk = 129 adaptive
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with a grid size of nk = 2; 049. This grid is, however, su�ciently �ne thatwe treat this as the true solution. Note that the amount of curvature in thevalue function is greater conditional on low value of the technology shock.We also plot the approximate solution for a �xed grid of 1=16th the size(nk = 129), using an \x" to mark every eighth grid point. Note that thissolution lies everywhere below the true solution and that the approximationerror is greatest for small values of the capital stock when the technologyshock is in the low state. This is also where the value function has its greatestcurvature. Finally in Figure 5 we plot the solution using the adaptive gridgeneration method described above. This solution is plotted using an \o"to make every eighth grid point. Note that with the same number of gridpoints, the adaptive grid method generally does a better job approximatingthe true value function. This is especially true in the region where the valuefunction has its greatest curvature.Figure 6 plots the di�erence between the true solution and these approx-18



imations. A number of features of the adaptive grid generation method areapparent from these �gures. Note that the adaptive method concentrates farmore points in the region of the state space where the value function has itsgreatest curvature. As a result it places relatively few points in the regionwhere the value function is more 
at. This results in an approximation errorthat is roughly the same size for the entire state space. In contrast note thedramatic di�erence in the size of the approximation errors over the capitalgrid for the �xed grid approximation. Our experience is that with adaptivegrid generation, adaptively increasing the grid size lowers the approximationerrors for the entire range of capital. For the �xed grid, an extremely largegrid must be solved to get the approximation error down for points wherethe value function has its greatest curvature. Much of the computationalburden involved in this is, of course, unnecessary since for large values of thecapital stock the error is already quite small. The results for adaptive gridgeneration are, therefore, extremely encouraging.5 ExtensionsThere are many ways the algorithms that we propose can be improved andextended. For the type of application detailed above, the next step will beto investigate the role of the particular objective function we choose for thelinear program. We currently minimize the sum across all points in the statespace of the value function ordinates. This choice does not a�ect the solutionfor a �xed grid, however, it is very important for adaptive grid generation.What we propose is to calculate the ergodic distribution of the state spacefor each subproblem that we solve. These probabilities can then be used toweight the value{function ordinates before forming the objective function.With this weighting, adaptive grid generation will generate more points notjust where they have the biggest e�ect on values, but rather where they willhave the biggest e�ect on the most-likely-to-occur values. For problems inwhich the main focus is on properties of probability distributions of the so-lutions, we think that this will provide much more accurate results. Theprimary computational issue is whether we must solve for ergodic probabili-ties in addition to solving the linear program (and if so, what is the relative19



cost involved), or whether these probabilities can be determined from infor-mation that is already available from the linear programming algorithm.More generally, we plan to explore the issue of accuracy for our algorithmas well as other algorithms. The adaptive grid generation methodology yieldsbounds on how much the value function ordinates can be a�ected by increas-ing the size of the problem. This provides us with a measure of accuracy.However, since the values themselves are rarely of fundamental interest, weplan to extend this concept of accuracy to other properties of the solutionsuch as actions and ergodic distributions. If this proves successful, we envi-sion using our algorithm to evaluate the accuracy of solutions provided byother algorithms as well.Much of our future research in this area will involve developing compu-tational methods related to the ones described above for other classes ofeconomic models. The problems of immediate interest to us include:� Solutions to other optimum problems such as the growth model with�xed costs. Fixed costs, in particular, confound many methods thatrely on approximations by smooth functions, since optimal actions maybe subject to large jumps. Value{function iteration is always availablefor such problems but, as described above, is not very useful in practice.Our linear programming methods inherit all of the good properties ofvalue{function iteration for such problems but eliminate most of thede�ciencies. In particular, adaptive grid generation should prove verye�ective for these types of problems since it has the ability to �nd thelocation of discontinuities quickly and accurately.� Solutions to non-optimum equilibrium problems such as heterogeneousagent{incomplete markets models. This class of problems has attracteda lot of attention in both �nance and macroeconomics. The problemsthat people have been able to address with con�dence in accuracy,however, have been quite limited in terms of complexity. Our goalhere is to be able to solve for equilibria recursively. If our dynamicprogramming solutions can be obtained rapidly and accurately, thenwe can solve individual{level planning problems conditional on set ofmarket prices. Given these solutions, we can then calculate new market20



clearing prices. We then iterate between individual and the marketuntil we �nd a �xed point. The advantage of this approach is that itis very easy to impose restrictions such as borrowing constraints whensolving for value functions. The equilibrium naturally satis�es all ofthe constraints automatically.� Solutions to partial di�erential equations. A common approach to solv-ing these problems is to discretize the state space and then solve asystem of linear equations. Solutions, however, are very sensitive tothe form of the discretization. As a consequence of this a number ofproblem-speci�c transformations of the state space have been proposedto ensure that there is a relatively �ne discretization over important re-gions of the state space and a coarse grid over less important regions.For example, Du�e (1992) details a common change of variables thathas proven successful for interest rate problems. Since interest ratesare are in the interval zero to in�nity, the state space is large. How-ever, experience and intuition dictate that very large interest rates arehighly unlikely. Therefore, a uniformly spaced discrete grid is placedover 1=(1 + 
x) rather than the original variable, x. The tuning pa-rameter 
 dictates how many grid points are used for relatively smallvalues of x. This is a very sensible approach. Its primary drawback isthat it requires ex ante knowledge of the solution. Our adaptive gridgeneration approach can accomplish exactly the same goal without anyknowledge of the ultimate solution.
21
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Appendix: C Programs1. Value Iteration (with Grid Generation)/******************************************************************** Gridval.c: Program to do value iteration using grid generation* Last Modified: July 15, 1993 MT*******************************************************************/#include <math.h>#define TRUE 1#define FALSE 0#define ABS(a) (((a) > 0) ? (a) : -(a))#define MAXI 20001#define MAXJ 2#define MAXA 20001/******************************************************************* Utility function and feasibility definitions******************************************************************/#define u(i,j,a) (pow((-k[a]+temp[i][j]),ro)/ro)#define valid(i,j,a) ((temp[i][j] - k[a]) > 0 ? TRUE : FALSE)/******************************************************************* Other definitions******************************************************************/double max_err;int max_i,max_j,max_a;double beta;double temp[MAXI][MAXJ];double v1[MAXI][MAXJ];double v2[MAXI][MAXJ];double disc_sum[MAXA][MAXJ];double max,sum,oldval;int iter, done;double delta;int skip;int place;int num,num_val; 23



intmain (){int i, j;double trans[MAXJ][MAXJ],gamma,ro,alpha,k[MAXI],z[MAXJ];int a,j1;double low,high,diff;/* Read in problem parameters */ro = .5;alpha = 0.33;printf("Range of i : ");scanf("%d",&max_i);printf("Range of j : ");scanf("%d",&max_j);printf("Range of a : ");scanf("%d",&max_a);printf("Value for beta : ");scanf("%lf",&beta);printf("Value for delta : ");scanf("%lf",&delta);gamma = 1;/* Define values of high and low states */for (j=0;j<max_j;j++)z[j] = exp(-.32)+(exp(.32)-exp(-.32))*j/(max_j-1);/* Find reasonable range for problem */low = pow(beta*alpha*z[0]/(1-(1-delta)*beta),1.0/(1.0-alpha));high = pow(beta*alpha*z[1]/(1-(1-delta)*beta),1.0/(1.0-alpha));diff = (high-low)/(0.8*max_i);low -= .1*max_i*diff;high += .1*max_i*diff;for (a=0;a<max_a;a++)k[a] = low + ((high-low)*a)/(max_a-1);/* Define transition matrix */for (j=0;j<max_j;j++) {for (j1=0;j1<max_j;j1++) { 24



if (j==j1) trans[j][j1] = (.975)*beta;else trans[j][j1] = (0.025)/(max_j-1)*beta;}}/* Precalculate expensive part of utility function */for (i=0;i<max_i;i++) {for (j=0;j<max_j;j++) {temp[i][j] = (1-delta)*k[i]+gamma*pow( (double) k[i],alpha)*z[j];}}/* Define initial value for each state */for(i=0;i<max_i;i++) {for (j=0;j<max_j;j++) {for (a=0;a<max_a;a++) {if (valid(i,j,a)) {v[i][j] = u(i,j,a)/(1-beta);break;}if (a==max_a) printf("No valid action for %d %d\n",i,j);}}/* Define initial grid */skip = (max_i-1)/2;done = FALSE;iter = 0;/* Outer loop to refine grid */while (!done) {iter++;done = TRUE;/* Precalculate expensive operation each iteration */for(a=0;a<max_a;a+=skip) {for (j=0;j<max_j;j++) {disc_sum[a][j] = 0;for (j1=0;j1<max_j;j1++) {disc_sum[a][j] += trans[j][j1]*v1[a][j1];25



}}}/* Loop through each state looking for improved value */for (i=0;i<max_i;i+=skip) {for (j=0;j<max_j;j++) {max = -10000000.0;for (a=0;a<max_a;a+=skip) {if (!(valid(i,j,a))) continue;sum = u(i,j,a)+disc_sum[a][j];if (sum > max) max = sum;}v2[i][j] = max;if (ABS(max-v1[i][j]) > .000001) done = FALSE;}}/* Update values */for(i=0;i<max_i;i+=skip) {for(j=0;j<max_j;j++) {v1[i][j]=v2[i][j];}}/* Check if finished? */if (done) {if (skip > 1) {/* Refine grid */printf("At iteration %d with skip %d\n",iter,skip);done = FALSE;for (i=skip/2;i<max_i;i+=skip) {for (j=0;j<max_j;j++) {v1[i][j] = .5*(v1[(i-skip/2)][j]+v1[i+skip/2][j]);}}skip = skip/2;} 26



}}printf("Done Value Iteration (with grids) after %d iterations.\n",iter);} /* END MAIN */2. Constraint Generation (with Grid Generation)/******************************************************************** Gridgen.c: Program to do constraint generation using grids* Last Modified: July 15, 1993 MT*******************************************************************/#include "cpxdefs.inc"#include <math.h>#define TRUE 1#define FALSE 0/******************************************************************* Utility function and feasibility definitions******************************************************************/#define u(i,j,a) (pow((-k[a]+temp[i][j]),ro)/ro)#define valid(i,j,a) ((temp[i][j] - k[a]) > 0 ? TRUE : FALSE)/******************************************************************* Other definitions******************************************************************/#define ABS(a) (((a) > 0) ? (a) : -(a))#define MAXI 17000#define MAXJ 2#define MAXA 17000#define MACSZ MAXI*MAXJ*6#define MARSZ MAXI*MAXJ#define MATSZ MACSZ*(MAXJ+1)#define COLADD MAXI*MAXJ*6#define ENTRYADD COLADD*(MAXJ+1)#define CSTORSZ 0#define RSTORSZ 0 27



/* Linear program variables */char *probname = "dynamic";int objsen = -1;double objx[MACSZ],objxadd[COLADD];double rhsx[MARSZ];char senx[MARSZ];int matbeg[MACSZ],matbegadd[COLADD];int matcnt[MACSZ],matcntadd[COLADD];int matind[MATSZ],matindadd[ENTRYADD];double matval[MATSZ],matvaladd[ENTRYADD];double bdl[MACSZ],bdladd[COLADD];double bdu[MACSZ],bduadd[COLADD];char *dataname = NULL;char *objname = NULL;char *rhsname = NULL;char *rngname = NULL;char *bndname = NULL;char *cname = NULL;char *rname = NULL;int macsz = MACSZ;int marsz = MARSZ;int matsz = MATSZ;unsigned cstorsz = CSTORSZ;unsigned rstorsz = RSTORSZ;int lpstat;double obj;double x[MACSZ];double pi[MARSZ];double slack[MARSZ];double dj[MACSZ];/* Other variables */int low,high;int max_i,max_j,max_a;double beta;double delta;int skip;int place,place1;double max;int done;int new_col,new_entry; 28



int max_col,max_entry;double sum;double temp[MAXI][MAXJ];double disc_sum[MAXA][MAXJ];int tot_var;int action[MAXI][MAXJ];int icol[MACSZ];int jcol[MACSZ];int acol[MACSZ];intmain (){struct cpxlp *lp = NULL;FILE *logfile = NULL, *changefile = NULL;int status;int i, j;int toosmall, toobig;double trans[MAXJ][MAXJ],gamma,ro,alpha,k[MAXI],z[MAXJ];int a,j1;double low,high,diff;/* Set up log file for CPLEX */logfile = fopen ("dyn.log", "w");if ( !logfile ||setlogfile (logfile) != 0 ||setscr_ind (1) != 0 ){printf ("Failure to connect logging channel.\n");goto TERMINATE;}/* Prepare to solve the dual of the stochastic DP *//* Read in the problem size. */matsz = 0;macsz = 0;marsz = 0; 29



ro = .5;alpha = 0.33;beta = .98;printf("Range of i : ");scanf("%d",&max_i);printf("Range of j : ");scanf("%d",&max_j);printf("Range of a : ");scanf("%d",&max_a);printf("Value for beta : ");scanf("%lf",&beta);printf("Value for delta : ");scanf("%lf",&delta);gamma = 1.0;max_col = MACSZ;max_entry = MATSZ;/* Generate the problem */max_a = max_i;for (j=0;j<max_j;j++)z[j] = exp(-.32)+(exp(.32)-exp(-.32))*j/(max_j-1);low = pow(beta*alpha*z[0]/(1-(1-delta)*beta),1.0/(1.0-alpha));high = pow(beta*alpha*z[1]/(1-(1-delta)*beta),1.0/(1.0-alpha));diff = (high-low)/(0.8*max_i);low -= .1*max_i*diff;high += .1*max_i*diff;printf("Low is %lf high is %lf\n",low,high);for (a=0;a<max_a;a++)k[a] = low + ((high-low)*a)/(max_a-1);for (j=0;j<max_j;j++) {for (j1=0;j1<max_j;j1++) {if (j==j1) trans[j][j1] = (.975)*beta;else trans[j][j1] = (0.025)/(max_j-1)*beta;}}/* Generate expensive calculation outside of loop */for (i=0;i<max_i;i++) {for (j=0;j<max_j;j++) { 30



temp[i][j] = (1-delta)*k[i]+gamma*pow(k[i],alpha)*z[j];}}/* Put in artificial action */matbeg[0] = 0;for(i=0;i<max_i;i++) {for(j=0;j<max_j;j++) {/* Use lowest feasible action in each state */for (place=0;place<max_a;place++)if (valid(i,j,place)) break;if (place ==max_a) {printf("No valid action for %d %d\n",i,j);goto TERMINATE;}objx[macsz] = u(i,j,place);bdl[macsz] = 0.0;bdu[macsz] = INFBOUND;matcnt[macsz] = 0;if (i!= place) {matval[matsz] = 1;matind[matsz] = i*max_j+j;matsz++;matcnt[macsz]++;}else {matval[matsz] = 1-trans[j][j];matind[matsz] = i*max_j+j;matsz++;matcnt[macsz]++;}for (j1=0;j1<max_j;j1++) {if ((i==place)&&(j1==j)) continue;matval[matsz] = -trans[j][j1];matind[matsz] = place*max_j+j1;matsz++;matcnt[macsz]++;}icol[macsz] = i;jcol[macsz] = j;acol[macsz] = place; 31



macsz++;matbeg[macsz] = matbeg[macsz-1] + matcnt[macsz-1];}}/* RHS */for (i=0;i<max_i;i++){for(j=0;j<max_j;j++){rhsx[marsz] = 1;senx[marsz] = 'E';marsz++;}}tot_var = macsz;/* Load in the linear program */lp = loadprob (probname, macsz, marsz, 0, objsen, objx, rhsx,senx, matbeg, matcnt, matind, matval,bdl,bdu, NULL, NULL,NULL, NULL, NULL, NULL, NULL,dataname, objname, rhsname, rngname, bndname,NULL, NULL, NULL, NULL, NULL, NULL,max_col, marsz, max_entry, 0, 0, cstorsz,rstorsz, 0);if ( lp == NULL ) goto TERMINATE;/* Optimize the linear program and get solution */status = optimize (lp);status = solution (lp, &lpstat, &obj, x, pi, slack, dj);if ( status ) goto TERMINATE;/* Set skip to determine active grid */skip = (max_i-1)/16;done = FALSE;/* Outer loop to determine level of grid refinement */while (!done) { 32



status = solution (lp, &lpstat, &obj, x, pi, slack, dj);if ( status ) goto TERMINATE;done = TRUE;new_col = 0;new_entry = 0;matbegadd[0] = 0;/* Calculate expensive calculation outside of i loop */for(a=0;a<max_a;a+=skip) {for (j=0;j<max_j;j++) {disc_sum[a][j] = 0;for (j1=0;j1<max_j;j1++) {disc_sum[a][j] += trans[j][j1]*pi[a*max_j+j1];}}}/* Determine if there is a better action */for (i=0;i<max_i;i+=skip) {for(j=0;j<max_j;j++) {max = 0.000001;place1 = -1;for (a=0;a<max_a;a+=skip) {if (!(valid(i,j,a))) continue;sum = u(i,j,a)-pi[i*max_j+j] +disc_sum[a][j];if (sum > max) {max = sum;place1 = a;}}if (place1 >=0) {/* Add in better action */place = place1;done = FALSE;objxadd[new_col] = u(i,j,place);bdladd[new_col] = 0.0;bduadd[new_col] = INFBOUND;matcntadd[new_col] = 0;if (i!= place) { 33



matvaladd[new_entry] = 1;matindadd[new_entry] = i*max_j+j;new_entry++;matcntadd[new_col]++;}else {matvaladd[new_entry] = 1-trans[j][j];matindadd[new_entry] = i*max_j+j;new_entry++;matcntadd[new_col]++;}for (j1=0;j1<max_j;j1++) {if ((i==place)&&(j1==j)) continue;matvaladd[new_entry] = -trans[j][j1];matindadd[new_entry] = place*max_j+j1;new_entry++;matcntadd[new_col]++;}icol[macsz] = i;jcol[macsz] = j;acol[macsz] = place;macsz++;new_col++;matbegadd[new_col] = matbegadd[new_col-1] +matcntadd[new_col-1];}}}if (!done) {/* If some better actions found, then add in new columns */printf("Adding %d columns (size %d) ... ",new_col,new_entry);tot_var += new_col;if (tot_var > max_col) {printf("OUT OF SPACE! Max cols is %d.\n",max_col);goto TERMINATE;}status = addcols (lp, new_col, new_entry,objxadd,matbegadd, matindadd,matvaladd, bdladd,bduadd, NULL);34



printf("done.\n");/* Optimize linear program */status = optimize (lp);if ( status ) goto TERMINATE;}/* Otherwise, refine grid if possible */if (done) {if (skip != 1) {done=FALSE;for(place=0;place < macsz;place++) {if (x[place] > .000001) {action[icol[place]][jcol[place]]=acol[place];}}new_col = 0;/* Add in three actions centered on midpoint of actions foradjacent states for each new point */for (i=skip/2;i<max_i;i+=skip) {for(j=0;j<max_j;j++) {low = (action[i-skip/2][j]+action[i+skip/2][j])/2-skip/2;high = low+skip;for (place=low;place<=high;place+=skip/2) {if ((place < 0) || (place >= max_a)) continue;if (!(valid(i,j,place))) continue;objxadd[new_col] = u(i,j,place);bdladd[new_col] = 0.0;bduadd[new_col] = INFBOUND;matcntadd[new_col] = 0;if (i!= place) {matvaladd[new_entry] = 1;matindadd[new_entry] = i*max_j+j;new_entry++;matcntadd[new_col]++;}else { 35



matvaladd[new_entry] = 1-trans[j][j];matindadd[new_entry] = i*max_j+j;new_entry++;matcntadd[new_col]++;}for (j1=0;j1<max_j;j1++) {if ((i==place)&&(j1==j)) continue;matvaladd[new_entry] = -trans[j][j1];matindadd[new_entry] = place*max_j+j1;new_entry++;matcntadd[new_col]++;}icol[macsz] = i;jcol[macsz] = j;acol[macsz] = place;macsz++;new_col++;matbegadd[new_col] = matbegadd[new_col-1] +matcntadd[new_col-1];}}}/* Add in adjacent actions for old states */for (i=0;i<max_i;i+=skip) {for(j=0;j<max_j;j++) {low =action[i][j]-skip/2;high = low+skip;for (place=low;place<=high;place+=skip) {if ((place < 0) || (place >= max_a)) continue;if (!(valid(i,j,place))) continue;objxadd[new_col] = u(i,j,place);bdladd[new_col] = 0.0;bduadd[new_col] = INFBOUND;matcntadd[new_col] = 0;if (i!= place) {matvaladd[new_entry] = 1;matindadd[new_entry] = i*max_j+j;new_entry++;matcntadd[new_col]++;}else {matvaladd[new_entry] = 1-trans[j][j];36



matindadd[new_entry] = i*max_j+j;new_entry++;matcntadd[new_col]++;}for (j1=0;j1<max_j;j1++) {if ((i==place)&&(j1==j)) continue;matvaladd[new_entry] = -trans[j][j1];matindadd[new_entry] = place*max_j+j1;new_entry++;matcntadd[new_col]++;}icol[macsz] = i;jcol[macsz] = j;acol[macsz] = place;macsz++;new_col++;matbegadd[new_col] = matbegadd[new_col-1] +matcntadd[new_col-1];}}}skip = skip/2;printf("NEW PHASE (skip %3d) Adding %d columns (size %d) ... ",skip,new_col,new_entry);tot_var += new_col;if (tot_var > max_col) {printf("OUT OF SPACE! Max cols is %d.\n",max_col);goto TERMINATE;}status = addcols (lp, new_col, new_entry,objxadd,matbegadd, matindadd,matvaladd, bdladd,bduadd, NULL);printf("done.\n");status = optimize (lp);if ( status ) goto TERMINATE;}}} /* While !done *//* Finished: print out results. */ 37



printf("Completed successfully!\n");cpxmsg (cpxresults, "\nSolution status = %d\n", lpstat);cpxmsg (cpxresults, "Solution value = %f\n", obj);cpxmsg(cpxresults, "Number of pivots: %d\n",getitc(lp));cpxmsg(cpxresults,"Number of variables = %d\n",tot_var);printf("Final number of columns : %d\n",macsz);TERMINATE:printf("Terminating\n");/* Flush all channels before deleting files as destinations. */flushchannel (cpxresults);flushchannel (cpxlog);flushchannel (cpxerror);flushchannel (cpxwarning);/* Delete log file from all four channels and close. */setlogfile (NULL);if (logfile) fclose (logfile);/* Delete changefile from results channel, then close. */delfpdest (cpxresults, changefile);if (changefile) fclose (changefile);} /* END MAIN */
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